• Keine Ergebnisse gefunden

Production Costing Simulation in Thermal Power Systems Using the Mixture of Conditional Load Distribution Functions

N/A
N/A
Protected

Academic year: 2022

Aktie "Production Costing Simulation in Thermal Power Systems Using the Mixture of Conditional Load Distribution Functions"

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Working Paper

Production Costing Simulation in Thermal Power Systems Using the

Mixture of Conditional Load Distribution Functions

J. Hoffer P. Dorfner

WP-90-80

I

December 1990

International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: (0 22 36) 715 21 *0 Telex. 0 7 9 137 ~ i a s a a Telefax ( 0 2 2 36) 71313

(2)

Production Costing Simulation in Thermal Power Systems Using the

Mixture of Conditional Load Distribution Functions

WP-90-80 December 1990

'Computer and Automation Institute, Hungarian Acadeln!. ol' Sciences, P.O. Box 63, H-1502 Budapest, Hungary

2Hungarian Electricity Board

( M V M T ) ,

Budapest, Hu11gai.y

Working Papers are interim reports on work of the International Institute foi .41111li('cl Systems Analysis and have received only limited review. Views 01. opinions expressccl herein do not necessarily represent those of the Institute or of its National R/Ieml,c~~.

Organizations.

El 11 ASA

International Institute for Applied Systems Analysis 0 A-2361 Laxenburg 0 Austr~a 8.

W.8 Telephone: (0 22 36) 715 2 1 * 0 Telex: 079 137 iiasa a Telefax ( 0 2 2 36) 71 Z 1 3

(3)

Foreword

T h e simulation of production costs for power systems is a key factor in the capacity expansion as well as some other questions raised in connection with planning for power systems. This paper develops a probabilitic model for production cost simulation that is able to handle uncertainty of both generating units and peak load forecast.

Alexander B. Kurzha.nski Chairmarl System and Decision Sciences Prograni

(4)

PRODUCTION COSTING SIMULATION I N THERMAL POWER S Y S T E M S USING THE MIXTURE O F CONDITIONAL LOAD D I S T R I B U T I O N FUNCTIONS

J. HOFFER

Computer and A u t o m a t i o n I n s t i t u t e , Hungarian Academy o f S c i e n c e s Budapest, P.O.Box 63, H-1502, Hungary

P. DOWNER

Htmgarian E l e c t r i c i t y Board (MVMT)

Budapest, P.O.Box 43, H-1251, Hungary

Abstract: I n t h e 1980's t h e curnulard. method became p o p u l a r i n r e l i a b i l i t y t y p e a l g o r i t h m s f o r p r o d u c t i o n c o s t e v a l u a t i o n , p a r t i c u l a r l y i n t h e e v a l u a t i o n o f loss-of-load p r o b a b i l i t y CLOLP), e n e r g y n o t s e r v e d (ENS) and e x p e c t e d e n e r g y g e n e r a t i o n (EEQ> o f a s e t o f g e n e r a t i n g u n i t s belonging t o an e l e c t r i c power s y s t e m . W e developed a p r o b a b i l i s t i c model which is a b l e t o handle t h e u n c e r t a i n t y o f b o t h g e n e r a t i n g units and peak load f o r e c a s t . In o r d e r t o model t h e load including peak load f o r e c a s t u n c e r t a i n t y w e use c o n d i t i o n a l p r o b a b i l i t y d i s t r i b u t i o n s . W e show t h a t t h e cumulant method is s t i l l applicable, as w e c a n compute all t h e moments o f t h e load d u r a t i o n c u r v e Cload d i s t r i b u t i o n > w i t h o u t d i s c r e t i z i n g t h e d e n s i t y f u n c t i o n o f peak load f o r e c a s t .

Keywords: e l e c t r i c power s y s t e m , p r o d u c t i o n c o s t s i m u l a t i o n ,

(5)

I. INTRODUCTION

For a t h e r m a l power s y s t e m t h e p r e d i c t i o n o f t h e e x p e c t e d eneI.gy g e n e r a t i o n o f t h e u n l t s , t h e loss-of-load probability and t h e e x p e c t e d value o f u n s e r v e d e n e r g y are i m p o r t a n t a s p e c t s b o t h i n s y s t e m o p e r a t i o n and planning.

F o r a more realistic and a c c u r a t e s i m u l a t i o n o f s y s t e m o p e r a t i o n , multiblock r e p r e s e n t a t i o n o f u n i t s ' f o r c e d o u t a g e w a s i n t r o d u c e d Csee C13, 133, 151, C63>. However i n t h e literature t h e maxlmum load l e v e l is usually f i x e d a t a given value by t h e load d u r a t i o n c u r v e . I t m e a n s t h a t t h e p r o b a b i l i t y w i t h which load e x c e e d s t h e given v a l u e is equal t o z e r o . With t h i s model < r e p r e s e n t a t i o n > o f t h e load d u r a t i o n c u r v e t h e peak load f o r e c a s t u n c e r t a i n t y and e x t r e m e load v a l u e s c a n n o t b e t a k e n i n t o a c c o u n t .

W e p o i n t o u t h e r e t h a t i n t h e p a p e r w e w r i t e a b o u t load d u r a t i o n c u r v e which is o f t e n called i n t h e llterature as i n v e r t e d , normalised load d u r a t i o n c u r v e . In t h e f i g u r e , s y s t e m load < t h e a r g u m e n t o f t h e f u n c t i o n > is shown o n t h e h o r i z o n t a l axis and p r o b a b i l i t y w i t h which load e x c e e d s t h e c o r r e s p o n d i n g load value ( d e p e n d e n t v a r i a b l e ) is shown o n t h e v e r t i c a l axis.

I t is v e r y i m p o r t a n t t h a t w e have an a c c u r a t e approximation f o r t h e d i s t r i b u t i o n of peak load v a l u e s < t h e t a i l of t h e load d u r a t i o n c u r v e > , as i t can h a v e I n f l u e n c e o n t h e maintenance scheduling plan. I t is obvious t h a t f e w e r c h a n g e s o f t h e load d u r a t i o n c u r v e , a r o u n d t h e minimum load value, d o e s n ' t modify t h e number o f u n l t s t o b e loaded, only t h e e x p e c t e d e n e r g y g e n e r a t i o n of some units changes. On t h e c o n t r a r y , i f w e p e r t u r b e t h e load d u r a t i o n c u r v e a r o u n d t h e

(6)

peak load value, keeping i t s o r i c i n a l s h a p e , t h e number of u n i t s t o be loaded c h a n g e s i n o r d e r t o m e e t t h e p r e s c r i b e d LOLP limit. This f a c t c a n s i g n i f i c a n t l y Influence t h e maintenance scheduling plan.

In t h e model of t h e p a p e r w e s u p p o s e t h a t t h e tail of t h e load d u r a t i o n c u r v e C1.e. t h e maximum value of load) c a n change. T h e load d u r a t i o n curve, f o r a given peak load value, i s a piecewise l i n e a r f u n c t i o n , joining t h r e e p a r t s . The first two p a r t s are t h e same f o r all v a l u e s o f peak load. The peak load value c a n change according t o a well-known d i s t r i b u t i o n

<e.g. uniform o r exponential). Above t h e f i r s t i n t e r v a l t h e load d u r a t i o n c u r v e is equal t o I. The second i n t e r v a l r e p r e s e n t s t h e expected b a s e load domain of t h e power s y s t e m , t h e t h i r d one s i m u l a t e s peak load f o r e c a s t u n c e r t a i n t y Csee Figure 1.3.

p r o b .

The p a r a m e t e r s o f t h e load d u r a t i o n c u r v e Cminlmum load value, expected maxfmum value, t h e probability of t h e e v e n t t h a t t h e load exceeds t h e previously mentioned value, p a r a m e t e r c s ) of t h e d i s t r i b u t i o n o f peak load f o r e c a s t ) c a n be defined by t h e e n e r g y planner.

1 -'

G

Using t h i s r e p r e s e n t a t i o n t h e e x a c t s h a p e of t h e load

"---"-' I

a

Figure 1.

(7)

d u r a t i o n c u r v e becomes unknown, b u t t h e cumulant method is s t i l l applicable, as w e c a n compute all t h e moments o f t h e r e s u l t i n g load d i s t r i b u t i o n .

A t t h e Hungarian E l e c t r i c i t y Board a p r o g r a m package has been implemented o n an IBM PC XT o r AT t o check t h e s y s t e m r e l i a b i l i t y level. The u s e r of t h e package i s enabled t o s i m u l a t e s e v e r a l a v a i l a b i l i t y - s i t u a t i o n s o f t h e power s y s t e m , by s e t t i n g units available o r unavailable, changing: t h e m a i n t e n a n c e scheduling plan, t h e p a r a m e t e r s o f t h e load d u r a t i o n c u r v e .

The r e a l i s t i c and easy-to-handle c h o i c e f o r t h e d i s t r i b u t i o n o f peak load f o r e c a s t is as follows:

-

u n i f o r m d i s t r i b u t i o n ( w i t h given m a x i m u m load o r w i t h given mean o f t h e maximum load>,

-

e x p o n e n t i a l d i s t r i b u t i o n (with g i v e n mean o f t h e maximum load o r w i t h given r i g h t e n d p o i n t o f t h e i n t e r v a l t h e p r o b a b i l i t y of which is g r e a t e r t h a n 0.999.

(8)

11. MOMENTS OF THE RESULTINO LOAD DUIUTION CURVE

L e t X b e t h e random v a r i a b l e r e p r e s e n t i n g t h e load, T be t h e random v a r i a b l e of peak load f o r e c a s t , p < t > be t h e probability d e n s i t y f u n c t i o n of T with existing: moments

<J-1,

...,

J > :

L e t LDC<x>, F < x > , and fCx> d e n o t e t h e load d u r a t i o n , t h e load d i s t r i b u t i o n and t h e load d e n s i t y f u n c t i o n , r e s p e c t i v e l y :

L e t LDCCxJt) b e t h e conditional load d u r a t i o n f u n c t i o n

<supposing T

=

t > and d e n o t e b y Xt t h e corresponding random variable. Then t h e load d u r a t i o n f u n c t i o n LDCCx) is t h e i n t e g r a l of load d u r a t i o n f u n c t i o n s LDCCx ( t ) depending on p a r a m e t e r t. Using t h e following: n o t a t i o n s :

w e have:

0

LDCCx)

-

LDCtx It> p<t> dt,

-OD

(9)

(I,

F < x > -

J

F < x I t > p < t > d t ,

-(I,

(I,

f

-

f < x l t > p < t > d t .

'(I,

I t is o b v i o u s t h a t t h e e x p l i c i t f o r m o f t h e load d u r a t i o n c u r v e d e p e n d s o n t h e p r o b a b i l i t y d e n s i t y f u n c t i o n p < t > , and w e are seldom able t o t r a n s f o r m i t t o a q u i t e s i m p l e f o r m u l a .

In o r d e r t o use t h e cumulant method w e n e e d only t h e c u m u l a n t s o f t h e random v a r i a b l e r e p r e s e n t i n g t h e load.

Cumulants are polynomials of t h e c e n t r a l moments and, t h u s polynomials of t h e moments, as w e l l (see Kendall and Stuart 121). T h e r e f o r e w e need only t h e moments of t h e random v a r i a b l e o f t h e load:

By v i r t u e o f t h e Fubinl t h e o r e m (see Rudln 141) t h e o r d e r o f i n t e g r a l s c a n b e changed i n <2>, i f t h e k- t h moment

< k = 1 . K > o f t h e v a r i a b l e Xt easts and i t is f i n i t e f o r all p o s s i b l e t value; i.e. i f t h e r e v e r s e d i n t e g r a l is f i n l t e . This l a s t a s s u m p t i o n holds i n t h e c a s e s w e examine l a t e r . By changing t h e o r d e r o f t h e i n t e g r a l w e h a v e t h e following formula:

A s t h e i n n e r i n h g r a l is equal t o M<<>:

OD

M < f l >

- J

pet) M<<> dt.

' O D

(10)

T h e r e are s e v e r a l c a s e s when i t is quite e a s y t o compute M&>. One o f t h e m is as follows: HC<> is a p o l y n o d a l of t h e v a r i a b l e t a n d w e know all t h e needed moments o f t h e random v a r i a b l e T (see Example 1. a n d Example 2. below). I f

and

hold, t h e n

a0 n

k

M C ~ >

= S

p < t >

Z

cWtJ dt, -m

3-1

(I) n

k j

M t f l >

= Z

c k j t pCt> dt, al

3-1

n k (I)

-Q?

A s i l l u s t r a t i o n , c o n s i d e r t h e following examples:

E x a m p l e 1.: Xt is o f nofmal d i s t r i b u t i o n , t c a n b e e i t h e r t h e m e a n o r t h e s t a n d a r d d e v i a t i o n o f Xt. Denote t h e k - t h moment by mk and t h e v a r i a n c e of t h e d i s t r i b u t i o n by .'a Then

and

are valid, and b y using t h e above r e c u r s i o n - f o r m u l a , i t is e a s y t o see t h a t MC<> is t h e polynomial of e i t h e r t h e mean o r t h e s t a n d a r d deviation.

(11)

E x a m p l e 2.: L e t Xt be of uniform d i s t r i b u t i o n , and t one of t h e two e n d p o i n t s of t h e i n t e r v a l of possible values. If t h e i n t e r v a l in q u e s t i o n is Cr,sl, t h e n

which is a polynomial of e i t h e r r o r s.

E x a m p l e 3.: L e t xt be of exponential d i s t r i b u t i o n t h e p a r a m e t e r of which is t , T be of uniform d i s t r i b u t i o n on t h e i n t e r v a l Cr,sl C r , s are fixed). Then

f o r k

-

1,

(12)

111. SPECIFICATION OF LDCCx I t ) AND T USED IN THE PROGRAM PACKAUE

In o u r model c o n s t r u c t i o n : let a and b b e t h e e n d p o i n t s of t h e i n t e r v a l where t h e load is simply uniformly d i s t r i b u t e d . L e t c <O<c<l> b e t h e p r o b a b i l i t y of t h e e v e n t of t h e load being g r e a t e r t h a n b o r equal t o i t . In o r d e r t o follow t h e n a t u r e of t h e p r a c t i c a l problem, s u p p o s e t h a t

p < t >

=

0 , f o r t

<

b .

W e c a n define t h e load d u r a t i o n f u n c t i o n LDC<x I t > as follows (see Figure I . ) :

f l 7 f o r x

<

a ,

L D C < x I t >

=

I + < x - a > < c - l > / < b - a > , f o r a S x

<

b , c

-

c < x - b > / < t - b > , f o r b < x < t ,

0 7 f o r x Z t .

Then applying < I > w e have

f o r x

<

o , f o r o 5 x < b ,

I J

tc

-

c < r - b > / < t - b > l p < t > dt, f o r x L b .

For a fixed t , f < x ( t > is as follows:

( 1 - c > / < b - a > , f o r a I x

<

b ,

f < x I t )

=

f o r b I x

<

t ,

o t h e r w i s e .

Moments of Xt can be e x p r e s s e d as follows:

a,

M<$>

=

xk f < x l t > dx,

-a

(13)

k 1-c

M<<>

= J

x

5~ & + J x -

& I

t - b

.I-

J

r k dx

+ -

b- a t - b

Consequently t h e moments o f X c a n b e e x p r e s s e d by means of t h e moments of T. S u b s t i t u i n g i n <3> w e o b t a i n :

In t h e p r o g r a m package T is s u p p o s e d t o b e of e x p o n e n t i a l d i s t r i b u t i o n , t h e p o s s i b l e v a l u e s o f which are g r e a t e r t h a n b o r equal t o i t . L e t d <d>O> be t h e p a r a m e t e r of T. In t h i s case t h e d e n s i t y f u n c t i o n is

f o r t

<

b , p < t >

d e x p < - d < t - b > > , f o r t l b .

W e t h i n k t h a t t h e a s s w n p t i o n of e x p o n e n t i a l l t y is c l o s e t o t h e n a t u r e of t h e peak load d i s t r i b u t i o n . W e s u p p o s e t h a t T

could b e modellised w i t h u n l f o r m d i s t r i b u t i o n as w e l l , b u t w e h a v e no numerical e x p e r i e n c e f o r t h i s case y e t .

The e x p e c t e d value o f T is

(14)

and t h e r e a d e r can e a s i l y v e r i f y (using t h e method of p m t i a l i n t e g r a t i o n > t h e following r e c u r s i o n f o r m u l a

MTJ>

-

bJ

+

j

a ntrJ-'>,

f o r 312.

This c o m p l e t e s t h e d e t a l l s of c o m p u t a t i o n o f M C P ) .

In o r d e r t o s p e e d up t h e c a l c u l a t i o n s w e u s e d a r e c u r s i o n f o r m u l a f o r t h e q u a n t i t i e s

and

as well. I t is o b v i o u s t h a t

v k

k+1 V k Q + b

,

W k

k+l

-

M C T

> +

'L, k b .

S i n c e

w e o b t a i n

MXk>

can b e e x p r e s s e d by means o f u a n d a, as well:

k k

(15)

IV. CONCLUSIONS

Following t h e m e t h o d d e s c r i b e d i n t h e p a p e r w e n e e d n o t d i s c r e t i z e t h e d e n s i t y f u n c t i o n p < t > , a n d i n this way t h e r e is n o n e e d for e v a l u a t i n g l o s s - o f - l o a d p r o b a b i l i t y , e n e r g y n o t s e r v e d a n d e x p e c t e d e n e r g y g e n e r a t i o n of units r e p e a t e d l y for all t h e impulse v a l u e s of peak l o a d forecast.

(16)

V. REFERENCES

C11 E l e c t r i c G e n e r a t i o n E x p a n s i o n A n a l y s i s S y s t e m 1-2. EPRI R e p o r t EL-2561, Palo Alto, California <1982>.

C21 M. K e n d a l l a n d A. Stuart T h e A d v a n c e d T h e o r y o f S t a t i s t i c s . D i s t r i b u t i o n T h e o r y , Vol. 1, C h a r l e s a r l f f l n &

Company Limi Led, London (1977).

C31 N.S. Rau, P. T o y and K.F. Schenk 'Expected Energy Production Costing by t h e Method of Moments' IEEE T r a n s . Power A p p a r a t u s and S y s t e m s Vol.PAS-99 NO.^., 1980, pp. 1908-1915.

C41 W. R u d i n R e a l a n d C o m p l e x A n a l y s i s , McQraw-Hill, London C1970).

C51 K.F. Schenk 'Cumulant Method i n Production Cost

Evaluation', IAEA L e c t u r e 30.5.6, Argorine National L a b o r a t o r y , Argonne, IlUnois C1985).

C63 W i e n A u t o m a t i c S y s t e m P l a n n i n g P a c k a g e <WASP>, User's Manual, IAEA, Vienna C1980).

Referenzen

ÄHNLICHE DOKUMENTE

That is to say, the debris flow models with six different gravel size distributions are flowed two times for each type and the load-time relations are measured by the load cell

For this purpose, the methods of Value Stream Design and fact sheets are used to describe the characteristics of production systems objects (resources and parts)..

thereafter it'll contain a uniformly distributed integer random number generated by the subrout for use on the next entry to the subr. uses randu which is machine

and test methods vary significantly for those three cases. Recommendations for using material data for fatigue crack growth analysis in failure assessment procedures

Everytime the LC receives charge token request messages or capacity up- dates from an EV charging in stage 3, the fair load coordination algorithm is triggered and calculates

MAKING DECISIONS CONCERNING THE FACILITIES OF. A COUNTRY WITH REGARD TO RESOURCES, TECHNOLOGY,

What is needed to perform the calculations for the future load profiles is a database that shows for every single building in the city, how many households are in the building,

Wait 50sec until valve opens (Vent 1 lights up).