• Keine Ergebnisse gefunden

Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

N/A
N/A
Protected

Academic year: 2022

Aktie "Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914"

Copied!
35
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Classical and Quantum Gravity

PAPER • OPEN ACCESS

Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal

GW150914

To cite this article: B P Abbott et al 2016 Class. Quantum Grav. 33 134001

View the article online for updates and enhancements.

Related content

Characterization of the LIGO detectors during their sixth science run J Aasi, J Abadie, B P Abbott et al.

-

Reducing false alarms for compact binary coalescences searches

J Slutsky, L Blackburn, D A Brown et al.

-

The characterization of Virgo data and its impact on gravitational-wave searches J Aasi, J Abadie, B P Abbott et al.

-

Recent citations

Systematic errors in estimation of gravitational-wave candidate significance C. Capano et al

-

Gravitational-wave observations from ground-based detectors

Tjonnie G. F. Li -

When black holes collide: Probing the interior composition by the spectrum of ringdown modes and emitted gravitational waves

Ram Brustein et al -

This content was downloaded from IP address 194.95.159.70 on 23/11/2017 at 13:40

(2)

Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

B P Abbott

1

, R Abbott

1

, T D Abbott

2

, M R Abernathy

1

, F Acernese

3,4

, K Ackley

5

, M Adamo

4,6

, C Adams

7

, T Adams

8

, P Addesso

3

, R X Adhikari

1

, V B Adya

9

, C Affeldt

9

,

M Agathos

10

, K Agatsuma

10

, N Aggarwal

11

, O D Aguiar

12

, L Aiello

13,14

, A Ain

15

, P Ajith

16

, B Allen

9,17,18

, A Allocca

19,20

, P A Altin

21

, S B Anderson

1

, W G Anderson

17

, K Arai

1

, M C Araya

1

, C C Arceneaux

6

, J S Areeda

22

, N Arnaud

23

, K G Arun

24

, S Ascenzi

14,25

, G Ashton

26

, M Ast

27

, S M Aston

7

, P Astone

28

, P Aufmuth

9

, C Aulbert

9

, S Babak

29

, P Bacon

30

, M K M Bader

10

, P T Baker

31

, F Baldaccini

32,33

, G Ballardin

34

, S W Ballmer

35

, J C Barayoga

1

, S E Barclay

36

, B C Barish

1

, D Barker

37

, F Barone

3,4

, B Barr

36

, L Barsotti

11

, M Barsuglia

30

, D Barta

38

, J Bartlett

37

, I Bartos

39

, R Bassiri

40

, A Basti

19,20

, J C Batch

37

, C Baune

9

, V Bavigadda

34

, M Bazzan

41,42

, B Behnke

29

, M Bejger

43

, A S Bell

36

, C J Bell

36

, B K Berger

1

, J Bergman

37

, G Bergmann

9

, C P L Berry

44

, D Bersanetti

45,46

, A Bertolini

10

, J Betzwieser

7

, S Bhagwat

35

, R Bhandare

47

, I A Bilenko

48

, G Billingsley

1

, J Birch

7

, R Birney

49

,

S Biscans

11

, A Bisht

9,18

, M Bitossi

34

, C Biwer

35

,

M A Bizouard

23

, J K Blackburn

1

, L Blackburn

11

, C D Blair

50

, D G Blair

50

, R M Blair

37

, S Bloemen

51

, O Bock

9

, T P Bodiya

11

, M Boer

52

, G Bogaert

52

, C Bogan

9

, A Bohe

29

, P Bojtos

53

, C Bond

44

, F Bondu

54

, R Bonnand

8

, B A Boom

10

, R Bork

1

, V Boschi

19,20

, S Bose

15,55

, Y Bouffanais

30

, A Bozzi

34

, C Bradaschia

20

, P R Brady

17

, V B Braginsky

48

, M Branchesi

56,57

, J E Brau

58

, T Briant

59

, A Brillet

52

, M Brinkmann

9

, V Brisson

23

, P Brockill

17

, A F Brooks

1

, D A Brown

35

, D D Brown

44

, N M Brown

11

, C C Buchanan

2

, A Buikema

11

, T Bulik

60

, H J Bulten

10,61

, A Buonanno

29,62

, D Buskulic

8

, C Buy

30

, R L Byer

40

, L Cadonati

63

,

G Cagnoli

64,65

, C Cahillane

1

, J Calderón Bustillo

63,66

,

T Callister

1

, E Calloni

4,67

, J B Camp

68

, K C Cannon

69

, J Cao

70

, C D Capano

9

, E Capocasa

30

, F Carbognani

34

, S Caride

71

, J Casanueva Diaz

23

, C Casentini

14,25

, S Caudill

17

,

Class. Quantum Grav.33(2016)134001(34pp) doi:10.1088/0264-9381/33/13/134001

0264-9381/16/134001+34$33.00 © 2016 IOP Publishing Ltd Printed in the UK 1

(3)

M Cavagli

à6

, F Cavalier

23

, R Cavalieri

34

, G Cella

20

, C B Cepeda

1

, L Cerboni Baiardi

56,57

, G Cerretani

19,20

, E Cesarini

14,25

, R Chakraborty

1

, T Chalermsongsak

1

, S J Chamberlin

72

, M Chan

36

, S Chao

73

, P Charlton

74

,

E Chassande-Mottin

30

, S Chatterji

11

, H Y Chen

75

, Y Chen

76

, C Cheng

73

, A Chincarini

46

, A Chiummo

34

, H S Cho

77

, M Cho

62

, J H Chow

21

, N Christensen

78

, Q Chu

50

, S Chua

59

, S Chung

50

, G Ciani

5

, F Clara

37

, J A Clark

63

, F Cleva

52

, E Coccia

13,14,25

, P-F Cohadon

59

, A Colla

28,79

, C G Collette

80

, L Cominsky

81

, A Conte

28,79

, L Conti

42

, D Cook

37

, T R Corbitt

2

, N Cornish

31

, A Corsi

71

, S Cortese

34

, C A Costa

12

,

M W Coughlin

78

, S B Coughlin

82

, J-P Coulon

52

,

S T Countryman

39

, P Couvares

1

, E E Cowan

63

, D M Coward

50

, M J Cowart

7

, D C Coyne

1

, R Coyne

71

, K Craig

36

,

J D E Creighton

17

, J Cripe

2

, S G Crowder

83

, A Cumming

36

, L Cunningham

36

, E Cuoco

34

, T Dal Canton

9

, S L Danilishin

36

, S D

Antonio

14

, K Danzmann

9,18

, N S Darman

84

, V Dattilo

34

, I Dave

47

, H P Daveloza

85

, M Davier

23

, G S Davies

36

, E J Daw

86

, R Day

34

, D DeBra

40

, G Debreczeni

38

, J Degallaix

65

,

M De Laurentis

4,67

, S Deléglise

59

, W Del Pozzo

44

,

T Denker

9,18

, T Dent

9

, H Dereli

52

, V Dergachev

1

, R T DeRosa

7

, R De Rosa

4,67

, R DeSalvo

87

, S Dhurandhar

15

, M C Díaz

85

, L Di Fiore

4

, M Di Giovanni

28,79

, A Di Lieto

19,20

, S Di Pace

28,79

, I Di Palma

9,29

, A Di Virgilio

20

, G Dojcinoski

88

, V Dolique

65

, F Donovan

11

, K L Dooley

6

, S Doravari

7,9

, R Douglas

36

, T P Downes

17

, M Drago

9,89,90

, R W P Drever

1

, J C Driggers

37

, Z Du

70

, M Ducrot

8

, S E Dwyer

37

, T B Edo

86

, M C Edwards

78

, A Ef

er

7

, H-B Eggenstein

9

, P Ehrens

1

, J Eichholz

5

,

S S Eikenberry

5

, W Engels

76

, R C Essick

11

, T Etzel

1

, M Evans

11

, T M Evans

7

, R Everett

72

, M Factourovich

39

, V Fafone

14,13,25

, H Fair

35

, S Fairhurst

91

, X Fan

70

, Q Fang

50

, S Farinon

46

, B Farr

75

, W M Farr

44

, M Favata

88

, M Fays

91

, H Fehrmann

9

, M M Fejer

40

, I Ferrante

19,20

, E C Ferreira

12

, F Ferrini

34

, F Fidecaro

19,20

, I Fiori

34

, D Fiorucci

30

,

R P Fisher

35

, R Flaminio

65,92

, M Fletcher

36

, J-D Fournier

52

, S Franco

23

, S Frasca

28,79

, F Frasconi

20

, Z Frei

53

, A Freise

44

, R Frey

58

, V Frey

23

, T T Fricke

9

, P Fritschel

11

, V V Frolov

7

, P Fulda

5

, M Fyffe

7

, H A G Gabbard

6

, J R Gair

93

,

L Gammaitoni

32,33

, S G Gaonkar

15

, F Garu

4,67

, A Gatto

30

, G Gaur

94,95

, N Gehrels

68

, G Gemme

46

, B Gendre

52

, E Genin

34

, A Gennai

20

, J George

47

, L Gergely

96

, V Germain

8

,

Archisman Ghosh

16

, S Ghosh

10,51

, J A Giaime

2,7

,

K D Giardina

7

, A Giazotto

20

, K Gill

97

, A Glaefke

36

, E Goetz

98

, R Goetz

5

, L Gondan

53

, G González

2

,

J M Gonzalez Castro

19,20

, A Gopakumar

99

, N A Gordon

36

,

(4)

M L Gorodetsky

48

, S E Gossan

1

, M Gosselin

34

, R Gouaty

8

, C Graef

36

, P B Graff

62

, M Granata

65

, A Grant

36

, S Gras

11

, C Gray

37

, G Greco

56,57

, A C Green

44

, P Groot

51

, H Grote

9

, S Grunewald

29

, G M Guidi

56,57

, X Guo

70

, A Gupta

15

,

M K Gupta

95

, K E Gushwa

1

, E K Gustafson

1

, R Gustafson

98

, J J Hacker

22

, B R Hall

55

, E D Hall

1

, G Hammond

36

, M Haney

99

, M M Hanke

9

, J Hanks

37

, C Hanna

72

, M D Hannam

91

,

J Hanson

7

, T Hardwick

2

, J Harms

56,57

, G M Harry

100

, I W Harry

29

, M J Hart

36

, M T Hartman

5

, C-J Haster

44

,

K Haughian

36

, A Heidmann

59

, M C Heintze

5,7

, H Heitmann

52

, P Hello

23

, G Hemming

34

, M Hendry

36

, I S Heng

36

, J Hennig

36

, A W Heptonstall

1

, M Heurs

9,18

, S Hild

36

, D Hoak

101

,

K A Hodge

1

, D Hofman

65

, S E Hollitt

102

, K Holt

7

, D E Holz

75

, P Hopkins

91

, D J Hosken

102

, J Hough

36

, E A Houston

36

, E J Howell

50

, Y M Hu

36

, S Huang

73

, E A Huerta

82,103

, D Huet

23

, B Hughey

97

, S Husa

66

, S H Huttner

36

, T Huynh-Dinh

7

,

A Idrisy

72

, N Indik

9

, D R Ingram

37

, R Inta

71

, H N Isa

36

,

J-M Isac

59

, M Isi

1

, G Islas

22

, T Isogai

11

, B R Iyer

16

, K Izumi

37

, T Jacqmin

59

, H Jang

77

, K Jani

63

, P Jaranowski

104

,

S Jawahar

105

, F Jiménez-Forteza

66

, W W Johnson

2

,

D I Jones

26

, R Jones

36

, R J G Jonker

10

, L Ju

50

, Haris K

106

, C V Kalaghatgi

24,91

, V Kalogera

82

, S Kandhasamy

6

, G Kang

77

, J B Kanner

1

, S Karki

58

, M Kasprzack

2,23,34

,

E Katsavounidis

11

, W Katzman

7

, S Kaufer

18

, T Kaur

50

, K Kawabe

37

, F Kawazoe

9,18

, F Kéfélian

52

, M S Kehl

69

,

D Keitel

9,66

, D B Kelley

35

, W Kells

1

, R Kennedy

86

, J S Key

85

, A Khalaidovski

9

, F Y Khalili

48

, I Khan

13

, S Khan

91

, Z Khan

95

, E A Khazanov

107

, N Kijbunchoo

37

, C Kim

77

, J Kim

108

,

K Kim

109

, Nam-Gyu Kim

77

, Namjun Kim

40

, Y-M Kim

108

, E J King

102

, P J King

37

, D L Kinzel

7

, J S Kissel

37

, L Kleybolte

27

, S Klimenko

5

, S M Koehlenbeck

9

,

K Kokeyama

2

, S Koley

10

, V Kondrashov

1

, A Kontos

11

, M Korobko

27

, W Z Korth

1

, I Kowalska

60

, D B Kozak

1

, V Kringel

9

, B Krishnan

9

, A Królak

110,111

, C Krueger

18

, G Kuehn

9

, P Kumar

69

, L Kuo

73

, A Kutynia

110

, B D Lackey

35

, M Landry

37

, J Lange

112

, B Lantz

40

, P D Lasky

113

, A Lazzarini

1

, C Lazzaro

42,63

, P Leaci

28,29,79

, S Leavey

36

, E O Lebigot

30,70

, C H Lee

108

, H K Lee

109

, H M Lee

114

, K Lee

36

, A Lenon

35

, M Leonardi

89,90

, J R Leong

9

, N Leroy

23

, N Letendre

8

, Y Levin

113

, B M Levine

37

, T G F Li

1

, A Libson

11

, T B Littenberg

115

, N A Lockerbie

105

, J Logue

36

,

A L Lombardi

101

, J E Lord

35

, M Lorenzini

13,14

, V Loriette

116

, M Lormand

7

, G Losurdo

57

, J D Lough

9,18

, H Lück

9,18

,

A P Lundgren

9

, J Luo

78

, R Lynch

11

, Y Ma

50

, T MacDonald

40

,

B Machenschalk

9

, M MacInnis

11

, D M Macleod

2

,

(5)

F Magaña-Sandoval

35

, R M Magee

55

, M Mageswaran

1

, E Majorana

28

, I Maksimovic

116

, V Malvezzi

14,25

, N Man

52

, I Mandel

44

, V Mandic

83

, V Mangano

36

, G L Mansell

21

, M Manske

17

, M Mantovani

34

, F Marchesoni

33,117

, F Marion

8

, S Márka

39

, Z Márka

39

, A S Markosyan

40

, E Maros

1

,

F Martelli

56,57

, L Martellini

52

, I W Martin

36

, R M Martin

5

, D V Martynov

1

, J N Marx

1

, K Mason

11

, A Masserot

8

,

T J Massinger

35

, M Masso-Reid

36

, F Matichard

11

, L Matone

39

, N Mavalvala

11

, N Mazumder

55

, G Mazzolo

9

, R McCarthy

37

, D E McClelland

21

, S McCormick

7

, S C McGuire

118

,

G McIntyre

1

, J McIver

1

, D J McManus

21

, S T McWilliams

103

, D Meacher

72

, G D Meadors

9,29

, J Meidam

10

, A Melatos

84

, G Mendell

37

, D Mendoza-Gandara

9

, R A Mercer

17

, E Merilh

37

, M Merzougui

52

, S Meshkov

1

, C Messenger

36

, C Messick

72

, P M Meyers

83

, F Mezzani

28,79

, H Miao

44

, C Michel

65

,

H Middleton

44

, E E Mikhailov

119

, L Milano

4,67

, J Miller

11

, M Millhouse

31

, Y Minenkov

14

, J Ming

9,29

, S Mirshekari

120

, C Mishra

16

, S Mitra

15

, V P Mitrofanov

48

, G Mitselmakher

5

, R Mittleman

11

, A Moggi

20

, M Mohan

34

, S R P Mohapatra

11

, M Montani

56,57

, B C Moore

88

, C J Moore

121

, D Moraru

37

, G Moreno

37

, S R Morriss

85

, K Mossavi

9

, B Mours

8

, C M Mow-Lowry

44

, C L Mueller

5

, G Mueller

5

, A W Muir

91

, Arunava Mukherjee

16

, D Mukherjee

17

, S Mukherjee

85

, N Mukund

15

, A Mullavey

7

, J Munch

102

, D J Murphy

39

,

P G Murray

36

, A Mytidis

5

, I Nardecchia

14,25

, L Naticchioni

28,79

, R K Nayak

122

, V Necula

5

, K Nedkova

101

, G Nelemans

10,51

, M Neri

45,46

, A Neunzert

98

, G Newton

36

, T T Nguyen

21

,

A B Nielsen

9

, S Nissanke

10,51

, A Nitz

9

, F Nocera

34

, D Nolting

7

, M E Normandin

85

, L K Nuttall

35

, J Oberling

37

, E Ochsner

17

, J O

Dell

123

, E Oelker

11

, G H Ogin

124

, J J Oh

125

, S H Oh

125

, F Ohme

91

, M Oliver

66

, P Oppermann

9

, Richard J Oram

7

, B O

Reilly

7

, R O

Shaughnessy

112

, D J Ottaway

102

,

R S Ottens

5

, H Overmier

7

, B J Owen

71

, A Pai

106

, S A Pai

47

, J R Palamos

58

, O Palashov

107

, C Palomba

28

, A Pal-Singh

27

, H Pan

73

, C Pankow

82

, F Pannarale

91

, B C Pant

47

,

F Paoletti

20,34

, A Paoli

34

, M A Papa

9,17,29

, H R Paris

40

,

W Parker

7

, D Pascucci

36

, A Pasqualetti

34

, R Passaquieti

19,20

, D Passuello

20

, B Patricelli

19,20

, Z Patrick

40

, B L Pearlstone

36

, M Pedraza

1

, R Pedurand

65

, L Pekowsky

35

, A Pele

7

, S Penn

126

, A Perreca

1

, M Phelps

36

, O Piccinni

28,79

, M Pichot

52

,

F Piergiovanni

56,57

, V Pierro

87

, G Pillant

34

, L Pinard

65

,

I M Pinto

87

, M Pitkin

36

, R Poggiani

19,20

, P Popolizio

34

, A Post

9

,

J Powell

36

, J Prasad

15

, V Predoi

91

, S S Premachandra

113

,

T Prestegard

83

, L R Price

1

, M Prijatelj

34

, M Principe

87

,

S Privitera

29

, G A Prodi

89,90

, L Prokhorov

48

, O Puncken

9

,

(6)

M Punturo

33

, P Puppo

28

, M Pürrer

29

, H Qi

17

, J Qin

50

, V Quetschke

85

, E A Quintero

1

, R Quitzow-James

58

,

F J Raab

37

, D S Rabeling

21

, H Radkins

37

, P Raffai

53

, S Raja

47

, M Rakhmanov

85

, P Rapagnani

28,79

, V Raymond

29

,

M Razzano

19,20

, V Re

25

, J Read

22

, C M Reed

37

, T Regimbau

52

, L Rei

46

, S Reid

49

, D H Reitze

1,5

, H Rew

119

, S D Reyes

35

, F Ricci

28,79

, K Riles

98

, N A Robertson

1,36

, R Robie

36

,

F Robinet

23

, A Rocchi

14

, L Rolland

8

, J G Rollins

1

, V J Roma

58

, R Romano

3,4

, G Romanov

119

, J H Romie

7

, D Rosi

ń

ska

43,127

, S Rowan

36

, A Rüdiger

9

, P Ruggi

34

, K Ryan

37

, S Sachdev

1

, T Sadecki

37

, L Sadeghian

17

, L Salconi

34

, M Saleem

106

, F Salemi

9

, A Samajdar

122

, L Sammut

84,113

, E J Sanchez

1

, V Sandberg

37

, B Sandeen

82

, J R Sanders

35,98

, B Sassolas

65

, B S Sathyaprakash

91

, P R Saulson

35

, O Sauter

98

,

R L Savage

37

, A Sawadsky

18

, P Schale

58

, R Schilling

9,135

, J Schmidt

9

, P Schmidt

1,76

, R Schnabel

27

, R M S Scho

eld

58

, A Schönbeck

27

, E Schreiber

9

, D Schuette

9,18

, B F Schutz

29,91

, J Scott

36

, S M Scott

21

, D Sellers

7

, A S Sengupta

94

,

D Sentenac

34

, V Sequino

14,25

, A Sergeev

107

, G Serna

22

, Y Setyawati

10,51

, A Sevigny

37

, D A Shaddock

21

, S Shah

10,51

, M S Shahriar

82

, M Shaltev

9

, Z Shao

1

, B Shapiro

40

,

P Shawhan

62

, A Sheperd

17

, D H Shoemaker

11

,

D M Shoemaker

63

, K Siellez

52,63

, X Siemens

17

, D Sigg

37

, A D Silva

12

, D Simakov

9

, A Singer

1

, L P Singer

68

, A Singh

9,29

, R Singh

2

, A Singhal

13

, A M Sintes

66

, B J J Slagmolen

21

, J Slutsky

9

, J R Smith

22

, N D Smith

1

, R J E Smith

1

, E J Son

125

, B Sorazu

36

, F Sorrentino

46

, T Souradeep

15

, A K Srivastava

95

, A Staley

39

, M Steinke

9

, J Steinlechner

36

, S Steinlechner

36

, D Steinmeyer

9,18

, B C Stephens

17

, R Stone

85

, K A Strain

36

, N Straniero

65

, G Stratta

56,57

, N A Strauss

78

, S Strigin

48

, R Sturani

120

, A L Stuver

7

, T Z Summerscales

128

, L Sun

84

, P J Sutton

91

, B L Swinkels

34

, M J Szczepa

ń

czyk

97

, M Tacca

30

, D Talukder

58

, D B Tanner

5

, M Tápai

96

, S P Tarabrin

9

,

A Taracchini

29

, R Taylor

1

, T Theeg

9

,

M P Thirugnanasambandam

1

, E G Thomas

44

, M Thomas

7

, P Thomas

37

, K A Thorne

7

, K S Thorne

76

, E Thrane

113

, S Tiwari

13

, V Tiwari

91

, K V Tokmakov

105

, C Tomlinson

86

, M Tonelli

19,20

, C V Torres

85,136

, C I Torrie

1

, D Töyrä

44

, F Travasso

32,33

, G Traylor

7

, D Tri

6

, M C Tringali

89,90

, L Trozzo

20,129

, M Tse

11

, M Turconi

52

, D Tuyenbayev

85

, D Ugolini

130

, C S Unnikrishnan

99

, A L Urban

17

, S A Usman

35

, H Vahlbruch

18

, G Vajente

1

, G Valdes

85

, N van Bakel

10

, M van Beuzekom

10

, J F J van den Brand

10,61

,

C Van Den Broeck

10

, D C Vander-Hyde

22,35

,

L van der Schaaf

10

, J V van Heijningen

10

, A A van Veggel

36

,

(7)

M Vardaro

41,42

, S Vass

1

, M Vasúth

38

, R Vaulin

11

, A Vecchio

44

, G Vedovato

42

, J Veitch

44

, P J Veitch

102

, K Venkateswara

131

, D Verkindt

8

, F Vetrano

56,57

, A Viceré

56,57

, S Vinciguerra

44

, D J Vine

49

, J-Y Vinet

52

, S Vitale

11

, T Vo

35

, H Vocca

32,33

, C Vorvick

37

, D Voss

5

, W D Vousden

44

, S P Vyatchanin

48

, A R Wade

21

, L E Wade

132

, M Wade

132

, M Walker

2

, L Wallace

1

, S Walsh

9,17,29

, G Wang

13

, H Wang

44

, M Wang

44

, X Wang

70

, Y Wang

50

, R L Ward

21

, J Warner

37

, M Was

8

, B Weaver

37

, L-W Wei

52

, M Weinert

9

, A J Weinstein

1

, R Weiss

11

, T Welborn

7

, L Wen

50

, P We

ß

els

9

, T Westphal

9

, K Wette

9

, J T Whelan

9,112

, S Whitcomb

1

, D J White

86

, B F Whiting

5

, R D Williams

1

, A R Williamson

91

, J L Willis

133

, B Willke

9,18

, M H Wimmer

9,18

, W Winkler

9

, C C Wipf

1

, H Wittel

9,18

, G Woan

36

, J Worden

37

, J L Wright

36

, G Wu

7

, J Yablon

82

, W Yam

11

, H Yamamoto

1

, C C Yancey

62

, M J Yap

21

, H Yu

11

, M Yvert

8

, A Zadro

ż

ny

110

, L Zangrando

42

, M Zanolin

97

, J-P Zendri

42

, M Zevin

82

, F Zhang

11

, L Zhang

1

, M Zhang

119

, Y Zhang

112

, C Zhao

50

, M Zhou

82

, Z Zhou

82

, X J Zhu

50

, N Zotov

134,137

, M E Zucker

1,11

, S E Zuraw

101

and J Zweizig

1 (

LIGO Scienti

c Collaboration and Virgo Collaboration

)

1LIGO, California Institute of Technology, Pasadena, CA 91125, USA

2Louisiana State University, Baton Rouge, LA 70803, USA

3Università di Salerno, Fisciano, I-84084 Salerno, Italy

4INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy

5University of Florida, Gainesville, FL 32611, USA

6The University of Mississippi, University, MS 38677, USA

7LIGO Livingston Observatory, Livingston, LA 70754, USA

8Laboratoire d’Annecy-le-Vieux de Physique des Particules(LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France

9Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany

10Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands

11LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

12Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil

13INFN, Gran Sasso Science Institute, I-67100 L’Aquila, Italy

14INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy

15Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India

16International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India

17University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

18Leibniz Universität Hannover, D-30167 Hannover, Germany

19Università di Pisa, I-56127 Pisa, Italy

20INFN, Sezione di Pisa, I-56127 Pisa, Italy

21 Australian National University, Canberra, Australian Capital Territory 0200, Australia

22California State University Fullerton, Fullerton, CA 92831, USA

(8)

23LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91400 Orsay, France

24Chennai Mathematical Institute, Chennai 603103, India

25Università di Roma Tor Vergata, I-00133 Roma, Italy

26University of Southampton, Southampton SO17 1BJ, UK

27Universität Hamburg, D-22761 Hamburg, Germany

28INFN, Sezione di Roma, I-00185 Roma, Italy

29Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany

30APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/

Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France

31Montana State University, Bozeman, MT 59717, USA

32Università di Perugia, I-06123 Perugia, Italy

33INFN, Sezione di Perugia, I-06123 Perugia, Italy

34European Gravitational Observatory(EGO), I-56021 Cascina, Pisa, Italy

35Syracuse University, Syracuse, NY 13244, USA

36SUPA,University of Glasgow, Glasgow G12 8QQ, UK

37LIGO Hanford Observatory, Richland, WA 99352, USA

38Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary

39Columbia University, New York, NY 10027, USA

40Stanford University, Stanford, CA 94305, USA

41Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy

42INFN, Sezione di Padova, I-35131 Padova, Italy

43CAMK-PAN, 00-716 Warsaw, Poland

44University of Birmingham, Birmingham B15 2TT, UK

45Università degli Studi di Genova, I-16146 Genova, Italy

46INFN, Sezione di Genova, I-16146 Genova, Italy

47RRCAT, Indore MP 452013, India

48Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia

49SUPA, University of the West of Scotland, Paisley PA1 2BE, UK

50University of Western Australia, Crawley, Western Australia 6009, Australia

51Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands

52Artemis, Université Côte d’Azur, CNRS, Observatoire Côte d’Azur, CS 34229, Nice cedex 4, France

53MTA Eötvös University,‘Lendulet’Astrophysics Research Group, Budapest 1117, Hungary

54Institut de Physique de Rennes, CNRS, Université de Rennes 1, F-35042 Rennes, France

55Washington State University, Pullman, WA 99164, USA

56Università degli Studi di Urbino‘Carlo Bo,’I-61029 Urbino, Italy

57INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy

58University of Oregon, Eugene, OR 97403, USA

59Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, F-75005 Paris, France

60Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland

61VU University Amsterdam, 1081 HV Amsterdam, The Netherlands

62University of Maryland, College Park, MD 20742, USA

63Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

64Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, F-69622 Villeurbanne, France

(9)

65Laboratoire des Matériaux Avancés(LMA), IN2P3/CNRS, Université de Lyon, F-69622 Villeurbanne, Lyon, France

66Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain

67Università di Napoli‘Federico II,’Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy

68NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA

69Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada

70Tsinghua University, Beijing 100084, People’s Republic of China

71Texas Tech University, Lubbock, TX 79409, USA

72The Pennsylvania State University, University Park, PA 16802, USA

73National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of People’s Republic of China

74Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia

75University of Chicago, Chicago, IL 60637, USA

76Caltech CaRT, Pasadena, CA 91125, USA

77Korea Institute of Science and Technology Information, Daejeon 305-806, Korea

78Carleton College, Northfield, MN 55057, USA

79Università di Roma‘La Sapienza,’I-00185 Roma, Italy

80University of Brussels, B-1050 Brussels, Belgium

81Sonoma State University, Rohnert Park, CA 94928, USA

82Northwestern University, Evanston, IL 60208, USA

83University of Minnesota, Minneapolis, MN 55455, USA

84The University of Melbourne, Parkville, Victoria 3010, Australia

85The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

86The University of Sheffield, Sheffield S10 2TN, UK

87University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy

88Montclair State University, Montclair, NJ 07043, USA

89Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy

90INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy

91Cardiff University, Cardiff CF24 3AA, UK

92National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181- 8588, Japan

93School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK

94Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India

95Institute for Plasma Research, Bhat, Gandhinagar 382428, India

96University of Szeged, Dóm tér 9, Szeged 6720, Hungary

97Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA

98University of Michigan, Ann Arbor, 48109, USA

99Tata Institute of Fundamental Research, Mumbai 400005, India

100American University, Washington, DC 20016, USA

101University of Massachusetts-Amherst, Amherst, MA 01003, USA

102University of Adelaide, Adelaide, South Australia 5005, Australia

103West Virginia University, Morgantown, WV 26506, USA

104University of Białystok, 15-424 Białystok, Poland

105SUPA, University of Strathclyde, Glasgow G1 1XQ, UK

106IISER-TVM, CET Campus, Trivandrum Kerala 695016, India

107Institute of Applied Physics, Nizhny Novgorod, 603950, Russia

108Pusan National University, Busan 609-735, Korea

109Hanyang University, Seoul 133-791, Korea

110NCBJ, 05-400Świerk-Otwock, Poland

(10)

111IM-PAN, 00-956 Warsaw, Poland

112Rochester Institute of Technology, Rochester, NY 14623, USA

113Monash University, Victoria 3800, Australia

114Seoul National University, Seoul 151-742, Korea

115University of Alabama in Huntsville, Huntsville, AL 35899, USA

116ESPCI, CNRS, F-75005 Paris, France

117Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy

118Southern University and A&M College, Baton Rouge, LA 70813, USA

119College of William and Mary, Williamsburg, VA 23187, USA

120Instituto de Física Teórica, University Estadual Paulista/ICTP South American Institute for Fundamental Research, São Paulo SP 01140-070, Brazil

121University of Cambridge, Cambridge CB2 1TN, UK

122IISER-Kolkata, Mohanpur, West Bengal 741252, India

123Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, UK

124Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA

125National Institute for Mathematical Sciences, Daejeon 305-390, Korea

126Hobart and William Smith Colleges, Geneva, NY 14456, USA

127Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland

128Andrews University, Berrien Springs, 49104, USA

129Università di Siena, I-53100 Siena, Italy

130Trinity University, San Antonio, TX 78212, USA

131University of Washington, Seattle, WA 98195, USA

132Kenyon College, Gambier, OH 43022, USA

133Abilene Christian University, Abilene, TX 79699, USA

134Louisiana Tech University, Ruston, LA 71272, USA Received 12 February 2016

Accepted for publication 29 April 2016 Published 6 June 2016

Abstract

On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914)and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

Keywords: gravitational waves, detector characterization, GW150914

135 Deceased, May 2015.

136 Deceased, March 2015.

137 Deceased, May 2012.

Original content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must

maintain attribution to the author(s)and the title of the work, journal citation and DOI.

(11)

(Somefigures may appear in colour only in the online journal)

1. Introduction

A gravitational wave signal, denoted GW150914, has been detected by the Advanced LIGO detectors [1]. The recovered waveform indicated the source was a binary black hole system with component masses36-+45

Mand29-+44M, which coalesced at a distance of410-+180160Mpc away from Earth. The significance of the GW150914 event was measured to be greater than 5.1σ, corresponding to a false-alarm rate of less than 1 event per 203 000 years [1]. The event, lasting 0.2s in Advanced LIGO’s sensitive frequency range, was detected in inde- pendent searches for modeled compact binary coalescences (CBCs) and for unmodeled gravitational wave bursts [2,3].

The US-based detectors, in Hanford, Washington(H1)and in Livingston, Louisiana(L1) jointly comprise the Laser Interferometer Gravitational-wave Observatory (LIGO). The detectors are designed to measure spacetime strain induced by passing gravitational waves using a modified Michelson interferometer with 4km length arms, as described in[4–6]. The detectors were operating in their nominal configuration at the time of GW150914. The corresponding detector sensitivity is shown in figure 1; both detectors achieved a best sen- sitivity of ∼10−23 Hz-1 2 between roughly 50 and 300 Hz. Peaks in the strain-equivalent noise amplitude spectral density are due largely to mechanical resonances, mains power harmonics, and injected signals used for calibration. Non-stationarity in the detector noise manifests as variations in the level and shape of these sensitivity curves over time.

Even in their nominal state, the detectors’ data contain non-Gaussian noise transients introduced by behavior of the instruments or complex interactions between the instruments and their environment. For LIGO, the fundamental signature of a transient gravitational wave signal is a near-simultaneous signal with consistent waveforms in the two detectors. The rate of coincident noise transients between the independent detector data sets is estimated by the astrophysical searches using time-shift techniques[2,3]. A common time-shift method is to shift the data of one detector relative to the other detector’s data by a time interval sig- nificantly greater than 10ms, the maximum difference in signal arrival time between detectors. Coincident triggers in time-shifted data yield a distribution of background triggers produced solely by the chance coincidence of transient noise. This time-shifting of the data is performed many times to obtain a representative estimate of the expected rate of background triggers, as detailed in[2,7]. The significance of a gravitational wave event is a measure of the probability that it is a false detection due to coincident noise. We study the characteristics of background triggers as well as correlations between the gravitational wave strain data and instrument or environment signals to guide further detector improvements and increase the sensitivity of the searches.

GW150914 occurred on 14 September 2015 09:50:45 UTC, 28 days into the eighth engineering run(ER8)138, 3 days into stable data collection with an accurate calibration, and 4 days preceding the scheduled start of the first observing run(O1).

After the event was identified as a highly significant candidate, the software and hard- ware configuration of each LIGO detector was heldfixed until enough coincident data had been collected to set a sufficiently accurate upper bound on the false-alarm rate using the

138 Engineering runs 17 served to test hardware and software infrastructure from the stability of instrument performance to the output of the astrophysical searches. ER8 was thenal engineering run, intended to provide a gradual transition between a test of the mature instrument and search configurations and the continuous operation of an observing run.

(12)

time-shift technique described above. It took roughly six weeks to collect the required∼16 d of coincident data because low noise operation of the detectors is disrupted by noisy envir- onmental conditions (such as storms, earthquakes, high ground motion, or anthropogenic noise sources). During this six week period we only performed non-invasive maintenance that was required for instrument stability.

The significance of GW150914 was calculated using data taken from 12 September 2015 00:00 through 20 October 2015 13:30 UTC. This data set was analyzed after removing time segments during which an identified instrumental or environmental noise source coupled to the gravitational wave strain signal. At these times, any triggered output of the astrophysical searches would likely be due to noise. These data quality vetoes were built on detector characterization efforts in earlier stages of testing and commissioning of the Advanced LIGO detectors, as reported in[8].

This paper summarizes detector characterization techniques for identification of transient noise(section2). We then present examples of transient noise couplings that can impact the detectors (section 3) and discuss techniques used to mitigate the impact of known noise sources (section4). We show that the selected analysis period provides an accurate estimate of the significance of GW150914 reported in [1] by discussing the stability of the search backgrounds, and presenting the impact of applied data quality vetoes relevant to GW150914 (section 5). We also detail the specific checks performed to rule out an instrumental or environmental noise-transient origin for GW150914, including potentially correlated noise sources such as global magnetic noise that would not be captured by time-shift background estimation techniques (section6). Similar studies were also performed for the second most significant event in the CBC search over the analysis period, designated LVT151012139, observedwith a false alarm probability of∼2%[1,2,9].

Figure 1.The average measured strain-equivalent noise, orsensitivity, of the Advanced LIGO detectors during the time analyzed to determine the significance of GW150914 (12 September to 20 October 2015). LIGO-Hanford (H1) is shown in red, LIGO- Livingston (L1) in blue. The solid traces represent the median sensitivity and the shaded regions indicate the 5th and 95th percentile over the analysis period. The narrowband features in the spectra are due to known mechanical resonances, mains power harmonics, and injected signals used for calibration[4–6].

139 LIGO-Virgo Trigger(LVT)151012(12 October 2015).

(13)

2. Identifying noise sources

In addition to the gravitational wave strain data,h(t), each of the LIGO detectors also records over 200 000auxiliary channelsthat monitor instrument behavior and environmental conditions. These channels witness a broad spectrum of potential coupling mechanisms, useful for diagnosing instrument faults and identifying noise correlations. Examples of instrument witness channels include measured angular drift of optics, light transmitted through a mirror as detected by a set of photodiodes, and actuation signals used to control optic position in order to maintain optical cavity resonance. In addition to candidate gravitational wave events, we study background trig- gers for correlation with trends or coincident transient noise in auxiliary channels on the broad scale of hours to days. We also identify correlations on the order of the duration of transient astrophysical signals; a fraction of a millisecond to a few seconds. Systematic correlations are used to generate data quality vetoes used by the astrophysical searches to reduce the background, as described in appendixA.

An important set of auxiliary channels are the physical environment monitor(PEM)sensors, which monitor the local surroundings for potential disturbances that may affect the gravitational wave strain data, such as motion of the ground or optics tables, magneticfield variations, acoustic disturbances, or potentially, cosmic ray showers [10]. A PEM sensor array is distributed throughout each detector site such that external environmental disturbances that could influence the detectors are witnessed with a significantly higher signal-to-noise ratio(SNR)in the PEM sensors than inh(t). The PEM sensors are detailed in appendixB.

The relationship between environmental noise as witnessed by the PEM sensor array and the gravitational wave strain signal h(t)is investigated using injection studies, where an intentional stimulus is introduced and the responses of both PEM sensors and the instrument are analyzed.

These injections ensure that the environmental sensors are more sensitive to environmental disturbances than the detector is, and also quantify the coupling between the environment andh(t). Figure 2 illustrates a magneticfield injection test at the LIGO-Hanford detector that measured magneticfield coupling toh(t)as well as the response of the local magnetometer to the injected field. The frequency-dependent coupling between the local magneticfield andh(t)can be cal- culated from these measurements and used to accurately predict the response of h(t) to the presence of a magnetic field, as witnessed by the local magnetometers. Figure 2 shows an injection performed at one of the strongest coupling locations, in the building containing the beam splitter and most interferometer optics. Other magneticfield injection measurements identical to this test were also conducted for other locations throughout the detector site. Similar injection studies were also conducted for radio, acoustic, and mechanical vibration sources.

3. Potential noise sources

Transient noise in h(t) must occur within the frequency range targeted by the transient astrophysical searches to affect the background. This range is dictated by the equivalent strain noise of the detectors, as shown in figure1for the Hanford and Livingston detectors during the analysis period.

Motivated by this sensitivity curve, the transient astrophysical searches generally limit the search frequency range to above 30 Hz and below 2–3 kHz, or roughly the human-audible range. For example, a binary black hole signal like GW150914 is expected to have power measurable by the Advanced LIGO detectors between roughly 35 and 250 Hz and sources of short-duration noise with similar frequency content could impact the background estimation of such events.

(14)

3.1. Uncorrelated noise

The following are examples of uncorrelated local noise features anticipated to be of particular interest or known to have a significant impact on the gravitational wave search backgrounds.

The contribution of any uncorrelated noise sources is well estimated using time shifts.

• Someanthropogenic noisesources are likely to produce short duration transients inh(t), such as human activity within one of the rooms that houses the vacuum chambers or

Figure 2.Noise coupling example: determining magneticfield coupling for a location at LIGO-Hanford. The top panel shows the output of a magnetometer installed in the corner station (see figure B1) during the injection of a series of single frequency oscillating magneticfields at 6 Hz intervals(in red)and at a nominally quiet time(in blue). The middle panel shows h(f) during this test (in red) and during the same nominally quiet time(in blue). The heights of the induced peaks inh(f)can be used to determine the magnetic coupling (in m T1) at those frequencies, as shown in the bottom panel. The points in the bottom panel above 80 Hz were determined in a different test with a stronger magneticfield needed to produce discernible peaks in h(f). The green points in the middle panel are an estimate of the contribution toh(f) from the ambient magnetic noise during the nominally quiet time, calculated using the coupling function from the bottom panel. Injection tests also induced strong magnetic fields above 200Hz. At higher frequencies, coupling was so low that the injectedfields did not produce a response inh(f), but were used to set upper limits on the coupling function. Thisfigure only shows data for one(typical)location, but similar injections were repeated at all locations where magnetic coupling might be of concern.

Referenzen

ÄHNLICHE DOKUMENTE

Figure A.12: Frequency noise of the laser light with respect to the power recycling cavity, with the interferometer locked in broadband dual recycling mode. A.5.3 Calibration of

As an outlook, with the recent understanding of the fundamental quantum limit (FQL), which only depends on the power fluctuation inside the arm cavity, it seems to lead to a

In addition to the events reported in Table V , this search also detected an on-source event showing a chirp- ing waveform compatible with a compact binary coales- cence at

Finally, the weighted power sums are computed from the input data, folding in information on detector response and data quality to opti- mize performance of the code that searches

If the input was changed to be (n-1)-dimensional, the same hidden-layer could be used, as its size does not depend on the data or output. Therefore, when designing a

only power recycling, the signal recycling cavity changes amplitude and phase of almost any light component present at the dark port, for instance the gravitational wave

The expected gravitar spatial distribution is not a two-dimensional uni- form thin disk, and the expected gravitar frequency distri- bution is not yet in steady state for

function from seed to output signal (high pass) and pump to output signal (low pass) the power noise at lower frequencies is determined by the noise of the