• Keine Ergebnisse gefunden

From X-ray diffraction data annealing to comprehensive charge density analysis

N/A
N/A
Protected

Academic year: 2022

Aktie "From X-ray diffraction data annealing to comprehensive charge density analysis"

Copied!
221
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)
(2)
(3)
(4)
(5)

Table of contents

(6)
(7)
(8)
(9)

𝐿(𝐫) = ∇ 𝜌(𝐫)

(10)
(11)

 Δ𝐤 𝐤 𝐤

𝐤 − 𝐤 = Δ𝐤.

𝐤

𝐤

(12)

Δ𝐤 ∙ 𝐚 = |Δ𝐤|  |𝐚|  cos(Δ𝐤, 𝐚) = ℎ, Δ𝐤 ∙ 𝐛 = |Δ𝐤|  |𝐛|  cos(Δ𝐤, 𝐚) = 𝑘, Δ𝐤 ∙ 𝐜 = |Δ𝐤|  |𝐜|  cos(Δ𝐤, 𝐚) = 𝑙,

𝐚 𝐛 𝐜 ℎ 𝑘 𝑙

ℎ𝐚𝑘𝐛𝑙𝐜 𝐚 𝐛 𝐜

𝐚= 𝐛 × 𝐜

(𝐚 × 𝐛)  𝐜;      𝐛= 𝐚 × 𝐜

(𝐚 × 𝐛)  𝐜;      𝐜= 𝐚 × 𝐛 (𝐚 × 𝐛)  𝐜 𝐊

𝐊 = ℎ ∙ 𝐚+ 𝑘 ∙ 𝐛+ 𝑙 ∙ 𝐜.

Δ𝐤 = 𝐊.

𝐤 ( )

𝐤

𝐤 𝐤

(13)

( )

𝑑 sin(𝜃) = 𝑛  𝜆.

𝑛 𝑑

𝜃

𝑑

𝑑

𝑑

𝑑

(14)

𝐹

(ℎ𝑘𝑙) 𝐹

𝜌(𝐫) 𝐫

𝐹 = 𝜌(𝐫) exp{ 𝜋  𝑖  (ℎ𝐚+ 𝑘𝐛+ 𝑙𝐜)𝐫} 𝑑𝐫 𝜌(𝐫)

𝜌(𝐫) = 𝐹 exp{− 𝜋  𝑖  (ℎ𝐚+ 𝑘𝐛+ 𝑙𝐜)𝐫} 𝑑𝐫.

𝐹

  𝜌(𝐫) =

𝑉 𝐹  𝑒𝑥𝑝{− 𝜋  𝑖  (ℎ𝐚+ 𝑘𝐛+ 𝑙𝐜)𝐫}

𝑓

𝐹 = 𝑓 exp{ 𝜋  𝑖  (ℎ𝐚+ 𝑘𝐛+ 𝑙𝐜)}.

𝐹 (ℎ𝑘𝑙) 𝜃

𝜃

(15)

sin  (𝜃)/𝜆 > . 𝜃 sin  (𝜃)/𝜆 > .

𝐹

𝜃 𝑈 𝑓′ = 𝑓  exp  (− 𝜋  𝑈  𝐊𝟐)

𝜃 𝜃

   

(16)

𝑈

𝑓′ = 𝑓  exp  (− 𝜋  {ℎ 𝐚 𝑈 + 𝑘 𝐛 𝑈 +𝑙 𝐜 𝑈 + 𝑘𝑙𝐛𝐜𝑈 + ℎ𝑙𝐚𝐜𝑈 + ℎ𝑘𝐚𝐛𝑈 })

𝐹 𝐹

𝑤  Δ = 𝑤 𝑠 ∙ 𝐹 − 𝐹 𝑤

𝐹

𝑤 𝜎(𝐹 )

𝑠 𝐹 𝐹

𝑠 = ∑ 𝐹

∑ 𝐹 .

(17)

𝑘 𝑔

𝜎 = 𝑘  𝜎 + (𝑔〈𝐼〉) 𝑘 𝑔

𝐾 = √𝑘

𝑔〈𝐼〉 𝜎 ≪ (𝑔〈𝐼〉)

/(√𝑘 ∙ 𝑔)

𝐼 = 𝐼 ∙ 𝑆 ∙ 𝑃(𝑢, 𝑣, 𝑤) ∙ 𝑅(𝑛, 𝜃)

(18)

𝐼 𝐼 𝑆 𝑛 𝑃 𝑅

𝑢, 𝑣, 𝑤 𝐚 𝐛 𝐜 𝑆

𝑃 Σ𝑤(〈𝐼 〉 − 𝐼 ) 〈𝐼 〉

𝑤 𝑃(𝑢, 𝑣, 𝑤)

𝐹 − 𝐹

(19)

𝜌(𝐫) 𝜌 (𝐫)

𝜌 (𝐫) 𝜌 (𝐫)

𝜌 (𝐫) = 𝑃 𝜌 (𝐫) + 𝑃 𝜅 𝜌 (𝜅𝑟) + 𝜅 𝑅 (  𝜅 𝑟) 𝑃 𝑌 𝐫 𝑟 .

𝑃 𝑃 𝑃 𝑃

𝑃 + 𝑃

𝑙 ≠

𝑙 𝜌 (𝐫)

𝜌 (𝐫)

𝜅

𝑅 (𝑟) 𝑅 (𝑟) = 𝜁  

(𝑛 + )!𝑟 exp  (−𝜁 𝑟)

𝑛 𝑛

𝜁 𝑛

𝜁 𝑛

𝑌 𝑃 = 𝑃 = −

sin  (𝜃)/𝜆 = .  Å

(20)

𝑥 𝑦 𝑧 𝑈

𝑃

𝑃 𝜅 𝜅′

(21)

𝜃

𝜃

 

(22)

𝑑 ( )

𝑠

𝑠 𝑠

(23)

𝐹

𝜎(𝐼) 𝐼/𝜎(𝐼)

𝐼/𝜎(𝐼)

𝑠 𝑤Δ

𝐹

𝑤 = / 𝜎 𝐹

𝑎 𝑏

𝐹

𝑤 =

𝜎 𝐹 + 𝑎 𝐹 + 𝐹 + 𝑏 𝐹 + 𝐹

𝜎 𝐹 𝑎

(24)

∑ 𝑤  Δ

𝑅 =∑ (|𝐹 | − |𝐹 |)

∑ |𝐹 |

𝐹 𝐹

𝐹 𝐹

𝐹

𝐹

𝑤𝑅 =∑ 𝑤 𝐹 − 𝐹

∑ 𝑤 𝐹

(25)

 I/σ(I)

(26)

 I/σ(I) ≫  I/σ(I)

θ

σ  I/σ(I)

 I/σ(I)

𝜃

𝜃

(27)

𝜃

(28)

( ℎ   𝑘   𝑙)

(ℎ  𝑘  𝑙)

(     ) (n ℎ  n 𝑘  n 𝑙) n

(29)

∇𝜌(𝐫)

𝜌(𝐫)

(30)

∇𝜌(𝐫) ∙ 𝐧(𝐫) = .

𝜌(𝐫)

𝜌(𝐫) 𝐫

∇𝜌(𝐫) = =

⎜⎜

𝜕𝜌(𝐫)

𝜕𝜌(𝐫)𝜕𝑥

𝜕𝑦

𝜕𝜌(𝐫)

𝜕𝑧 ⎠

⎟⎟

⎞ .

𝐻(𝐫) =

⎜⎜

𝜕 𝜌

𝜕𝑥

𝜕 𝜌

𝜕𝑥𝜕𝑦

𝜕 𝜌

𝜕𝑥𝜕𝑧

𝜕 𝜌

𝜕𝑦𝜕𝑥

𝜕 𝜌

𝜕𝑦

𝜕 𝜌

𝜕𝑦𝜕𝑧

𝜕 𝜌

𝜕𝑧𝜕𝑥

𝜕 𝜌

𝜕𝑧𝜕𝑦

𝜕 𝜌

𝜕𝑧 ⎠

⎟⎟

𝜆 𝜆 𝜆

(31)

𝜌(𝐫)

n

n − n + n − n =

𝜌(𝐫) ∇𝜌(𝐫) ∇ 𝜌(𝐫)

(32)

𝐿(𝐫) = ∇ 𝜌(𝐫) 𝐿(𝐫) < 𝐿(𝐫) >

∇ 𝜌(𝐫) = 𝐺(𝐫) + 𝑉(𝐫) 𝑉(𝐫)

𝐺(𝐫)

𝑉(𝐫) 𝐺(𝐫)

𝐿(𝐫) <

∇ 𝜌(𝐫)

∇ 𝜌(𝐫)

(33)

𝜖(𝐫 ) =|𝜆 |

|𝜆 |−

𝜖

𝐫 𝐫′

𝐿𝑆(𝐫, 𝐫 ) 𝐫

(34)

𝜌(𝐫) = 𝐿𝑆(𝐫, 𝐫 )  𝑑𝐫, 𝐿𝑆(𝐫, 𝐫′)

𝐿𝑆(𝐫, 𝐫 ) = − ∇ 𝜌(𝐫 ) ( 𝜋|𝐫 − 𝐫 |).

𝐫

(35)

𝑉(𝐫) = 𝑍

𝐫 − 𝐑 − 𝜌(𝐫)

|𝐫 − 𝐫′|𝑑𝐫′

𝑠(𝐫)

𝑠(𝐫) = |∇𝜌(𝐫)|

  ( 𝜋 )   [𝜌(𝐫)]

𝑠(𝐫) 𝐫

𝜆 𝐫

(36)

𝜌(𝐫) ∙ sign(𝜆 )

(37)

e

e d d

(38)

𝐶

(39)

𝑑 = .  Å

(40)

 ° ≤ 𝜃 ≤ . °

 𝜃

(41)

° ≤ 𝜃 ≤ − °

− ° < 𝜃 <   − . °

− . ° ≤ 𝜃 ≤   − . °

𝜃

(42)
(43)

𝑃 ̅

x(A) = x(B) y(A) + y(B) = . z(A) = z(B) 𝑈 (A) = 𝑈 (B) 𝑈 (A) = 𝑈 (B) 𝑈 (A) = 𝑈 (B) 𝑈 (A) = −𝑈 (B) 𝑈 (A) = 𝑈 (B) 𝑈 (A) = −𝑈 (B)

(44)

CI

(45)

sin(𝜃) ∙ 𝑑

(46)
(47)

C1 C2 C3

N1 N2

H1 H2 H3

H1A H2A H1B H2B H1C H2C

(48)

𝐼 > 𝑛  𝜎(𝐼) 𝑛

(49)

𝜃

(50)

± %

sin(𝜃) /𝜆

(51)

sin(𝜃) /𝜆

𝐹 𝐹 /𝐹 𝐹 /𝜎(𝐹 ) Σ(𝐹 )/Σ(𝐹 )

(52)

(     )

(53)

𝜎(𝐹 )

𝜎(𝐹 )

(54)

Σ𝐹 /Σ𝐹

Σ𝐹 /Σ𝐹

(55)

Σ𝐹 − 𝐹

(56)
(57)

𝐫

w(𝐫) = . = 𝜌 (𝐫)

𝜌 (𝐫)

𝜌 (𝐫)

(58)

𝑑 =𝑑 − 𝑟

𝑟 +𝑑 − 𝑟

𝑟

𝑟

(59)
(60)
(61)
(62)
(63)
(64)
(65)

Size  of  the  lattice  (n°  of  units)

0 100 200 300 400 500 600 700

Out-­of-­plane  dihedral  angle  (°)

-6 -4 -2 0 2 4

(66)

n − n + n − n = − + − =

n − n + n − n = − + − =

(67)

𝑠(𝐫)

𝜌(𝐫) ∙ sign(𝜆 ) 𝜌(𝐫) ∇𝜌(𝐫)

(68)

𝑠(𝐫) = . 𝜌(𝐫) ∙ sign(𝜆 )

(69)
(70)

𝜌(𝐫)

(71)
(72)
(73)

     

(74)

𝐶

(75)

𝑛

𝑛

𝜎 𝐹

(76)

n − n + n − n = − + − =

𝜎 𝐹

(77)
(78)

−∇ 𝜌(𝐫)

(79)
(80)
(81)
(82)
(83)
(84)

∇ 𝜌(𝐫)

∇ 𝜌(𝐫)

(85)
(86)
(87)

(88)
(89)

(90)
(91)
(92)

∇ 𝜌(BCP)

(93)
(94)
(95)
(96)
(97)
(98)

𝜌(𝐫)

(99)

. ≤ 𝜌(𝐫) ≤ .  𝑒  Å . ≤ ∇ 𝜌(𝐫) ≤ .  𝑒  Å

𝜌(𝐫) ≤ .  𝑒  Å ∇ 𝜌(𝐫) ≤ .  𝑒  Å

𝜌(𝐫)

(100)

𝜌(𝐫) ∙ sign(𝜆 )  𝜌(𝐫) ∙ sign(𝜆 )

𝜌(𝐫) ∙ sign(𝜆 )

(101)
(102)
(103)
(104)
(105)
(106)
(107)

𝐹𝑜𝑏𝑠

𝐹𝑐𝑎𝑙𝑐

𝐹 /𝐹

(108)

(109)

(110)

∇ 𝜌(𝐫)

(111)
(112)
(113)
(114)
(115)

𝑃 ̅

(116)
(117)

(118)
(119)
(120)
(121)

𝐹

(122)

∑ 𝐹 / ∑ 𝐹

𝑃1

(123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)

𝐹 sin(𝜃) /𝜆

(131)

𝑤 𝐹 − 𝐹 𝑤

〈𝑤Δ 〉

(132)
(133)
(134)

𝑤 F − 𝐹 = 𝑤Δ

F

(135)

δ =𝐹 ( ℎ   𝑘   𝑙) − 𝐹 ( ℎ   𝑘   𝑙)

𝐹 (ℎ𝑘𝑙)

𝛿

𝛿

𝛿 > 𝛿

𝛿

𝛿

𝐹 (ℎ𝑘𝑙) > 𝐹 ℎ 𝑘 𝑙

𝛿

 𝛿

(136)

𝑤Δ

𝜌(𝐫)

(137)
(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)

1

(149)
(150)
(151)
(152)
(153)
(154)
(155)
(156)
(157)

1

(158)
(159)

1

(160)
(161)

1

(162)
(163)
(164)
(165)
(166)

1

(167)
(168)
(169)
(170)
(171)
(172)

1

(173)
(174)
(175)
(176)
(177)

1

(178)
(179)
(180)
(181)
(182)
(183)
(184)
(185)

(186)
(187)
(188)
(189)
(190)
(191)
(192)
(193)
(194)

80.00%

100.00%

120.00%

0 5 10 15 20 25

Reference points @ 0 a0

(SF sum) / (rho(r))

80.00%

100.00%

120.00%

0 5 10 15 20 25

Reference points @ 0.5 a0

(SF sum) / (rho(r))

80.00%

100.00%

120.00%

0 5 10 15 20 25

Reference points @ 1.0 a0

(SF sum) / (rho(r))

80.00%

100.00%

120.00%

0 5 10 15 20 25

Reference points @ 1.5 a0

(SF sum) / (rho(r))

80.00%

100.00%

120.00%

0 5 10 15 20 25

Reference points @ 2.0 a0

(SF sum) / (rho(r))

(195)
(196)

Atom pair

A–B δ(A,B)

(197)
(198)

Δ = 𝐹 − 𝐹

(199)
(200)

Referenzen

ÄHNLICHE DOKUMENTE

Unfortunately, it was not possible to perform similar analysis of the form factor data for experiment B (Figure 6.3(b)) that we attribute to instrumental broadening of Bragg peaks

For each measurement the fluorescence and phase contrast microscopy image and the X-ray dark-field images as well as fits of the radial intensity profiles of averaged

In order to optimize the thermoelectric properties in a targeted manner, different approaches are possible. For reasons of manageable diversity of

Two interesting examples of localization of missing metal atoms are the Sr–apatite with intercalated Zn atoms (fig. A prominent feature of the powder diffraction data of this sample

The method enables the user with minimal sample preparation to determine the crystal size distribution (CSD) of crystalline powders or polycrystalline materials,

Therefore, this phenomenon occurs with a specific energy (wavelength) and is called “photoelectric absorption.” The energy, E ej , of the photoelectron emitted may be described in

Figure 3 shows a system using one of the (open drain) sync outputs and the auxiliary +5V output to power and control a diode laser module.. For further information on the Sync/Cal

Table 1-1 gives the electron binding energies for the elements in their natural forms. A PDF version of this table is