• Keine Ergebnisse gefunden

factor and the capacity load rating to Efficiency of superconducting transmission lines: An analysis withrespect Electric Power Systems Research

N/A
N/A
Protected

Academic year: 2022

Aktie "factor and the capacity load rating to Efficiency of superconducting transmission lines: An analysis withrespect Electric Power Systems Research"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ElectricPowerSystemsResearch141(2016)381–391

ContentslistsavailableatScienceDirect

Electric Power Systems Research

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

Efficiency of superconducting transmission lines: An analysis with respect to the load factor and capacity rating

Heiko Thomas

a,∗

, Adela Marian

a

, Alexander Chervyakov

a

, Stefan Stückrad

a

, Carlo Rubbia

a,b

aInstituteforAdvancedSustainabilityStudiese.V.(IASS),Potsdam,Germany

bEuropeanOrganizationforNuclearResearch(CERN),Geneva,Switzerland

a r t i c l e i n f o

Articlehistory:

Received3February2015

Receivedinrevisedform5February2016 Accepted5July2016

Availableonline6September2016

Keywords:

Transmissionline Efficiency Superconducting Loadfactor Sustainablegrid HVDC

a b s t r a c t

Superconductingtransmissionlines(SCTL)areaninnovativeoptionforthefutureelectricitygridandin particularforhigh-capacityHVDCpowertransmission.Thepromiseofsuperconductingelectriclineslies principallyintheirsmallsize,withpotentialadvantagesintermsofefficiency,environmentalimpactand publicacceptance.Furthermore,contrarytostandardconductors,SCTLdonothaveanyresistivelosses, thereforetheonlyremainingpowerlossisduetothecoolingsystemthatisneededtokeepthesupercon- ductoratitscryogenicoperatingtemperature.InordertoobtainarealisticvaluefortheSCTLefficiency, boththeactualloadfactorandthecapacityratinghavetobetakenintoaccount.Thispaperanalyzesthe transmissionefficiencycharacteristicsfortwolong-distanceSCTLdesignsdevelopedattheIASSandat EPRIasafunctionoftheloadfactorforcapacitiesupto10GW,andincomparisonwithestablishedtrans- missiontechnologies.ThefocusofthisstudyistheplannedexpansionoftheHVDCtransmissionsystem inGermany,whichisaimedatachievingthecurrentCO2reductiongoalsbyintegratinganincreasedshare ofintermittentrenewableenergy(RE)intothegrid.Theresultscanbereadilyextendedtootherscenarios andcanprovidecomplementaryinformationfordecisionprocessesdirectedatplanningasustainable futuregrid.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Asustainableelectricenergysupplyisoneofthemajortasks in the near future, especially in the context of increasing the renewable energy share to reduce greenhouse gas emissions and to meet the steadily growing global energy demand. Any innovativetechnologythat canimprovetheefficiencyof future electricgridswillbeawelcomeandmuchneededadditiontothe establishedtransmission-anddistributionlineoptions.Supercon- ducting transmissionlines(SCTL) havea numberof advantages comparedtostandardtechnologies,inparticularforhighcapacity HVDCpowertransmission.Besidestheirsmallsize,thepotentialfor animprovedtransmissionefficiencyisoneofthekeyadvantages.

AdditionalbenefitsofSCTLarerelatedtotheeasieracceptanceby thepublic(smallcorridorwidth,underground,noelectricfields) [1]andpossiblyeconomicadvantages[2].Duetotheabsenceof electricalresistance,theonlyremaininglossforDCapplicationsis theconstantamountofpowerperunitlengthcausedbythecooling

Correspondingauthor.

E-mailaddress:heiko.thomas.ut@gmail.com(H.Thomas).

systemthatisneededtokeepthesuperconductoratitscryogenic operatingtemperature.Therealefficiencyofanytransmissionline, beitastandardtechnologyoraSCTL,dependsstronglyontheload factorthatinturndependsontheoverallscenariotheTLisembed- dedinandtheboundaryconditionsthereof.Theactualshareof renewablesintheelectricitymixhasahugeimpactontheload factor,asforinstancewindisanintrinsicallyintermittentenergy sourcecomparedtohydropowerwhereelectricenergyisgener- atedusingawaterreservoirandthepoweroutputcanbecontrolled toacertaindegree.Thecomplexityoftheelectricgridinwhichthe HVDChighcapacityTLisembeddedplaysasignificantroletooas itbecomesmore challengingtooptimizethepowerflowforan overallminimizationofenergylossesbetweennumerouscenters ofenergygenerationanddemandinameshedgridincludingthe ACgrid.

Theaimofthispaperistogiveamoredetailedinsightintothe efficiencyofsuperconducting transmissionlinesina realworld applicationwithrespecttotheloadfactorinasustainablefuture electric transmission grid that integrates high shares of RE. A high-efficiency transmissionline translates intolow equivalent greenhousegasemissions,whichisoneofthemainreasonsfor switchingtoREgenerationinorderachievethe2Cgoal.

http://dx.doi.org/10.1016/j.epsr.2016.07.007

0378-7796/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

Inthefollowing,GermanyanditsplannedHVDCtransmission systemarechosenasthecasestudyforinvestigatingtheefficiency ofsuperconductinglines.Thisshouldbemerelyseenasaconve- nientexampledue totheexisting availabilityof concreteplans anddetailedinformation[3,4].Conclusionscanbeadaptedtoother regionsorprojectswithsimilarloadfactorandcapacityratings.

TheplannedHVDCtransmission corridorsfor theyear2025 aredisplayedinFig.1forscenarioBofthemostrecentGerman GridDevelopmentPlan(GDP2025draftbytheFederalNetwork Agency[3]).ThetimehorizonsfortheGDPsare10and20years.

Therequiredlevelofpowerlinerouteexpansionwascalculated tobe3200kmforHVDCcorridorstotalingatransmissioncapac- ityof10GW.ThisdoesnotincludetheGermanshareinthethree DCinterconnectorsbetweenGermanyandBelgium,Denmarkand Norway.OfparticularinterestforthispaperarecorridorAinthe farwest(andherethenorthernpartA1)andcorridorC(alsocalled SüdlinkinGermany).

2. TheloadfactorinthecontextofREintegration

Assumingagridthatintegratesahighshareofrenewableenergy generationsforafuturesustainableenergysupplyitwillbehard toachievea100%loadfactorbecause:

1.Thevariationoftheenergydemandovertheyearandduringthe day.

2.TheintermittentnatureofRE–withanRESoftheenergymixin Germanyofalready25%(2014)and80%by2050[5,6].

3.Generalconsiderationstendtomatchthecapacityoftransmis- sionlinestothehighestpossibleoutputofREsources.

Thesefactorsleadtoalimitationandreductionoftheaverage loadoftransmissionlinesandinparticularofHVDChighcapacity transmissionlineswhichareconsideredinthispaper.

In contrast to SCTL, standard conductors have an electrical resistanceandpowerlossesshowaquadraticdependenceonthe transportcurrentfordirectcurrent(DC)applicationsPLoss∼I2.Load factorsoflessthan100%ofthemaximumtransmissionlinecapacity thereforeresultinlowerrelativeelectriclossesandhigherefficien- ciesforstandardconductorsbutinlowerefficienciesforSCTLdue tothefixedenergyconsumptionofthecryogenicsystem.

Asimulation oftheloadfactors oftheplannedNorth-South HVDCTLinGermanywasdonebytheCenterforEnergyGrazas partofastudyontherequiredGermangridextensioncommis- sionedbytheFederalNetworkAgency[4].Theaverageloadfactors wereinvestigatedforvariousplannedHVDCtransmissioncorridors inGermanybasedontheGDPfrom2012.Thesimulationassumes theforecastedinstalled REandconventional generationcapaci- tiesaccordingtoscenarioBoftheGDP2012.Thesecapacitiesare listedinTable1fortheyears2024and2034takenfromtheGDP (20142nd)andtheyear2022usedby[4](basedontheGDP2012 whichhasbeenupdatedwithnowslightlydifferentnumbers).The studyincludedtheforecastedpowergeneration(mix)ofadjacent countriesandcrossborderelectricenergyexchange.

Theaverageloadfactorsarefoundtobebetween54%(corridor Cwith4GWcapacityasofGDP2012)and86%(corridorA1with 2GWcapacity)fortheyear2022andtobebetween21%(corridor Cwith9.2GWcapacity)and91%(corridorA1with6GWcapacity) fortheyear2032.TheseresultsstemfromthecalculationB.NEP4K assumingallcorridorsA,B,CandDtobeinplace.Pleasenotethat theGDP20142ndupgradedthecapacityforcorridorCto6GW in2024.AnimproperconnectiontotheACgridatthesouthern endofHVDCcorridorCispartlyresponsibleforthelowaverage loadfactor of that corridor. In any case, there are huge differ- encesintheaverageloadfactorwhencomparingallcorridors.The efficiencyofa hypotheticalsuperconductingTLwouldtherefore

Table1

NetgenerationcapacitiesinGermanyaccordingtothebaselinescenarioBin2022 (usedforTUGrazsimulations),2024and2034.

NetcapacityinGW B-2022 B-2024 B-2034

Conventional

Nuclear 0.0 0.0 0.0

Browncoal 18.6 15.4 11.3

Hardcoal 25.1 25.8 18.4

Naturalgas 31.3 28.2 37.5

Oil 2.9 1.8 1.1

Storage(incl.pumpstorage) 9.0 10.0 10.7

Others 2.3 3.7 2.7

Sum(conventional) 89.2 84.9 81.7

Renewables

Hydro 4.7 4.7 5.0

Windonshore 47.5 55.0 72.0

Windoffshore 13.0 12.7 25.3

Photovoltaics 54.0 56.0 59.5

Biomass 8.4 8.7 9.2

Otherrenewables 2.2 1.5 2.3

SumRE 129.8 138.6 173.3

Sumtotalgeneration 219.0 223.5 255.0

varytremendouslydependingonthecorridor,aswouldtheeffi- ciencyofstandardconductors.PleasenotethatcorridorCactually consistofsub-corridorsthathavedifferentstartandendpoints wheretheyconnecttotheACgridbutarelocatedingeograph- icalproximity.DC-ACconverterandentrypointswillbelocated closetoshutdownnuclearpowerplantstotakeadvantageofexist- ingACgridinfrastructure.PleasealsonotethatbulkenergyHVDC transmissionlines have beenrealized sofarmainly bymaking point-to-pointconnectionsandusingLine-Commutated-Converter (LCC)technologythatdoesnotallowtobuildameshedDC-grid duetotheirblackstartinability.TheplannedHVDCcorridorsin GermanyareincontrastbasedonVoltage-Source-Converter(VSC) technologythatismoreflexibleandallowstobuildanHVDC-grid, similartotheexistingACgrid,forinstancetoconnectseveralwind farmstoonetransmissionlineortosimplymakea3-foldDCinter- connection.

3. Methodsforcalculation

3.1. Long-distancesuperconductingtransmissionlinebasedon MgB2developedatIASS

Results shown are based on a bi-polar long-distance SCTL developed at the Institute for Advanced Sustainability Studies in Potsdam/Germany (IASS) which is based on the affordable superconducting material magnesium diboride (MgB2) [7]. The underlyingideawastoconnectremoteplacesofrenewableenergy generationbyahighlyefficienttransmissiontechnology.AnMgB2

basedSCTLcanhavemuchlowercoststhanSCTLprojectsbasedon high-temperaturesuperconductors(HTS)primarilyduetolower productioncostsandcanthereforefacilitateanacceleratedadop- tionofthispromisingtechnology.ThisMgB2SCTLwasdesigned tohaveacapacityratingof10GWatavoltageandcurrentrating of±125kVand40kAwithcoolingstationslocatedevery300km.

Itcaneitherbecooledbyliquidhydrogenorgaseousheliumplus liquidnitrogen.Thisvoltageislowerthanthatofstate-of-the-art HVDCcablesbasedonstandardconductors(525kV).Reducingthe voltagelevelcanleadtolowercostandsimpleroperationofrele- vantgridequipment.Superconductorshavehighcurrentdensities, meaningtheyhavetheabilitytotransferahighcurrentpercross sectionoftheconductor.Thisallowsforloweroperatingvoltages leadingtoasimplifieddesignwithasmallerouterdiameter,thus reducingtheheatinflux.WithinacooperationofCERNandthe

(3)

H.Thomasetal./ElectricPowerSystemsResearch141(2016)381–391 383

Fig.1.PlannedHVDCcorridorsgriddevelopmentplanGermanyscenarioB12025[1].DC1andDC2displaytheformercorridorA,DC3andDC4displaytheformercorridor CasuseduntilGDP2024.

Source:NEP2025,Stand:February2016,www.netzentwicklungsplan.debasedonmap“DeutschesHöchstspannungsnetz”fromVDE.

IASS,asuperconductingprototypecablebasedonMgB2wassuc- cessfullytestedin2014withadirectcurrentratingof20kA.The totaldiameterofthecablesetupandthecryogenicenvelopewas only16cm.Thepromiseofthistechnologystimulatedintereston thepartof variousindustrialand transmissionsystemoperator (TSO)partnersandledtotheformationofaEuropeanconsortiumof industry,researchcentersandTSOswiththegoaltodesignandtest ahigh-voltage(200–320kV)prototypeMgB2cabletovalidateits operationunderrealgridconditions(BESTPATHSprojectaspartof the7thEuropeanFrameworkProgram).Thisvoltagelevelreflects thevoltageofstate-of-the-artstandardundergroundcables,inpar- ticularthe±320kVHVDCXLPEcables.

Uptonowhigh-temperaturesuperconductorshavebeenthe preferredchoicefortransmissionpurposesmainlyduetothefact

thatliquidnitrogen(LN2)canbeusedforcooling.HandlingLN2is mucheasierthanliquidhelium(forlowtemperatureSC)orliquid hydrogen(forMgB2)andallowssignificantenergysavingsdueto itshigheroperatingtemperatureandthereforehigherefficiencyof theunderlyingthermodynamiccycle(Carnot).Inthispaper,weuse a5GWHTStransmissiondesigndevelopedattheElectricPower ResearchInstituteintheUS[8]whencomparisonsarecalledfor.

AdetailedtechnicaldescriptionofSCTLingeneralandtheMgB2 SCTLinparticularispublishedelsewhere[7,8].Howeveritismean- ingfultogiveabrieftechnicalinsightforgeneralunderstanding.

Firstly,asuperconductorhasnoresistivelossesinDCapplications (inAC applications,SCexhibit losseswhich very much depend on the design and geometry of the cable/conductor), and sec- ondly,ithasanextremelyhighcurrentdensityresultinginafairly

(4)

Fig.2.Simplifiedenergyconsumptionandefficiencyschemeofasuperconducting (SC)transmissionlinecooledbyliquidhydrogen(LH2).

smallsuperconductorsizecomparedtotheouterdiameterofthe complete(cryogenic)system.Doublingthenominalcurrentofa SCTLwillthusnotleadtoadoublingoftheouterdiameter.The heatinfluxandthereforetheelectricpowerconsumptiontokeep thecryogenatits operatingtemperature isproportional tothe outerdiameterofthecoolingsystemandmainlydeterminedbythe necessaryhydraulicdiametersthatfulfillthemassflowandheat transportrequirements.Besidestheoperatingtemperaturethedis- tancebetweencoolingstationsandthetypeofcryogenalsoplay amajorrolehere.Loweroperatingtemperaturesleadtoalower efficiencyoftheunderlyingthermodynamiccycle(Carnot)ofthe refrigerationsystemwithsubsequenthigherelectricpowerlosses forcooling,assketchedinFig.2.

Theoperatingtemperatureformagnesiumdiboride(MgB2)is 15–20K.Thismaterialwasonlyrecentlydiscoveredtobesuper- conductingin 2001[9]but is verypromising due toitssimple manufacturingprocess and low costs compared to HTS. Ultra- highvoltagescanleadtoanincreasedouterdiameterlargerthan requiredby thehydraulicdiameters of thecoolant transferring tubesduetothenecessaryelectricinsulationofthecable.Butonly forextremevoltage/currentcombinationscanthenecessaryelec- tricinsulationhaveasubstantialinfluenceontheouterdiameter.

SCTLcanthereforehaveextremelyhighpowerefficienciesandare anincrediblyinterestingchoiceforamoreefficientandsustainable grid,especiallyforlong-distanceandhighcapacitytransmissionof renewableenergyfromremotesourcesorhighcapacitytransmis- sionindenselypopulatedareas.Thoughthispaperonlydiscusses HVDCapplications,itisworthmentioningthatSCTLcanalsobe operatedinACmode.However,electriclosseswillthenoccurin thesuperconductorcausedbytheoscillatingelectro-magneticfield thatgreatlydependsonthedesignofthecable.

3.2. ElectriclossesofSCTLinDCmodeareindependentoftheir capacityrating

Oneofthecentralassumptionsinthispaperisthatthecool- ingpowerlossesofSCTLareconstantandindependentfromthe capacity.Formedium-andlong-distancepowertransmissionand voltageratingsof20–150kV,theouterdiameterandthereforethe electricpowerconsumptionaretoacertainextentindependent ofthecapacity.ThisaspectdistinguishesSCTLfromstandardcon- ductortransmission lines.Theseexperienceresistivelosses and multipletransmissionsystemshavetobecombinedtoreachthe desiredcapacity.Thisincludescablesthathavetobeaddedtomake upforadecreasedampacityduetoatemperatureincreaseofthe conductortriggeredforinstancebyhigherlocalsoiltemperatures.

Toverifythepriorassumption,calculationsfor4differentcombi- nationsofvoltageandcurrentvalueswerecarriedout(constant voltageof30kVand125kVrespectively,andconstantcurrentof 40kAand100kArespectively).Theaimistofindtheresultingouter diameteroftheMgB2basedSCTLwhichthenisproportionaltothe

Fig.3.Schemeusedforthecalculationoftheouterdiameteroftheinnertube holdingthesuperconductingcable.Forsimplicity,itisassumedthatthetwosuper- conductingpolesoftheMgB2SCTLdesignactlikeonecablewithequalcrosssection.

ThehatchedareaistheenclosedfluidareaA.

heatinfluxandthepowerlossesduetocooling.Parametersarethe superconductingcablecrosssectionwhichisproportionaltothe currentratingandthewidthofthenecessaryelectricinsulation layer.Thereferenceisthebi-polarMgB2SCTLdesigndevelopedat IASStotransfer10GWofpower[7].Thebreakdownvoltageper lengthofcryogensisapprox.1000kV/cminDCmode[10]andthe coolantmaybeusedforelectricinsulation,whatisassumedhere.

ThehydraulicdiameterdHisthesameforeverycapacity–outer diameterpairtoensureconsistentfluiddynamicproperties.Itcan becalculatedbymultiplyingtheenclosedfluidareaAwith4and dividingbythewettedouterperimeterC=C1+C2(Fig.3)leading to

dH=4A

C = (d2out−2d2cable) (dout+√

2dcable)=dout−√

2dcable (1)

and

dout=dH+√

2dcable (2)

Becausethesuperconducting cablediameterbasedonMgB2 (withoutelectricinsulationbutwithcopperforthermalstabiliza- tion)isonly2–3cmfor40kAampacity(with2cablesinbi-polar operation)andthedesignvalueforthemostinnertubediameteris 17cm,itisevidentthattheouterdiameterdoesnotchangesignifi- cantlyfordifferentcapacitiesforconstantvoltages.Inthiscase,the constantvoltagescenarioat125kVresultsinthesamediameteras theconstantcurrentscenarioat40kA.

Alltube diameters carrying cryogenic fluidswere chosento allowforproperhydrodynamiccharacteristicslikehighenough massflowabletocarrytheheatinflux,alowpressuredropand smalltemperatureincreasebetweencoolingstations.Theneces- saryelectricinsulationcaninprinciplebeprovidedbythecryogen forbothconstantcurrentscenariosbecausetheinnertubediame- terislargeenoughthatthenecessarydistanceforproperelectric insulationisfulfilled.Thisisavisionaryconceptthatwouldrequire theconductortobeexactlycenteredintheinnercryogenictube.

Theouterdiameteristhereforeconstantfortheassumed40kAand 100kAconstantcurrentscenarios.Evenconsideringstandardelec- tricinsulationusingpaper(soakedwiththecryogen)andassuming avoltagebreakdownsafetyfactorof20leadingto2×1cmadded diameterperextra50kV(1cm/MVvoltagebreakdowndistance) resultsonlyinasmallincreaseofheatinfluxduetothelargerouter diameter.

AsseeninFig.4,theconstantvoltagescenariosshowaslight positive slope because the diameter of the inner tube has to increasewithincreasingcapacity,i.e.increasingcurrentandthere- foreincreasingsuperconductingcablediameter.Ifthediameterof theinnertubechanges,alldiametersoftheoutertubeswillsubse- quentlyincrease.Theslopeisverymoderatebecausethecurrent densityofsuperconductorsisextremelyhigh.Thisismirroredinto thesmallchangeoftheouterdiameter.Consequentlyaconstant totalouterdiameterandheatinfluxareassumedinthispaperfor allconsiderationsbecausetheemphasisisputonmedium-and

(5)

H.Thomasetal./ElectricPowerSystemsResearch141(2016)381–391 385

Fig.4.TotalouterdiameterandheatinfluxinarbitraryunitsaredisplayedfordifferentfixedvoltageandcurrentratingsdependentoncapacityforanMgB2SCTLdesign cooledbyliquidhydrogendevelopedatIASS.Afixedvoltagemeansthatthecurrentratingischosentomeetthecapacityratinghencethesmallincreaseofthediameter withcapacity.Thehydraulicdiametersarethesameforeveryexample.

long-distanceTLs.Theouterdiameteris32cmfortheMgB2based SCTLcooledbyLH2forinstance,duetohydrodynamicandthermo- dynamicboundaryconditionslikeheattransferandpressuredrop alongtheline.Becausetheheatinfluxisassumedtobeconstant, thepowerlossescausedbycoolingareassumedtobeconstanttoo.

3.3. Powerlossesofstandardtransmissionoptions

Thetechnologyofchoiceforfuturegridapplicationsdepends onthespecificproject.Besidesinvestmentandoperatingcosts,the transmissionefficiency,publicacceptanceissuesandtheenviron- mentalimpactaremostrelevant.Inthisregard,SCTLarecompeting withstandardtechnologieslike±320kVHVDCXLPEunderground cablesand±500/800kVHVDCoverheadlines(OHL)asthoseare thesolutionpreferredbyTSOsforhighcapacitylong-andmedium distancetransferofelectricenergyuptonow.Efficiencynumbers forthesetechnologiesweresuppliedbyABB/Switzerlandandby theFrenchElectricityTransmissionNetwork(RTE).Thementioned cableshavelossesof6.5%per1000kmatfullload[11]andadou- blebi-polarsystemof±500kVHVDCOHLexperienceslossesof 3.35%/1000kmiftransferring4GW[12].Fordifferentcapacities, theelectriclossesofstandardTLoptions,especiallyforOHL,can changeabruptlybecauseeachsystemhasafixedcapacityrating.

Dependingonthechosencapacity,asystemcanbeatitstrans- missionlimitwithsubsequentmaximumlossesiftheloadreaches maximumcapacity,oritcanhavelowerlossesifthemaximum loadissmallerthanthecapacityrating.Forinstance,two±500kV OHLsystemsthatareabletotransferamaximumof6GWtotal powerhavemuchlowerresistivelossesifonly4GWneedtobe transferred.However,thesecondOHLnecessaryfortransporting thelastGWcomeswithextracostsandright-of-waywidth.

3.4. Converterlosses

Theelectriclossesofconvertersarenotincludedintheefficiency calculationsbecausethecapacityratingisthesameforeverytrans- missionoption.VSCconvertersarebuiltusingIGBTmoduleswith currentratingsof400–900Aandoutputvoltagesofapproximately 2kV,muchbelowtherequiredgridvoltage.Acertainnumberof moduleshavetobestackedandwiredtomatchthegridvoltageand capacity[13].Thenumberofthesemoduleswillthereforebethe

sameforallHVDCtransmissionlineoptionsandthusthelossesare assumedtobethesame(∼1%oftheconvertedpowerformodular multilevelVSC).

3.5. Calculationofloadfactordependentefficiency

TheefficiencyεofSCTLinDCmodeiscalculatedbydividing thepowerlossesPLoss–whichareonlycausedbycooling–bythe powertransferredPTrans,i.e.bythecapacity ratingCRtimesthe loadfactorLF:

ε= PLoss

PTrans = PLoss

CR·LF (3)

Asmentionedearlieritwasassumedthatthepowerlossesof SCTLareindependentfromthecapacityratingandthatnoextra lossesoccurinadditiontocoolinglossesbecausethesuperconduct- ingcableisoperatedinDCmode.Thiswasverifiedbycalculations basedontheIASSlong-distanceSCTLdesign.

3.6. Impactoftheenvironmentontheefficiency

The soiltemperature influencestheelectric lossesof buried standard conductorsas wellasthe electriclosses for coolinga superconductingtransmissionline.Whereasforstandardconduc- torsinDCapplicationsthisisdescribedbythelineartemperature coefficient˛(3.9×103forCuat20C)andanaccordingincreasein resistanceRandpowerlossesP=I2Rwithincreasedtemperature oftheconductorR=R20C(1+˛(T−20C)),thesituationismore complicatedforSCTL.Highlyreflectivethinlayersandstacksofalu- minizedMylarfoilseparatedbyfiberglassorpolyesterareinserted inthevacuumtofurtherreducetheheatinfluxbythedominant radiationlossesaccordingtotheStefan-Boltzmannlaw.Thetotal heatinfluxqenteringacryogenicsystemcanbedescribedbyan empiricalformula[14,15]

q(n)= (T22−T12)a

2n +(T24−T14)b

n , [W/m2] (4)

with a=4.025×10−4W/m2K2 and b=2.349×10−9W/m2K4 60 layersofMylarandcryogentemperaturesofT=20K(LH2)respec- tively65K(LN2)wereassumedfortheefficiencycalculationsdone fortheMgB2 transmissionlines.A(soil)temperatureincreaseof

(6)

10Kfrom300Kto310Kwouldthereforeleadtoan11%increase inheatinfluxforeitherLH2orLN2,causingincreasedpowerlosses duetocooling.Anincreaseinsoiltemperatureleadstoalimited maximumoperatingcurrent topreventathermal runaway and overheatingoftheconductor,asdescribedbytheNeher–McGrath formula[16].Themaximumampacityisgreatlyinfluencedbythe soilmoisturethatismuchsmallerinhotclimatesandalsodirectly affectedbytheheatthatisproducedduetotheresistiveunder- groundcableconductor.Forhotterclimatestheresultisaneedfor anincreasednumberofstandardcableswithawiderseparation thattranslates intoincreasedcapital costsand wider transmis- sioncorridors.Also,thetotalampacityislimitedbytheweakest point along the line, i.e. the lowest local ampacity due to, for instance,otherlocalheatsources.Asanexample,thenumberof cablesisdoubledandthetrenchwidthtripledfora5GWcapac- ityHVDCundergroundtransmissionlinelocatedinNorthAfrica, ascomparedtotheNorthofFrance[11].Thisisnotthecasefor superconductingTLsandconstitutesoneoftheirintrinsicadvan- tages.Especiallyinhotclimateswherethesunirradianceishigh andsolarpowerinstallationsaremostefficientcanSCTLbeuti- lizedforelectric powertransmission(forinstanceinSouthwest US,Mexico,ArabianPeninsula,mostpartsofAfrica,Andesplateau, Australia,India).

4. Results

4.1. Theimpactofloadfactorandcapacityratingonthe efficiencyofSCTL

Theelectriclossesandtheefficienciesofsuperconductingand standardtransmissionlineoptionswillbediscussedfordifferent scenarios,capacitiesandloadfactors.First,aTLwith4GWcapac- ityand810kmlengthisassumedbasedontheparametersofthe Südlink/HVDCcorridorCofthegridextensionplaninGermany.

Second,aTLwith10GWcapacityand3000kmlengthisassumed simulatingalong-distanceTL.Third,thecapacityandloaddepend- entefficienciesaregivenfortwoSCTLoptionsbasedonHTScooled byliquidnitrogenandMgB2cooledbyliquidhydrogenforcapaci- tiesupto10GW.TheMgB2basedSCTLoptionusingliquidnitrogen plusgaseous heliumascoolants hasvery similarelectriclosses as theHTS option due to employing thesame coolant for the outermosttubeandresultsarethereforenotdisplayed.Theelec- triclossesforMgB2basedsuperconductingtransmissionlinesare 29.7MWand9.5MWforalengthof810km(Table2),usingliq- uidhydrogenorgaseoushelium+liquidnitrogenascryogen.These valuesstemfromthelong-distanceSCTLdesigndevelopedatIASS.

Theelectriclossforthehightemperaturesuperconductor(HTS) transmissionlineis7.3MWfor810km(Table2)and wastaken fromadesigndevelopedattheElectricPowerResearchInstitute (EPRI)withanoperatingvoltageof±100kV[8].Fora4GWcapac- ityTL,theelectricpowerlossesof±500kVHVDCOHLand±320kV HVDCXLPEcablesaremuchhigherat100%loadcomparedtoall superconductingoptions(Table2,Fig.5).Powerlossesofstandard cablesarefor instance31× higherthanfor anHTSbasedSCTL.

Whenoperatedat50%load,thelossesofstandardoverheadlines arealreadylowerthan thelossesof hydrogencooledMgB2 TLs andare smallerthan everyconsideredSCTLoption at25%load for4GWcapacity.AsaconsequenceSCTLareespeciallysuitedfor highcapacityTLswithhighaverageloadfactorssuchascorridor A1oftheGermangriddevelopmentplan,andarenotsoappropri- atefromanenergeticefficiencypointofviewforTLswithalow averageloadfactorlikecorridorC(year 2032).Baseloadtrans- missionwithaconstantenergytransferathighloadfactorsseems tobeoneofthemostreasonableapplicationsforSCTL.TheHVDC transmissioncorridorA1inGermanycanbetakenasanexample,

especiallyifoneconsidersthelikelypublicacceptanceadvantage ofSCTLcomparedtostandardtransmissionlinetechnologiesinthe denselypopulatedstateofNorth-Rhine-Westphalia.SCTLwould reallyexcelinefficiencyforlong-distancetransmissionoversev- eral1000km ofbulkelectric energyontheorder of10GW,for instancegeneratedbyhydroorgeothermalpowerplants.Long- distancetransmissionlineswithcapacitiesupto6GWbasedon standardtechnologiesareforinstancealreadyoperatinginChina andSouthAmerica.Fig.5graphicallydisplaystheelectrictransmis- sionlossesversusloadassumingthelengthandcapacityratingof theSüdlinkHVDCcorridorinGermany,whichare810kmand4GW respectivelyfortheyear2022.Thiscorridorisenvisionedtohavea capacityof10GWin2034(50HertzTransmissionGmbH,Amprion GmbH,TenneTTSOGmbH,TransnetBWGmbH,2014).Thisvalue islowerthancalculatedinthegriddevelopmentplanpreparedin 2013thatmentions12GWforcorridorCfortheyear2032.

Thetransmissionlinelossespertransferredenergyunitwould thenbelowerforSCTLbecausethelossesarefixed.Thisstillholds trueifoneassumestwoseparate5GWSCTLtofulfill(n−1)require- ments.HTSbasedSCTLusingonlyliquidnitrogenascoolanthave muchlowerlossesthananyotheroptiondownto29%load,where standard±500kVOHLbecomemoreefficient.Pleaseremember thatthiswascalculatedfor2OHLsystemstransferring4GWtotal power,hencetherelativelylow electriclossesfortheOHL.The MgB2basedSCTLreachparityat32%(LN2+GHe)and37%(LH2).

ForthespecificcaseofcorridorCin2022withasimulatedload of54%(EnergieZentrumGraz,2012)theliquidhydrogencooled MgB2SCTLhassimilarlossesasthestandard±500kVHVDCOHL andhalfthelossesofstandard±320kVcables.Thelossesasafunc- tionofcapacityandloadaredisplayedinFig.6foraliquidhydrogen cooledMgB2basedSCTLandinFig.7foraliquidnitrogencooled HTSbasedSCTL.

Itisevidentthatsuperconductingtransmissionlineshavean efficiency disadvantage at low loads and small capacities. The relativelossfunctionis:Loss[%]=C/(load×capacity)withCrep- resenting the fixedcooling losses (36.7MWfor LH2/MgB2 and 9MWforLN2/HTS).Therededgeofthecontourplotsmarksthe 6%loss/1000km line,thatseparatestheload–capacitycombina- tionswithanon-acceptableefficiency(non-colored).Thelimitwas takenfromthelossesof±320kV standardcables at100% load.

Evenconsideringthesizeadvantageandapotentialincreaseofthe publicacceptance,SCTLshouldnotbeconsideredasanoptionfor thoseload–capacitycombinationsduetounacceptablyhighelec- tricpowerlosses.Theblacklineinthecontourplotsshowswhen thelossesofstandard±320kVcablesequalthetotalelectricpower lossesofaliquidhydrogencooledMgB2basedSCTL(Fig.6)anda liquidnitrogencooledHTSbasedSCTL(Fig.7).Fromanenergetic efficiencypointofview,SCTLshouldbepreferredabovethatblack linebecauseanincreasedloadfactormeansincreasedlossesfor standardcables(±320kV)butnotforSCTL.Forcomparison,theTLs forcorridorsA1andCoftheGermanHVDCgridwiththeircorre- spondingcapacityratingandsimulatedloadfactorintheyear2032 aremarkedinthecontourplots.WhereascorridorA1favorsboth superconductingtransmissionlinesoverstandard±320kVHVDC cablestogainahigherefficiency,thereisnoclearwinnerforcorri- dorCduetoitsconsiderablylowloadfactorof21%.Theminimum capacitiestohaveelectriclossesnothigherthan6%/1000km,aloss numberthatstemsfromstandardundergroundcablesandshould notbeexceededduetosustainabilityandefficiencyreasons,are listedinTable3.

Thesenumbersarebasedonthelong-andmediumdistance designs developed at IASS for MgB2 withrefrigeration stations locatedevery300kmandatEPRIforHTSwithrefrigerationsta- tionslocatedevery20km.Powerlossesduetocoolingwillchange forotherseparationdistancesduetochangingouterdiametersand alsoduetochangedefficienciesofcoolingmachineswithdifferent

(7)

H.Thomasetal./ElectricPowerSystemsResearch141(2016)381–391 387

Fig.5.RelativeelectriclossesofHVDCtransmissionlineoptionsfor4GWand810kmnotincludingconverterlosses(CorridorC/Südlink).

Fig.6.ThecoloredcontourplotshowsthepercentileelectricpowerlossesforaspecificloadandcapacityofaLH2cooledsuperconductingtransmissionline(MgB2).The blacklinedisplaysequaltotallossescomparedtostandard±320kVXLPEcablesitmarksthe38MWloss/1000kmline.Abovethatline,thesuperconductingcable(LH2)has lowertotallossescomparedto±320kVXLPETLs.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(8)

Table2

Electriclossesoftransmissionlineoptionsfor4GWand810km.

Electricallosses[load]4GW,810km MgB2LH2 MgB2GHe+LN2 HTScable ±500kVHVDCOHL ±320kVHVDCcable Load:100%

Powerlosses[MW] 29.7 9.5 7.3 92.6 223.4

Powerlosses[%]ofload 0.72 0.23 0.18 2.23 5.24

Load:50%

Powerlosses[MW] 29.7 9.5 7.3 23.2 55.9

Powerlosses[%]ofload 1.44 0.46 0.36 1.12 2.62

Load:25%

Powerlosses[MW] 29.7 9.5 7.3 5.8 14.0

Powerlosses[%]ofload 2.88 0.92 0.71 0.56 1.31

Fig.7. ThecoloredcontourplotshowsthepercentilelossesforaspecificloadandcapacityofaLN2cooledsuperconductingtransmissionline(HTS).(Forinterpretationof thereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

powerratings.Theabove-mentionedminimumcapacitieswould thereforehavebeentobereevaluated.Arealisticloadfactorof50%

leadstominimumcapacitiesof1.2GWfortheLH2cooledSCTLand 300MWforLN2cooledSCTL.Belowthesecapacities,areasonably

efficientoperationofSCTLisnotpossibleforthedesignsdiscussed here.Tohaveelectriclossesequaltothoseofstandardcablesthe capacitieshave tobeevenhigherwith550MW(EPRI LN2)and 2.2GW(IASSLH2)ata50%loadfactor.

Table3

MinimumcapacityratingsforSCTLoptionsfordifferentloadfactorstohavemaximumlossesof6%/1000kmandtoequallossesof±320kVHVDCstandardcables.

100%loadfactor,max.6%losses 50%loadfactor,max.6%losses 50%loadfactor,max.±320kVcablelosses

LH2MgB2SCTL 610MW 1220MW 2200MW

LN2HTSSCTL 150MW 300MW 550MW

(9)

H.Thomasetal./ElectricPowerSystemsResearch141(2016)381–391 389

Table4

PowerlossesandefficiencyofHVDCoptionsandassociatedcostsassuminga810kmlongtransmissionlinewithanetcapacityof4GWand50%load(corridorC2022/Südlink).

AC-DCconverterlossesandcostsarenotincluded.

Electricallossesandassociatedcosts MgB2LH2 MgB2GHe+LN2 HTScable ±500kVHVDCOHL ±320kVHVDCcable

Powerlosses[MW] 29.7 9.5 7.3 23.4 56.6

Transmissionlineloss[MWh/y] 261,063 83,066 64,079 206,114 497,457

Totallosses(losses/input)[%] 1.46 0.47 0.36 1.13 2.66

%ofelectricitydemandinGER(555TWh/y) 0.047 0.015 0.012 0.037 0.090

Transmissionlosscosts@82$/MWh[M$/y] 21 7 5 17 41

Presentvalue40y.period[M$] 322 102 79 254 614

Table5

PowerlossesandefficiencyofHVDCoptionsandassociatedcostsassuminga3000kmlongtransmissionlinewithanetcapacityof10GWand100%load.AC-DCconverter lossesandcostsarenotincluded.

Electricallossesandassociatedcosts MgB2LH2 MgB2GHe+LN2 HTScable ±500kVHVDCOHL ±320kVHVDCcable

Powerlosses[MW] 110.0 35.0 27.0 939.3 2470.3

Transmissionlineloss[MWh/y] 966,900 307,650 237,330 8,256,477 21,713,526

Totallosses(losses/input)[%] 1.08 0.35 0.27 8.39 19.72

%ofelectricitydemandinGER(555TWh/y) 0.174 0.055 0.043 1.488 3.912

Transmissionlosscosts@82$/MWh[M$/y] 79 25 19 677 1781

Presentvalue40y.period[M$] 1193 380 293 10,187 26,790

4.2. Overallenergeticandmonetaryimpact

Therelevancewithrespecttothetotalelectricenergyconsump- tioninGermanyaswellasthemonetaryimpactofelectriclossesare listedinTable4forthediscussedcorridorCoftheGermangridwith 4GWcapacityassuminga50%loadfactorandinTable5forahypo- thetical10GWtransmissionlineat100%loadfactorasdeveloped attheInstituteofAdvancedSustainabilityStudiesinPotsdam.All SCTLhaveanefficiencyadvantagecomparedtostandard±320kV HVDCcablesevenata50%loadfactorwithtotalenergylossesof13%

forliquidnitrogencooledSCTLto52%forliquidhydrogencooled SCTL.TheresultsalsoshowthatSCTLwith4GWcapacityata50%

loadfactorarecompetitiveintermsofefficiencywithHVDCOHLs, notonlycomparedto±500kVbutalsocomparedto±800kVHVDC OHLwhichhavebeenemployedinChinaforbulkelectricenergy transmission.Theamountofelectriclossescomparedtotheelec- tricitydemandinGermanyispracticallyinsignificantforalloptions forasingleTLat50%loadfactor.However,consideringthatthetotal installedHVDCNorth-SouthcapacityinGermanyin2032isonthe orderof25GWandtheaverageloadfactormaybehigher,asolu- tionusingonlystandardHVDCcablescouldleadtoelectriclosses reaching1%oftheelectricenergydemandinGermany.

The costsassociated with theelectric losses over a 40 year lifetimeare614M$forstandard cablesand 79(HTS)to322M$

(MgB2 LH2)for SCTL (Tables 4and 5).Converterlosses arenot included.Capitalcostsfora4GW,810kmlengthTLhavebeenesti- matedtobe1.4B$(±125kVMgB2 LH2),2.6B$(±125kVMgB2

He+LN2),5 B$(±100kVHTS),1.6B$(±500kVHVDCOHL)and 4.2B$(±320kVHVDCXLPEcable)[1,2].Itisnotsurprisingthat thelossesofstandardtransmissionlinesandespecially±320kV XLPEcablesarequiteenormousat100%loadandfora3000km longTL.ATLwiththoseparametersreachesaremarkable4%ofthe annualelectricitydemandofGermany.Pleasenotethatinorderto deliveranetpowerof10GW,theinputpowerhastobehigherto makeupforthelossesoccurringalongthelengthof3000km,which alsomeansanincreaseofthenominalAC-DCconvertercapacityat theentrypointwithsubsequenthigherconverterlossesandcosts.

Presentvaluelosscostsfora40-yearlifetimeadduptoabout66%

ofthecapitalcostfora3000kmlength,10GWcapacityTLbasedon

±320kVXLPEcables(45B$withoutconvertercost)[1,2].Costswill alsoincreasebecausethecapacityoftheTLitselfhastobehigher.

ThisisnotdirectlyrelevantforSCTLastheconductingmaterialhas noelectriclossesitselfinDCoperationandatsuchhighcapacity

ratings,thelossesduetocoolingarealmostnegligibleiftapped straightfromtheTL.

4.3. ImpactonCO2emissions

The EUCommission’s CO2 emission reduction targetsare to achieveacutby40%untiltheyear2030basedonthepolicyframe- work for climateand energy. Germany’s goal is toreduce CO2

emissionsby80%until2050.VeryrecentlytheUSannouncedthe goaltocutemissionsby26–28%until2025andChinatoachieve astopandpeakofemissionsuntil2030.Nomatterwhetherthis canbeachievedornot,itisclearthatasubstantialfractionofelec- tricenergywillstillbegeneratedworldwideusingfossilenergy sourcesalsointheyear2050.Globally,thereisasubstantialpoten- tialfornewhigh-capacity long-distancetransmissionlines.The powerlossesoftransmissionlinescanbelinkedtoCO2emissions becauselossesofelectricalenergyneedtobecompensatedbyan increaseofthegeneratedelectricenergyunlessoneassumesthat ahypotheticalSCTLwouldtransfer100%ofREwithanexcessof REavailableforcooling.Therenewableenergyshare(RES)ofthe electricitymixinGermanywas23%attheendof2012.Theaverage emissionofCO2pergeneratedkWhwas563gin2010[17].TheCO2 emissionsofsuperconductingtransmissionlinesarecomparedto standardoverheadandundergroundtransmissionlinesinTable6 fortheexampleofcorridorCoftheGermangriddevelopmentplan (Südlink)assumingaloadfactorof50%.

Forinstancewouldstandardcablesexperiencelossesequivalent to6.5%oftheCO2emittedbyatypicalsteam-cyclecoalpowerplant (4300GWh/year).Consistentwiththeelectriclosses,theemissions arelowestforliquidnitrogencooledSCTL(0.8–1.1%coalpower plantCO2emissionequivalent).Theefficiencydrasticallychanges infavoroftheSCTLswithincreasingcapacityandloadfactordue tothefixedamountofenergyneededforcoolingSCTL.Asanexam- ple,theCO2emissionsfora3000kmlongtransmissionlinewitha 10GWnet-capacityat100%loadarelistedinTable7.

Theemissionsassociatedwiththeelectriclossesforstandard cableswouldbeequivalenttoalmost3coalpowerplants!HVDC overheadlineswouldalsoberesponsiblefortheemissionof30× theamountofCO2nitrogencooledSCTLindirectlyemit.TheGer- manelectricgrid(AC)experiencestotalelectriclossesof5–6%for transmissionandvoltageconversionwhenbringingelectricenergy fromsourcetoload.Thelowvoltagelevelisresponsibleforthe largestfractionoftheselosses,followedbythemedium-voltage

(10)

Table6

CO2emissionsassociatedwithpowerlossesoftransmissionlines(4GW,810kmlength)assumingtheRESof2012inGermanyload:50%.

CO2equivalentemissionoflosses MgB2LH2 MgB2GHe+LN2 HTScable ±500kVHVDCOHL ±320kVHVDCcable Electricitymix2012(563g/kWh)

Peryear[t] 146,717 46,683 36,012 115,836 279,571

For40years[t] 5,868,696 1,867,312 1,440,498 4,633,439 11,182,826

CoalpowerplantCO2equivalentemission[%] 3.4 1.1 0.8 2.7 6.5

Table7

CO2emissionsassociatedwithpowerlossesoftransmissionlines(10GW,3000kmlength)load:100%.

CO2equivalentemissionoflosses MgB2LH2 MgB2GHe+LN2 HTScable ±500kVHVDCOHL ±320kVHVDCcable Electricitymix2012(563g/kWh)

Peryear[t] 543,398 172,899 133,379 4,640,140 12,203,002

For40years[t] 21,735,912 6,915,972 5,335,178 185,605,613 488,120,066

CoalpowerplantCO2equivalentemission[%] 12.6 4.0 3.1 107.9 283.8

distributiongridandthehigh/ultra-highvoltagetransmissiongrid.

Thatisprimarilyrelatedtothetotallength.Thecapacityoflowvolt- agetransmissionlinesmaybetoolowforSCTLtobemoreefficient thanstandardtechnologies,buttheuseofSCTLcanofferadvan- tagestolocaldistributiongridsintermsofefficiency.Considering thelengthofplannedHVDCcorridorsinGermanyandelsewhere, theuseofSCTLcanleadtoreducedCO2emissionsfortheseappli- cations.Ultimately,onecanthinkofacombinedtransmissionand distributiongridcompletelyutilizingSCTLatonlyonevoltagelevel allthewayfromgeneration(10–30kVturbine/generatoroutput voltage)tothedistributioncenters.Thusonewouldgetridofup- and-downtransformerstationsandsaveassociatedelectriclosses (0.3–1.1%,municipalutilitiesMunichandBerlin).

4.4. UsingSCTLtostoreexcessRE

Asmentioned in thebeginning,simply connectingintermit- tentrenewableenergysourcesathighefficienciesusingSCTLwill requireasophisticatedenergymanagementsystemtoachievea highaverageloadfactor.Inthisrespect,thecryogenicsystemof SCTLscouldstoreexcessenergyduringtimesofhighREgenera- tionbycoolingthecryogentolowertemperaturesandwarm-up toregularoperatingtemperaturesattimesoflowloadwithnouse ofelectricenergy.Ascoolingatcryogenictemperaturesisrequired anywayforoperation,theefficiencyofthistypeofstoragewouldbe relativelyhighinthisspecificcase.Thepowerandcapacitywould besmallthough–like7–30MWforthedescribed800kmlongSCTL aswouldbethestoragecapacity(afewMWhperKelvinforLH2@ 17K/17bar)–pleasecomparewithTable2–howevermuchless inpureurbanshortlengthapplicationsdue tothesmallernec- essarydiameterandlowercryogenmass.TheshortlengthLong IslandPowerAuthority(LIPA)SCTLbasedonHTScoolingsystem hasapowerof6kW@70Kincomparison.Thispossiblestoragein thecryogenicsystemisinlinewiththephysicalcharacteristicsof asuperconductortoexhibitaclearlyincreasedcurrentdensityat lowertemperatures,whichtranslatesintoahighercapacityofthe SCTL.ExcessiveREcouldalsobestoredashydrogeninSCTLasa coolantbymeansofelectrolysisandliquefactionandtransferred thisway.Theliquefactionprocesshoweverisveryinefficientand themassflowofthecryogenlow.

5. Summary

Theefficiencyadvantageofsuperconductingtransmissionlines isoftenhighlightedinrelevantdebates.However,theelectriclosses ofSCTLarepersenotlowerthanforstandardtransmissiontech- nologiesandacarefulevaluationofeverytransmissionlinecasehas tobemade.Asabasicrule,thehigherthecapacityandthehigher theaverageloadfactor,thehighertheefficiencyforSCTL.Thefull

energyefficiencyadvantagesofSCTLcanbebestexploitedifthis technologyisusedtoconnectpowerplantswithaconstantenergy outputwithconstantloadcenters,inordertoobtainahighloadfac- tororsimplytoprovidetheminimumbaseload.Fromanenergy efficiencypointofview,connectingremotegeothermalandhydro powerplantswithcapacitiesofseveralGWoreventensofGWmay beoneofthetopapplicationsforSCTLinthefutureelectricitygrid duetotheirhighcapacityfactors(70%forgeothermaland50%for hydro[18])aslongasothermoreintermittentREsourceslikewind andsolararenotbackedbyadequatestoragecapacity.Energystor- agecouldalsoberealizedbyreducingtheoperatingtemperature throughanincreaseoftherefrigerationpowerattimesofhighload, andviceversabylettingthecryogenwarmupattimesoflowload.

Inthemeantime,SCTLwillbeutilizedonmuchsmallerscalein localandregionalgridsnotforanefficiencyadvantagebutforpub- licacceptanceandreducedspacerequirementreasons.Standard technologiescanhave equalor evenhigher efficienciesfor low averageloadfactors.Recently,“standard”HVDCXLPEcableswere developedwithvoltageratingsof±525kVcomparedtotheformer limitof±325kVandhencecorrespondinglowerelectriclosses(or highercapacities).Inthisrespect,SCTLcanhaveatechnological edgeastheycouldbeoperatedatsignificantlylowervoltageswith thesamecapacity.AnexampleistheAmpacityprojectinEssen byRWEthatrecentlyannouncedthefailure-freeoperationsince startofoperationinearly2014.Finally,SCTLhavethepotential toreduceCO2emissions,butinordertoobtainarealisticnumber fortheefficiencyofSCTL,thecharacteristicsoftheadjacentgrid, especiallytheloadfactor,havetobeincluded.

Acknowledgements

ThisworkwasfundedbytheGermanFederalMinistryofEduca- tionandResearch(BMBF)andthestateofBrandenburg/Germany.

Appendix. Acronymsandnomenclature

AC alternatingcurrent cm centimeter DC directcurrent GHe gaseoushelium GW gigawatt GWh gigawatthours

HTS hightemperaturesuperconductors HV highvoltage

HVDC highvoltagedirectcurrent IGBT insulatedgatebi-polartransistor

K Kelvin

kA kiloampere

(11)

H.Thomasetal./ElectricPowerSystemsResearch141(2016)381–391 391 km kilometer

kV kilovolt kWh kilowatthours

LCC linecommutatedconverter LH2 liquidhydrogen

LN2 liquidnitrogen

LTS lowtemperaturesuperconductors

m meter

MgB2 magnesium-di-boride MLI multilayerinsulation

MW megawatt

OHL overheadline q heatinflux RE renewableenergy RES renewableenergyshare ROW right-of-way

SC superconductors

SCTL superconductingtransmissionline T temperature

TL transmissionline

TSO transmissionsystemoperator VSC voltagesourceconverter

W watt

XLPE crosslinkedpolyethylene References

[1]H.Thomas,etal.,Superconductingtransmissionlinessustainableelectric energytransferwithhigherpublicacceptance?Sustain.Renew.EnergyRev.55 (March)(2016)59–72.

[2]H.Thomas,A.Marian,A.Chervyakov,Socio-economicAspectsofSuperconduc- tiongTransmissionLines,IASS,Potsdam,2014,Study.

[3]Bundesnetzagentur,Netzentwicklungsplan20142nddraft,2014.

[4]EnergieZentrumGraz,GutachtenzurErmittlungdeserforderlichenNetzaus- bausimdeutschenÜbertragungsnetz,GrazUniversityofTechnology,Graz, Gutachten,2012.

[5]B.Burger,ElectricityProductionfromSolarandWindinGermanyin2014, FraunhoferInstituteforSolarEnergySystemsISE,Freiburg,2014.

[6]Agora Energiewende, 12 Insights on Germany’s Energiewende, Agora Energiewende,Berlin,2013.

[7]C.Rubbia,AnewSuperconductingApproachtoHighPower,VeryLongDistance PowerLinesBasedonaMgB2Cable,2013(unpublished).

[8]EPRI,ProgramonTechnologyInnovation:ASuperconductingDCCable,EPRI, PaloAlto,U.S.,2009.

[9]J.Nagamatsu,N.Nakagawa,T.Muranaka,Y.Zenitani,J.Akimitsu,Superconduc- tivityat39Kinmagnesiumdiboride,Nature410(2001)63–64.

[10]K.Mathes,Dielectricpropertiesofcryogenicliquids,Trans.Electr.Insul.2(April (1))(1967)24–32.

[11]RTE,privatecommunication.

[12]M.Bahrman,HVDCTransmissionAnEconomicalComplementtoACTrans- mission,Presentation,2009.

[13]S.H.Lee,J.-W.Park,G.T.Son,PowerlossmodelingforindividualIGBTand advancedvoltagebalancingschemeforMMCinVSC-HVDCsystem,Electr.Eng.

Technol.9(5)(2014)1471–1481.

[14]C. Rabier, V. Benda, Multilayer Insulation, Thesis from the Mechanical EngineeringDepartmentoftheInstitutPolytechnique deSévenans,1995, August.

[15]Ch.Darve,G.Ferlin,M.Gautier,L.R.Williams,ThermalPerformanceMeasure- mentsona10-MeterLongDipolePrototypeCryostat(CryostatThermalModel 2),CERN,Geneve,1997,LHCProjectNote112.

[16]J.H.Neher,M.H.McGrath,Thecalculationofthetemperatureriseandload capabilityofcablesystems,Trans.PartIIIPowerAppar.Syst.76(October) (1957)752–772.

[17]Umweltbundesamt,EntwicklungderspezifischenKohlendioxid-Emissionen desdeutschenStrommixindenJahren1990bis2012,Umweltbundesamt, Dessau-Roßlau,2013.

[18]IRENA,Hydropower,WorkingPaper,2012.

Referenzen

ÄHNLICHE DOKUMENTE

A startle response was a rapid forwards and backwards movement during which the fish never totally left its porous-pot hiding-place, b Attack responses on the dipole model

Ef fi ciency of SCTL with respect to renewable energy transfer It is evident that SCTL have the potential to reduce the electric transmission losses compared to standard

TABLE 1 Power (Vt) of the Schreiber study to delect relative risks of 1.5 and 2.0 based on person-years of follow-up and expected numbers of the study (ref.

Everytime the LC receives charge token request messages or capacity up- dates from an EV charging in stage 3, the fair load coordination algorithm is triggered and calculates

Acemoglu (2001) provides a good discussion on the role of human capital (education) in determining income and wage inequality in a number of OECD countries:

Oue to the increased use of renewable energies the share of vo/atile supply-dependent electricity production will be higher than the share of production erzeugung jenen

The curve represents the trade-off following the constraints as set out in (B1) and the straight line represents the solution of (B2) and is the tangent of trade-off curve.

Construction cost data on onshore pipeline development in the United States during the period 1985 to 1998 did not demonstrate that technological learning led to cost reduction..