• Keine Ergebnisse gefunden

I. Fixed points with two relevant directions

N/A
N/A
Protected

Academic year: 2022

Aktie "I. Fixed points with two relevant directions"

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Supplemenatry Material to “On mul- timatrix models motivated by random Noncommutative Geometry I: the Func- tional Renormalization Group as a flow in the free algebra”

I. Fixed points with two relevant directions

In the main text the fixed points corresponding to the unique solution developing a single relevant direction were reported. Next tables cor- respond to two relevant directions, where uniqueness of the solution is lost. The selection criteria were the same mentioned in Sections 7.6 and 7.7.

I.1. Geometry (0, 2) or ( − , − )

With two relevant directions five solutions are found. The critical exponents are in that case

θ

1

θ

2

1,2

+1.0318 +0.274913

(two-fold multiplicity)

3,4,5

+0.301298 +0.027688

(three-fold multiplicity)

and the fixed-point coupling constant values are given in Table A.

(2)

Coupling 1 2 3 4 5

η −0.3625 −0.3625 −0.3418 −0.3418 −0.3418 a4 −0.07972 −0.07972 −0.05812 −0.05812 −0.1194 a6 0 0 −5.897×10−6 −5.897×10−6 −0.00002453

c1111 0 0 +0.06126 −0.06126 0

c2121 0 0 −0.00001863 −0.00001863 −3.053×10−9 c22 −0.03986 −0.03986 −0.05969 −0.05969 +0.001568

c3111 0 0 −0.00003726 +0.00003726 0

c42 0 0 −0.00003632 −0.00003632 +9.418×10−7 d2|02 −0.01337 0.08013 −0.01289 −0.01289 +0.001253 d2|04 0 0 −0.00002598 −0.00002598 +3.476×10−6

d2|1111 0 0 −0.00005407 +0.00005407 0

d2|2 −0.005156 −0.03632 −0.004297 −0.004297 −0.009011 d2|22 0 0 −0.000106 −0.000106 +2.107×10−6 d2|4 0 0 −0.00002598 −0.00002598 −0.0001095 d11|11 −0.3782 −0.004201 −0.05657 −5.008×10−6 −5.008×10−6

d11|31 0 0 −0.000226 −1.14×10−8 −1.14×10−8

d12|3 0 0 −0.00005331 +5.71×10−7 +9.208×10−7

d21|21 0 0 −0.00008135 +2.855×10−7 −1.231×10−8

d3|3 0 0 −8.735×10−6 +2.855×10−7 −0.00003585

Table A. All the coupling constant values at those fixed points of the RG-flow for the (0, 2)-geometry characterized by two relevant directions; for solu- tions with single relevant direction, cf. eqs. (7.5)

I.2. Geometry (2, 0) or (+, +)

Solutions with two relevant directions are six:

θ

1

θ

2

1

+1.0318 +0.274913

2

+1.0318 +0.274913

3,4,5,6

+0.3013 +0.02779

(four-fold multiplicity)

corresponding to the couplings shown in Table B.

2

(3)

Coupling 1 2 3 |4,5,6| η −0.3625 −0.3625 −0.3418 +0.3418 a4 −0.07972 −0.07972 −0.1194 +0.05812

a6 0 0 +0.00002453 +5.897×10−6

c1111 0 0 0 +0.06126

c2121 0 0 +3.053×10−9 +0.00001863

c22 −0.03986 −0.03986 +0.001568 +0.05969

c3111 0 0 0 +0.00003726

c42 0 0 −9.418×10−7 +0.00003632 d2|02 +0.08013 −0.01337 +0.001253 +0.01289

d2|04 0 0 +3.476×10−6 +0.00002598

d2|1111 0 0 0 +0.00005407

d2|2 −0.03632 −0.005156 −0.009011 +0.004297 d2|22 0 0 −2.107×10−6 +0.000106

d2|4 0 0 +0.0001095 +0.00002598

d12|3 0 0 −9.208×10−7 +5.71×10−7

d21|21 0 0 +1.231×10−8 +2.855×10−7

d3|3 0 0 +0.00003585 +2.855×10−7

d1|12 −0.00985 −0.00985 +0.0003325 +0.0003721 d1|14 0 0 −1.925×10−7 +3.972×10−7

d1|2111 0 0 +1.275×10−9 +4.158×10−7

d1|3 −0.00985 −0.00985 −0.02262 +0.0003721 d1|32 0 0 −1.269×10−6 +1.21×10−6

d1|5 0 0 +0.00005281 +3.972×10−7

d01|01 −0.2543 −0.2543 −0.3901 +0.009373

d11|11 −0.004201 −0.3782 −5.008×10−6 +5.008×10−6

d11|31 0 0 +1.14×10−8 +1.14×10−8

Table B. All the coupling constant values at those fixed points of the RG-flow for the (2, 0)-geometry characterized by two relevant directions. The bars around the fixed points 3, 4, 6 mean that we report only the couplings in absolute value (the three solu- tions differ from sign change in some coupling con- stants).

II. Noncommutative Hessians and Laplacians

This appendix lists first the (twisted) NC-Laplacians

2τ

Tr

A2

( O

I|I0

(A, B)) = Tr

2

Hess

στ

Tr

A2

[ O

I|I0

(A, B)]

(by Claim 2.1) of the double-trace operators O

I|I0

(A, B) (in the left column). Subsequently, the Hessians also used in the proof of Theo- rem 7.2 are provided. The operators that do not appear in the next list can be obtained from these by the AB, e

a

e

b

exchange (and in the case of the Hessian, with pertinent changes in the matrix structure).

3

(4)

OI|I0(A,B)2τTrA2(OI|I0(A,B)) N−11N⊗(A·A) 2ea1N⊗1N

AA 2ea1Nτ1N

N−11N⊗(A·A·A·A) 4ea(1N⊗(A·A) + (A·A)⊗1N+AA) N−11N⊗(A·A·B·B) eb1N⊗(A·A) +eb(A·A)⊗1N

+ea1N⊗(B·B) +ea(B·B)⊗1N

N−11N⊗(A·B·A·B) 2(ebAA+eaBB) (A·B)⊗(A·B) 2(ebAτA+eaBτB)

(A·A)⊗(B·B) 2·1Nτ1N(ebTrN(A·A) +eaTrN(B·B)) A⊗(A·A·A) 3ea(TrN(A)(A⊗τ1N+ 1NτA)

+1N⊗(A·A) + (A·A)⊗1N) A⊗(A·B·B) ebTrN(A)(A⊗τ1N+ 1NτA)

+ea1N⊗(B·B) +ea(B·B)⊗1N

(A·A)⊗(A·A) 4ea(1Nτ1NTrN(A·A) + 2AA) (B·B)⊗(B·B) 4eb(1Nτ1NTrN(B·B) + 2BB) N−11N⊗(A·A·A·A·A·A) 6ea(1N⊗(A·A·A·A) + (A·A·A·A)⊗1N

+A⊗(A·A·A) + (A·A·A)A +(A·A)⊗(A·A))

N−11N⊗(A·A·A·A·B·B) ea1N⊗(A·A·B·B) +ea1N⊗(A·B·B·A) +ea1N⊗(B·B·A·A) +ea(A·A·B·B)⊗1N

+ea(A·B·B·A)⊗1N+ea(B·B·A·A)⊗1N

+eaA⊗(A·B·B) +eaA⊗(B·B·A) +ea(A·A)⊗(B·B) +ea(B·B)⊗(A·A) +ea(B·B·A)A+eb1N⊗(A·A·A·A) +ea(A·B·B)A+eb(A·A·A·A)⊗1N

N−11N⊗(A·A·B·A·A·B) 2[ea1N⊗(B·A·A·B) +ea(B·A·A·B)⊗1N

+eaB⊗(A·B·A) +ea(A·B)⊗(A·B) +ea(A·B·A)B+eb(A·A)⊗(A·A))

+ea(B·A)⊗(B·A)]

(5)

OI|I0(A,B)2τTrA2(OI|I0(A,B))

N−11N⊗(A·A·A·B·A·B) ea1N⊗(A·B·A·B) +ea1N⊗(B·A·B·A) +ea(A·B·A·B)⊗1N+ea(B·A·B·A)⊗1N

+eaA⊗(B·A·B) +eaB⊗(A·A·B) +eaB⊗(B·A·A) +ea(A·B)⊗(B·A)

+ea(A·A·B)B+ea(B·A·A)B +ebA⊗(A·A·A) +eb(A·A·A)A +ea(B·A)⊗(A·B) +ea(B·A·B)⊗

A⊗(A·B·B·B·B) ebTrN(A)

1Nτ(A·B·B) + 1Nτ(B·A·B) +1Nτ(B·B·A) + (A·B·B)τ1N

+(B·B·A)τ1N+Aτ(B·B) +Bτ(A·B) +B⊗τ(B·A) + (A·B)τB+ (B·A)τB

+(B·A·B)τ1N+ (B·B)τA +ea1N⊗(B·B·B·B) +ea(B·B·B·B)⊗1N

A⊗(A·A·A·B·B) TrN(A)[ea1Nτ(A·B·B) +ea1Nτ(B·B·A) +ea(A·B·B)τ1N+ea(B·B·A)τ1N

+eaAτ(B·B) +ea(B·B)τA +eb1Nτ(A·A·A) +eb(A·A·A)τ1N] +ea[1N⊗(A·A·B·B) + 1N⊗(A·B·B·A)

+(A·A·B·B)⊗1N+ (A·B·B·A)⊗1N

+1N⊗(B·B·A·A) + (B·B·A·A)⊗1N] A⊗(A·A·B·A·B) TrN(A)[ea1Nτ(B·A·B) +ea(B·A·B)τ1N

+eaBτ(A·B) +eaBτ(B·A) +ea(A·B)τB +ea(B·A)τB+ebAτ(A·A) +eb(A·A)τA]

+ea[1N⊗(B·A·A·B) + 1N⊗(B·A·B·A) +(B·A·A·B)⊗1N+ (B·A·B·A)⊗1N

+1N⊗(A·B·A·B) + (A·B·A·B)⊗1N] (A·B)⊗(A·A·A·B) eaTrN(A·B)(1Nτ(A·B) + 1Nτ(B·A)

+(A·B)τ1N+ (B·A)τ1N+AτB+BτA) +ea[B⊗(A·A·B) +B⊗(A·B·A) +B⊗(B·A·A)] +ea[(A·A·B)B +(A·B·A)B+ (B·A·A)B]

+ebA⊗(A·A·A) +eb(A·A·A)A

5

(6)

OI|I0(A,B)2τTrA2(OI|I0(A,B)) A⊗(A·A·A·A·A) 5ea

Tr

N(A)[1Nτ(A·A·A) + (A·A·A)τ1N

+A⊗τ(A·A) + (A·A)τA]

+1N⊗(A·A·A·A) + (A·A·A·A)⊗1N

(A·B)⊗(A·B·B·B) ebTrN(A·B)[1Nτ(A·B) + 1Nτ(B·A) +(A·B)τ1N+ (B·A)τ1N+AτB+BτA]

+eb[A⊗(A·B·B) +A⊗(B·A·B) +A⊗(B·B·A)] +eb[(A·B·B)A +(B·A·B)A+ (B·B·A)A]

+eaB⊗(B·B·B) +ea(B·B·B)B

(A·A)⊗(A·A·B·B) TrN(A·A)[eb1Nτ(A·A) +eb(A·A)τ1N

+ea1Nτ(B·B) +ea(B·B)τ1N] +2ea1N⊗1NTrN(A·A·B·B) +2ea[A⊗(A·B·B) +A⊗(B·B·A)]

+2ea[(A·B·B)A+ (B·B·A)A]

(A·A)⊗(A·B·A·B) 2 TrN(A·A)(ebAτA+eaBτB) +2ea1N⊗1NTrN(A·B·A·B) +4eaA⊗(B·A·B) + 4ea(B·A·B)A

(A·A)⊗(A·A·A·A) 2ea[2 TrN(A·A)(1Nτ(A·A) + (A·A)τ1N

+A⊗τA) + 1Nτ1NTrN(A·A·A·A) +4A⊗(A·A·A) + 4(A·A·A)A]

(A·A)⊗(B·B·B·B) 4ebTrN(A·A)[1Nτ(B·B) + (B·B)t⊗1N

+B⊗τB] + 2ea1N⊗1NTrN(B·B·B·B)

(A·A·A)⊗(A·A·A) 6ea

(A⊗τ1N+ 1NτA) TrN(A·A·A) +3(A·A)⊗(A·A)

(A·B·B)⊗(A·A·A) (A⊗τ1N+ 1NτA)[3eaTrN(A·B·B) +ebTrN(A·A·A)]

+3ea(A·A)⊗(B·B) + 3ea(B·B)⊗(A·A)

(A·A·B)⊗(A·A·B) 2

ea(B⊗τ1N+ 1NτB) TrN(A·A·B) +ea[(A·B)⊗(A·B) + (A·B)⊗(B·A) +(B·A)⊗(A·B) + (B·A)⊗(B·A)]

+eb(A·A)⊗(A·A)

(7)

OI|I0 HessσTrA2(OI|I0) (untwisted)

1

N1⊗A·A·A·A·A·A

6ea(1⊗A4+A4⊗1 +AA3+A2A2+A3A) 0

0 0

(A·B)⊗(A·B)

2eaBτB 2(1⊗1 Tr(AB) +BτA) 2(1⊗1 Tr(AB) +AτB) 2ebAτA

(A·B·B)⊗(A·A·A)

3ea[(A⊗1 + 1⊗A] Tr(ABB) +A2τB2+B2τA2) TrA3(B⊗1 + 1⊗B) + 3A2τAB+ 3A2τBA TrA3(B⊗1 + 1⊗B) + 3ABτA2+ 3BA⊗τA2 eb(A⊗1 + 1⊗A) TrA3

A⊗(A·A·A·A·A)

5ea[TrA(1A3+A3⊗1 +AA2+A2A) + 1τA4+A4τ1] 0

0 0

(A·A·A)⊗(A·A·A)

6ea[(A⊗1 + 1⊗A) TrA3+ 3A2τA2] 0

0 0

(A·A)⊗(A·A·A·A)

2ea(2 TrA2(1⊗A2+A2⊗1 +AA) + 1⊗1 TrA4+ 4A⊗τA3+ 4A3τA) 0

0 0

(A·A)⊗(B·B·B·B)

2ea1⊗1 TrB4 8A⊗τB3

8B3τA 4ebTrA2(1⊗B2+B2⊗1 +BB)

7

(8)

4

OI|I1pA, Bq HessσTrNb2pOI|I1pA, Bqq

pABq b pAAABq

eapTrABp1bAB 1bBA ABb1 BAb1 AbB Bb Aq BbτpAABq BbτpABAq BbτpBAAq pAABq bτ

B pABAq bτB pBAAq bτBq

TrABp1bA2 A2b1 AbAq 1b1TrpA3Bq BbτpA3q pAABq bτA pABAq bτA pBAAq bτA

TrABp1bA2 A2b1 AbAq 1b1TrpA3Bq Abτ

pAABq AbτpABAq AbτpBAAq pA3q bτB

ebpAbτpA3q pA3q bτAq

Ab pABBBBq

eap1bτB4 B4bτ1q TrpAqp1bB3 B3b1 BbB2 B2bBq 1bτpABBBq 1bτpBABBq 1bτpBBABq 1bτpBBBAq TrpAqp1bB3 B3b1 BbB2 B2bBq pABBBq bτ1

pBABBq bτ1 pBBABq bτ1 pBBBAq bτ1 ebTrpAqp1b pABBq 1b pBABq 1b pBBAq pABBq b1 pBABq b1 pBBAq b1 Ab pBBq BbAB BbBA

ABbB BAbB B2bAq

Ab pAABABq

eapTrpAq1b pBABq TrpAqpBABq b1 1bτpABABq 1bτ

pBAABq 1bτpBABAq pABABq bτ1 pBAABq bτ1 pBABAq bτ1 TrpAqBbAB TrpAqBbBA TrpAqABb

B TrpAqBAbBq

TrpAqp1b pABAq 1b pBAAq pAABq b1 pABAq b1 Ab BA ABbAq 1bτpAABAq 1bτpABAAq

TrpAqp1b pAABq 1b pABAq pABAq b1 pBAAq b1 Ab

AB BAbAq pAABAq bτ1 pABAAq bτ1 ebTrpAqpAbA2 A2bAq

Ab pAAABBq

eapTrpAq1b pABBq TrpAq1b pBBAq TrpAqpABBq b1 TrpAqpBBAq b1 1bτpAABBq 1bτpABBAq 1bτ

pBBAAq pAABBq bτ1 pABBAq bτ1 pBBAAq bτ1 TrpAqAbB2 TrpAqB2bAq

TrpAqp1b pAABq pBAAq b1 AbAB BbA2 A2bB BAbAq 1bτpA3Bq 1bτpBA3q

TrpAqp1b pBAAq pAABq b1 AbBA BbA2 A2bB

ABbAq pA3Bq bτ1 pBA3q bτ1 ebTrpAqp1b pA3q pA3q b1q

(9)

2

OI|I1pA, Bq HessσTrNb2pOI|I1pA, Bqq

IdbpAABAABq N

2eap1b pBAABq pBAABq b1 Bb pABAq ABbAB

BAbBA pABAq bBq 2p1b pABAAq pAABAq b1 Ab pBAAq pAABq bAq 2p1b pAABAq pABAAq b1 Ab pAABq pBAAq bAq 2ebA2bA2

pAABq b pAABq

2eapBb1TrpAABq 1bBTrpAABq ABbτAB ABbτ

BA BAbτAB BAbτBAq 2ppAb1 1bAqTrpAABq ABbτA2 BAbτA2q 2ppAb1 1bAqTrpAABq A2bτAB A2bτBAq 2ebA2bτA2

pAAq b pABABq

2eap1b1TrpABABq BbBTrA2 2AbτpBABq 2pBABqbτAq 2TrA2p1bBA ABb1q 4AbτpABAq

2TrA2p1bAB BAb1q 4pABAq bτA 2ebAbATrA2

pAAq b pAABBq

eapTrA21bB2 TrA2B2b1 21b1TrpAABBq 2Abτ

pABBq 2AbτpBBAq 2pABBq bτA 2pBBAq bτAq TrA2p1bAB BAb1 AbB BbAq 2AbτpAABq 2AbτpBAAq

TrA2p1bBA ABb1 AbB BbAq 2pAABq bτA 2pBAAq bτA

ebTrA2p1bA2 A2b1q

IdbpAAABABq N

eap1b pABABq 1b pBABAq pABABq b1 pBABAq b1 Ab pBABq Bb pAABq Bb pBAAq pABq bBA BAb

AB pAABq bB pBAAq bB pBABq bAq

1b pAABAq 1b pBA3q pA3Bq b1 pABAAq b1 Ab pABAq A2bBA ABbA2 pABAq bA

1b pA3Bq 1b pABAAq pAABAq b1 pBA3q b1 Ab pABAq A2bAB BAbA2 pABAq bA

ebpAb pA3q pA3q bAq

IdbpAAAABBq N

eap1b pAABBq 1b pABBAq 1b pBBAAq pAABBq b1 pABBAq b1 pBBAAq b1 Ab pABBq Ab pBBAq A2b

B2 B2bA2 pABBq bA pBBAq bAq

1b pA3Bq pBA3q b1 Ab pAABq Bb pA3q A2bAB BAbA2 pA3q bB pBAAq bA

1b pBA3q pA3Bq b1 Ab pBAAq Bb pA3q A2bBA ABbA2 pA3q bB pAABq bA

ebp1b pA4q pA4q b1q

(10)

III. Beta-functions for disconnected couplings

2h2(a4(12a6+ 5d1|5) + 18a6d1|3ea+eb(c42(d1|12−c1111ea) +c22ea(c3111+d1|32))) +d1|5(3η+ 3) =β(d1|5)

2h2(b4(12b6+ 5d01|05) +eb(18b6d01|03+c22ea(c1311+d01|23)) +c24ea(d01|21−c1111eb)) +d01|05(3η+ 3) =β(d01|05)

h2 −a4c1111eaeb−b4c1111eaeb+ 2c21111−4c1111c22−8c1111d11|11eaeb+ 4c222+ 8c22d11|11eaeb+ 4d211|11

+h1(−2c1212eb−c1311eb−2c2121ea−c3111ea−2d11|13eb−2d11|31ea) +d11|11(2η+ 2) =β(d11|11)

h2 a4c22+ 4a4d2|02+b4c22+ 4b4d2|02+c222eaeb+ 12c22d02|02+ 12c22d2|2+ 24d02|02d2|02+ 24d2|02d2|2

+h1 −1 2c24ea−1

2c42eb−1

2d02|22ea−2d02|4eb−2d2|04ea−1

2d2|22eb

+

d2|02(2η+ 2) =β(d2|02)

h2 2a24ea+ 6a4d1|3−2c1111c22ea+ 2c22d1|12

+h1 −6a6−c3111eaeb−d12|3eaeb−d1|32eaeb−5d1|5−6d3|3

+

d1|3(2η+ 2) =β(d1|3)

h2 2a4c22ea−2b4c1111ea+ 2b4d1|12−4c1111c22eb−4c1111d1|12eaeb+ 4c222eb+ 4c22d1|12eaeb+ 6c22d1|3

+h1 −2c1212−2c1311−c3111eaeb−2c42eaeb−2d12|12−3d12|3eaeb−3d1|14−d1|2111eaeb−2d1|32eaeb

+d1|12(2η+ 2) =β(d1|12)

h2 −2a4c1111eb+ 2a4d01|21+ 2b4c22eb−4c1111c22ea−4c1111d01|21eaeb+ 4c222ea+ 6c22d01|03+ 4c22d01|21eaeb

+h1 −c1311eaeb−2c2121−2c24eaeb−2c3111−d01|1211eaeb−2d01|23eaeb−3d01|41−3d21|03eaeb−2d21|21

+d01|21(2η+ 2) =β(d01|21)

h2 2b24eb+ 6b4d01|03−2c1111c22eb+ 2c22d01|21

+h1 −6b6−c1311eaeb−5d01|05−d01|23eaeb−6d03|03−d21|03eaeb

+

d01|03(2η+ 2) =β(d01|03)

10

(11)

2h2(a4c24+b4(2c1212+ 2c1311+ 3d1|14)−6b6c1111eaeb+ 6b6d1|12eb−2c1111c24eaeb−2c1111d1|14eaeb +4c1212c22eaeb+ 4c1212d1|12eb+ 4c1311c22eaeb+ 4c1311d1|12eb+ 4c22c24eaeb+c22c3111eaeb+ 2c22c42eaeb

+2c22d1|14eaeb+c22d1|2111eaeb+ 2c22d1|32eaeb+ 2c24d1|12eb+ 3c24d1|3ea) +d1|14(3η+ 3) =β(d1|14)

2h2(5a4c42+ 2a4d1|32+ 6a6c22eaeb+b4(c3111+d1|32)−2c1111c1212eaeb−4c1111c2121eaeb−2c1111c24eaeb

−2c1111d1|2111eaeb+ 2c1212d1|12eb+ 2c1311c22eaeb+ 2c22c3111eaeb+ 4c22c42eaeb+ 2c22d1|14eaeb+ 2c22d1|32eaeb

+5c22d1|5eaeb+ 2c24d1|12eb+ 2c3111d1|12eb+ 2c42d1|12eb+ 9c42d1|3ea) +d1|32(3η+ 3) =β(d1|32)

2h2(a4(2c2121+ 3c3111+d1|2111)−2c1111c1311eaeb−c1111c24eaeb−2c1111c3111eaeb−2c1111c42eaeb−2c1111d1|2111eaeb

−2c1111d1|32eaeb+ 2c1212c22eaeb+ 2c1311d1|12eb+c2121(8c22eaeb+ 4d1|12eb+ 6d1|3ea) + 4c22c3111eaeb

+c22d1|14eaeb+ 4c22d1|2111eaeb+c24d1|12eb+ 2c3111d1|12eb+ 6c3111d1|3ea) +d1|2111(3η+ 3) =β(d1|2111)

2h2(a4(2c2121+ 2c3111+ 3d01|41)−6a6c1111eaeb+ 6a6d01|21ea+b4c42−2c1111c42eaeb−2c1111d01|41eaeb+c1311c22eaeb

+4c2121c22eaeb+ 4c2121d01|21ea+ 2c22c24eaeb+ 4c22c3111eaeb+ 4c22c42eaeb+c22d01|1211eaeb+ 2c22d01|23eaε

b+ 2c22d01|41eaeb+ 4c3111d01|21ea+ 3c42d01|03eb+ 2c42d01|21ea) +d01|41(3η+ 3) =β(d01|41)

h2

a2

24 + 8a4d2|2+c21111 6 +c222

3 +8

3c22d2|02+8d22|02 3 + 24d22|2

+h1

−a6eac2121eb

3 −d2|22eb

3 −4d2|4ea

3

+d2|2(2η+ 2) =β(d2|2)

h2

b2 4

2 + 8b4d02|02+c21111 6 +c222

3 +8

3c22d2|02+ 24d202|02+8d22|02 3

+h1

−b6ebc1212ea

3 −4d02|04eb

3 −d02|22ea

3

+d02|02(2η+ 2) =β(d02|02)

11

(12)

2h2(a4(c1311+d01|23) + 5b4c24+ 2b4d01|23+ 6b6c22eaeb−4c1111c1212eaeb−2c1111c2121eaeb−2c1111c42eaeb

−2c1111d01|1211eaeb+ 2c1311c22eaeb+ 2c1311d01|21ea+ 2c2121d01|21ea+ 4c22c24eaeb+ 2c22c3111eaeb+ 5c22d01|05eaeb+ 2c22d01|23eaeb

+2c22d01|41eaeb+ 9c24d01|03eb+ 2c24d01|21ea+ 2c42d01|21ea) +d01|23(3η+ 3) =β(d01|23)

2h2(b4(2c1212+ 3c1311+d01|1211)−2c1111c1311eaeb−2c1111c24eaeb−2c1111c3111eaeb−c1111c42eaeb−2c1111d01|1211eaeb

−2c1111d01|23eaeb+c1212(8c22eaeb+ 6d01|03eb+ 4d01|21ea) + 4c1311c22eaeb+ 6c1311d01|03eb+ 2c1311d01|21ea+ 2c2121c22eaeb

+4c22d01|1211eaeb+c22d01|41eaeb+ 2c3111d01|21ea+c42d01|21ea) +d01|1211(3η+ 3) =β(d01|1211)

2h2(2a4(3c2121+ 2c3111+d11|31)−6a6c1111eaeb+b4c3111−c1111c1311eaeb−4c1111c2121eaeb−2c1111c24eaeb

−6c1111c3111eaeb−4c1111c42eaeb−4c1111d11|31eaeb+ 4c1212c22eaeb+ 2c1311c22eaeb+ 8c2121c22eaeb+ 8c2121d11|11

+8c22c3111eaeb+ 8c22c42eaeb+ 2c22d11|13eaeb+ 4c22d11|31eaeb+ 8c3111d11|11+ 4c42d11|11+ 2d11|11d11|31) +d11|31(3η+ 3) =β(d11|31)

2h2(a4c1311+ 2b4(3c1212+ 2c1311+d11|13)−6b6c1111eaeb−4c1111c1212eaeb−6c1111c1311eaeb−4c1111c24eaeb

−c1111c3111eaeb−2c1111c42eaeb−4c1111d11|13eaeb+ 8c1212c22eaeb+ 8c1212d11|11+ 8c1311c22eaeb+ 8c1311d11|11

+4c2121c22eaeb+ 8c22c24eaeb+ 2c22c3111eaeb+ 4c22d11|13eaeb+ 2c22d11|31eaeb+ 4c24d11|11+ 2d11|11d11|13) +d11|13(3η+ 3) =β(d11|13)

2h2(a4(2c2121+ 6c42+ 3d2|22) + 2(3a6c22eaeb−c1111c1311eaeb−c1111c3111eaeb−2c1111d2|1111eaeb+c1212c22eaeb +4c1212d2|02eaeb+ 2c2121c22eaeb+ 12c2121d2|2+ 2c22c24eaeb+ 2c22c42eaeb+c22d02|22eaeb+ 2c22d2|04eaeb

+c22d2|22eaeb+ 2c22d2|4eaeb+ 6c24d2|02eaeb+ 18c42d2|2+ 2d02|22d2|02eaeb+ 6d2|2d2|22) +b4(2c2121+d2|22)) +d2|22(3η+ 3) =β(d2|22)

2h2(3a4c3111+ 2a4d2|1111−2c1111c1212eaeb−2c1111c42eaeb−2c1111d2|22eaeb+ 2c1311c22eaeb+ 8c1311d2|02eaeb

+4c22c3111eaeb+ 2c22d02|1111eaeb+ 4c22d2|1111eaeb+ 24c3111d2|2+ 4d02|1111d2|02eaeb+ 12d2|1111d2|2) +d2|1111(3η+ 3) =β(d2|1111)

12

(13)

2h2(6a4(3a6+d2|4) + 72a6d2|2−c1111c3111eaeb+ 2c2121c22eaeb+c22c42eaeb+ 2c22d02|4eaeb+c22d2|22eaeb

+4c42d2|02eaeb+ 4d02|4d2|02eaeb+ 12d2|2d2|4) +d2|4(3η+ 3) =β(d2|4)

2h2(a4(c24+ 2d2|04) +b4(c24+ 4d2|04) + 6b6c22eaeb+ 24b6d2|02eaeb+ 2c22c24eaeb+c22c42eaeb+ 2c22d02|04eaeb+

c22d2|22eaeb+ 12c24d2|2+ 4d02|04d2|02eaeb+ 12d2|04d2|2) +d2|04(3η+ 3) =β(d2|04)

2h2(a4(2c1212+d02|22) +b4(2c1212+ 6c24+ 3d02|22) + 2(3b6c22eaeb−c1111c1311eaeb−c1111c3111eaeb−2c1111d02|1111eaeb +2c1212c22eaeb+ 12c1212d02|02+c2121c22eaeb+ 4c2121d2|02eaeb+ 2c22c24eaeb+ 2c22c42eaeb+ 2c22d02|04eaeb+c22d02|22eaeb

+2c22d02|4eaeb+c22d2|22eaeb+ 18c24d02|02+ 6c42d2|02eaeb+ 6d02|02d02|22+ 2d2|02d2|22eaeb)) +d02|22(3η+ 3) =β(d02|22)

2h2(3b4c1311+ 2b4d02|1111−2c1111c2121eaeb−2c1111c24eaeb−2c1111d02|22eaeb+ 4c1311c22eaeb+ 24c1311d02|02

+2c22c3111eaeb+ 4c22d02|1111eaeb+ 2c22d2|1111eaeb+ 8c3111d2|02eaeb+ 12d02|02d02|1111+ 4d2|02d2|1111eaeb) +d02|1111(3η+ 3) =β(d02|1111)

2h2(6b4(3b6+d02|04) + 72b6d02|02−c1111c1311eaeb+ 2c1212c22eaeb+c22c24eaeb+c22d02|22eaeb+ 2c22d2|04eaeb

+4c24d2|02eaeb+ 12d02|02d02|04+ 4d2|02d2|04eaeb) +d02|04(3η+ 3) =β(d02|04)

2h2(a4(c42+ 4d02|4) + 6a6c22eaeb+ 24a6d2|02eaeb+b4(c42+ 2d02|4) +c22c24eaeb+ 2c22c42eaeb+c22d02|22eaeb

+2c22d2|4eaeb+ 12c42d02|02+ 12d02|02d02|4+ 4d2|02d2|4eaeb) +d02|4(3η+ 3) =β(d02|4)

13

(14)

2h2(a4(9a6+ 6d3|3) +eaeb(c22(c3111+d12|3)−c1111c2121)) +d3|3(3η+ 3) =β(d3|3)

2h2(a4(c3111+ 3(c42+d12|3)) +eaeb(6a6c22−c1111c24

−2c1111c42−2c1111d12|3+ 2c1212c22+ 2c1311c22+ 2c22c3111

+4c22c42+ 2c22d12|12+ 2c22d12|3+ 6c22d3|3) +b4(c3111+d12|3)) +d12|3(3η+ 3) =β(d12|3)

2h2(a4(4c2121+ 3c3111+ 2d21|21) +eaeb(−3a6c1111−c1111(2c1212+c1311

+2(2c2121+c3111+c42+ 2d21|21)) +c22(c1311+ 4c2121+ 2c24

+4c3111+ 4c42+ 3d21|03+ 4d21|21)) +b4c2121) +d21|21(3η+ 3) =β(d21|21)

2h2(b4(9b6+ 6d03|03) +eaeb(c22(c1311+d21|03)−c1111c1212)) +d03|03(3η+ 3) =β(d03|03)

2h2(a4(c1311+d21|03) +b4(c1311+ 3(c24+d21|03)) +eaeb(6b6c22

−2c1111c24−c1111c42−2c1111d21|03+ 2c1311c22+ 2c2121c22

+4c22c24+ 2c22c3111+ 6c22d03|03+ 2c22d21|03+ 2c22d21|21)) +d21|03(3η+ 3) =β(d21|03)

2h2(a4c1212+b4(4c1212+ 3c1311+ 2d12|12) +eaeb(−3b6c1111−c1111(4c1212

+2c1311+ 2c2121+ 2c24+c3111+ 4d12|12) +c22(4c1212+ 4c1311

+4c24+c3111+ 2c42+ 4d12|12+ 3d12|3))) +d12|12(3η+ 3) =β(d12|12)

(15)

IV. Intermediate steps in the proof of Theorem 7.2

In order to compute the quantum fluctuations reported in Theorem 7.2, one computed the F P

−1

expansion. Computing to first oder and taking its supertrace one gets the long expression below; from a selected operator, its the large-N limit is taken according to the procedures and scalings described in the main text.

Tr

N2

(A) × (e

a

¯ a

4

e

a

¯ c

1111

+ 24e

a

¯ d

2|2

+ 2e

b

¯ d

11|11

+ 2N ¯ d

1|12

+ 6N ¯ d

1|3

) + Tr

N2

(B) × (2e

a

¯ d

11|11

+ e

b

¯ b

4

e

b

¯ c

1111

+ 24e

b

¯ d

02|02

+ 6N ¯ d

01|03

+ 2N ¯ d

01|21

) + Tr

N

(A · A) × 2e

a

e

b

N ¯ d

01|21

+ 4N

2

e

a

¯ d

2|02

+ 12N

2

e

a

¯ d

2|2

+2e

a

a

4

+ 2e

a

c

22

+ 6N ¯ d

1|3

+ Tr

N

(B · B) × 2e

a

e

b

N ¯ d

1|12

+ 12N

2

e

b

¯ d

02|02

+ 4N

2

e

b

¯ d

2|02

+2e

b

N ¯ b

4

+ 2e

b

c

22

+ 6N ¯ d

01|03

+ Tr

N

(A · A · A · A) × 2N

2

e

a

¯ d

2|4

+ 12e

a

a

6

+ 10e

a

N ¯ d

1|5

+2N

2

e

b

¯ d

02|4

+ 2e

b

c

42

+ 2e

b

N ¯ d

01|41

+ Tr

N

(B · B · B · B) × 2N

2

e

a

¯ d

2|04

+ 2e

a

c

24

+ 2e

a

N ¯ d

1|14

+2N

2

e

b

¯ d

02|04

+ 12e

b

N ¯ b

6

+ 10e

b

N ¯ d

01|05

+ Tr

N

(A · A · B · B) × 2N

2

e

a

¯ d

2|22

+ 2e

a

c

42

+ 2e

a

N ¯ d

1|32

+2N

2

e

b

¯ d

02|22

+ 2e

b

c

24

+ 2e

b

N ¯ d

01|23

+ Tr

N

(A · B · A · B) × 2N

2

e

a

¯ d

2|1111

+ 2e

a

c

3111

+ 2e

a

N ¯ d

1|2111

+2e

b

N

2

¯ d

02|1111

+ 2e

b

c

1311

+ 2e

b

N ¯ d

01|1211

+ Tr

N

(A · A) Tr

N

(B · B) × (8e

a

N ¯ d

02|4

+ 2e

a

N ¯ d

2|22

+ 2e

a

¯ c

42

+ 6e

a

¯ d

12|3

+2e

b

N ¯ d

02|22

+ 8e

b

N ¯ d

2|04

+ 2e

b

¯ c

24

+ 6e

b

¯ d

21|03

) + Tr

N

(A) Tr

N

(A · A · A) × (10e

a

N ¯ d

1|5

+ 12e

a

N ¯ d

3|3

+ 12e

a

¯ a

6

+ 16e

a

¯ d

2|4

+2e

b

N ¯ d

12|3

+ 2e

b

N ¯ d

1|32

+ 2e

b

¯ c

3111

+ 2e

b

¯ d

11|31

) + Tr

N

(A) Tr

N

(A · B · B) × (6e

a

N ¯ d

12|3

+ 2e

a

N ¯ d

1|32

+ 2e

a

¯ c

42

+ 4e

a

¯ d

2|22

+4e

b

N ¯ d

12|12

+ 2e

b

N ¯ d

1|14

+ 2e

b

¯ c

1311

+ 2e

b

¯ d

11|13

)

15

Referenzen

ÄHNLICHE DOKUMENTE

This short note is on the question whether the intersection of all fixed points of a positive arithmetic operator and the intersection of all its closed points can proved to

on fixed points is dropped completely. It is natural to study theories, where fixed point induction is only restricted. As mentioned in Feferman [6], this motivated to

Inductive Definitions and Fixed Points 6.1 Inductively defined sets and predicates 6.2 Fixed point theory for inductive definitions 6.3 Specifying and verifying transition

Exercises for Spontaneous symmetry breaking and field-theory

Ist der Husten nach zwei Wo- chen noch nicht ausgeheilt, klingt aber im Zeitraum von drei bis acht Wochen spontan ab, wird er als subakut bezeich- net.. Es könnte sich jedoch auch

A (fin-)global family is a collection of finite groups that is closed under isomorphism, taking subgroups, and quotients. It is called multiplicative if it is closed under products

“engagement efforts must start with the fundamental recognition that people are different and have different psychological, cultural, and political reasons for acting – or

Bei dem weiterbildenden Studium für Seniorinnen und Senioren handle es sich um eine wis- senschaftliche Weiterbildung für Erwachsene, die nach der Berufs- oder