• Keine Ergebnisse gefunden

(2)indutionwemustmakeertainassumptionsaboutthesemantisoftypes(i.e., the arrierof a type must inlude \undened&#34

N/A
N/A
Protected

Academic year: 2021

Aktie "(2)indutionwemustmakeertainassumptionsaboutthesemantisoftypes(i.e., the arrierof a type must inlude \undened&#34"

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Closure Indution in a Z-like Language

DavidA. Duy 1

andJurgenGiesl 2

1

DepartmentofComputerSiene,UniversityofYork,

Heslington,York,YO105DD,UK,dads.york.a.uk

2

ComputerSieneDepartment,UniversityofNewMexio,

Albuquerque,NM87131,USA,giesls.unm.edu

Abstrat. Simply-typedset-theoreti languages suhas Z and B are

widelyusedforprogramandsystemspeiations.Themaintehnique

forreasoningaboutsuhspeiationsisindution.However,whilepar-

tiality is animportant onept inthese languages, manystandard ap-

proahes to automating indutionproofs relyonthe totality of all o-

urringfuntions.Reinterpretingtheseondauthor'sreentlyproposed

indutiontehniqueforpartialfuntionalprograms,weintrodueinthis

paperthe newprinipleof \losure indution"for reasoningaboutthe

indutive properties of partial funtions in simply-typed set-theoreti

languages. In partiular, losure indution allows us to prove partial

orretness, that is, to prove those instanes of onjetures for whih

designatedpartialfuntionsareexpliitlydened.

1 Motivation

PartialfuntionsareendemiinspeiationswritteninlanguagessuhasZand

B.Toreasonabouttheirindutivepropertiesamethodamenabletomehanial

support by automated theorem provers is inevitable. In [13℄, Giesl has shown

that, under ertain onditions, many of the reasoningproesses used to prove

indutive properties of total funtions (e.g., those in [5,9,19,25,27℄) may be

transposed topartial funtions.Theinferenerules proposed byGieslallowus

toproveonjeturesinvolvingpartialfuntionsforallinstanesoftheonjeture

forwhihdesignatedpartialfuntionsareexpliitlydened.

However,Giesl'stehniquehasbeendesignedforarst-orderfuntionallan-

guagewithaneager(all-by-value)evaluationstrategy.Inthispaper,weexam-

ine thoroughly whih interpretation of partialityand whih restritions onthe

allowedtheoriesarerequiredin ordertoextendGiesl'sindutionpriniplefrom

theoriginalfuntional programmingframeworktoasimply-typedset-theoreti

languageloselyrelatedtoZand B.

Werefertoournewprinipleas\losureindution",sineinstanesofitmay

bedesribedwithinourset-theoretilanguageitself,andtheseinstanesmaybe

viewedas\losureaxioms"forafuntiondenition,assertingthatthefuntion

?

Proeedings oftheInternationalConferene ofZandBUsers (ZB2000),York,UK,

LetureNotesinComputerSiene1878,pages471-490,Springer-Verlag,2000.

??

D. Duywassupportedbythe EPSRC undergrant no.GR/L31104, J.Giesl was

supportedbytheDFGundergrantno.GI274/4-1.

(2)

indutionwemustmakeertainassumptionsaboutthesemantisoftypes(i.e.,

the arrierof a type must inlude \undened" valuesthat an be used asthe

valueofapartial funtionwhenapplied outsideofitsdomain).Wedesribean

appropriatesemantisforourlanguagein Setion2.

OurapproahtoindutionisappliabletolanguagessuhasZandBifthey

tooassumeoursemantis.This semantis is,welaim,notveryrestritive;we

wouldarguethatitimposestheminimalrequirementsneededinordertodistin-

guishbetweendenedandundenedexpressions.Aommonplaeinterpretation

of partial-funtion appliation in the Z ommunity [1,24℄ is that any suh ap-

pliationalwaysreturnsavalueinthefuntion'srangetype;werefertothis as

the \lassial"semantis.In suh a framework weannot distinguish between

denedandundenedfuntionappliations.However,thereissomedebateasto

whether this is theappropriateinterpretation of funtion appliation [17℄,and

ouralternativesemantishasalreadygainedsomeinterestwithintheZommu-

nityviaits earlierpresentationin amoregeneralset-theoretiframework [11℄.

Apparently,nopartiularsemantis isxedbythestandarddenition ofZ[20,

21℄.Moreover,oursemantismaybesimulatedwithin thelassialsemantisin

astraightforwardway[11℄;thisallowsustosimulateourapproahto indution

in the CADiZ system [22℄, a tool for reasoning about Z speiations, whih

urrentlysupportsthelassialsemantis.

InSetion 3weformalizeouroneptofindutivevalidityin theontextof

partialfuntionsandinSetion4weintroduethetehniqueoflosureindution

in orderto performindution proofsautomatially.Wethendisussonditions

under whihlosure indutionissound. Weformalizetheseonditionsinterms

of rewriting, and it may thus ome as no surprise that a onuene property

formspartoftheonditions.Inpartiular,weshowthattheappliabilityoflo-

sureindution extendsbeyond the\orthogonal"equationaltheoriesonsidered

previouslybyGiesl[13℄.Finally,inSetion5wepresentsomefurtherrulesthat

areneededinadditiontolosureindutiontoverifydenednessonditionsthat

arisein mostproofsaboutpartialfuntions.

Thelosure-indutionapproah desribed in thispaperhasbeensimulated

within the CADiZ system [22℄; simulations of the di and quot examples we

desribemaybefoundonthewebatftp://ftp.s.york.a.uk/pub/aig/examples.

2 A Typed Language and its Semantis

Elsewhere[11℄,Duyhasdesribedaquitegeneralset-theoretilanguage(essen-

tiallyasubsetofZ)anditsassoiatedsemantis.Sine,inthepresentpaper,we

areonernedwithindutivereasoningintheontextoffreetypesandequational

theories, weare able to onsider amuh restrited subset of this higher-order

language,whihwewill refertoasF (signifying\freetypes").

2.1 The Syntax of Expressions

Werefer toallallowedsyntatiobjetsas\expressions".Weseparate expres-

(3)

forsimpliity,sinewedonotallowtypesassubterms.

Type::=TypeNamejPTypejTypeType

Here, TypeName denotes given sets [20℄ whih are introdued in a so-alled

delarationpartof speiations.Intuitively,P isthepowersetoperatorand

denotesrossprodut.

Term::=ConstjVarj TuplejAppliation

Constisused forfuntion names|asforTypeNamestheyareintroduedin

delaration parts of speiations. Variable names Var are introdued by the

quantiationofaformula(asin,e.g.,8x:NP).

Tuple::=(Term;:::;Term)

An n-tuple of terms(t

1

;:::;t

n

),where n1, isoften abbreviatedt; thetype

of(t

1

;:::;t

n )isT

1

T

n

,whereT

i

isthetypeoft

i .

Appliation::=TermTerm

where therstTerm isof typeP(T

1 T

2

)and theseond TermhastypeT

1

;

thetypeoftheappliationis T

2

.Weoftenwritef(t)insteadof\ft".

Form::=Term=TermjTerm2TypejTerm2Termj

:Form jForm^FormjForm_FormjForm)Formj

QVar:TypeForm

where Q2f8;9;9

1 g(9

1

denotinguniqueexistene).Wealsoallowtheformula

Qx

1 :T

1

;:::;x

n :T

n

P asanabbreviationforQx

1 :T

1

:::Qx

n :T

n

P,and

if T

1

=::: =T

n

=T, wealso write Qx

1

;:::;x

n

:T P. Moreover,wealways

demandthat alltermsandallformulaemustbewelltyped.Soforexample,for

anyformulat

1

=t

2

,bothtermst

1 andt

2

musthavethesametype.

Aspeiation onsistsofadelarationandanaxiompart,wherethedela-

ration partintrodues allgivensets (i.e., allTypeNames)and onstants used,

andtheaxiompartisaset offormulae.

2.2 The Semantisof Expressions

Inthe\lassialsemantis"desribedbyArthan[1℄,everyexpressionisamem-

berofitstype.Inoursemantis,weinlude\undened"expressionsthatarenot

membersof theirtype,thus allowingfuntion appliations to \return avalue"

not a member of the funtion's range type. For this purpose, we distinguish

\havingtypeT"from\beingamemberof T".Weformalizethisasfollows.

Let be aspeiationinvolvingatype T. Inan interpretation for we

assignasetT

toT,onstrutedaordingtotheformofT:

(4)

{ IfT isagivenset,thenT istheunionoftwodisjointsetsT [T ,where

T +

isassumedtobenon-empty.

{ If T is a produt T

1

T

n

, then T +

== T +

1

T +

n

and T

==

T

1

T

n .

{ IfT ==P(T

1

),thenT +

==P(T +

1

)andT

==P(T

1 ).

Informally,T +

maybeinterpretedasthedenedvaluesoftypeT.Theassump-

tionthat T +

is non-empty ensuresthat there is atleast one possiblevaluefor

any appliation, and allows us to avoid treating the speial ase of an empty

type.InthelanguageofourmodelsweusethesamesymbolsP;,et.asin F,

sinenoonfusionshouldarise.Thesymbol==isourmetalogialequality.

We now dene the total funtion App, whih will be assigned to funtion

appliations.LetrbeasubsetofP(T

1 T

2

),andx beanelementofT

1 .

App(r;x)==

theuniqueysuhthat (x;y)2r ifsuhay exists

somey inT

2

otherwise

App is dened sothat itis onsistentwiththe usualZ interpretation ofappli-

ation[20℄.Note thatApp(r;x)=y6)(x;y)2r.

WearenowabletodenethemeaningofF expressionsinaninterpretation

I,underanassignmentatoanyourringfreevariables.Inthefollowing,letT

denote atype,P;Qdenote formulae,x denote avariable, denoteaonstant,

s;t;t

i

denote terms,andf denoteatermoftypeP(TT 0

)forsomeT;T 0

. As

the relationshipbetween thesymbol2 of F and membership in the models is

notstraightforward,weuse formembershipinthemodellanguage.

Theinterpretation of a termof type T is somevalue of T

. Only funtion

appliationisgivenspeialtreatment;themeaningofothertermsisstandard.

I()[a℄==

I

,anelementofT

,whereT isthetypeof

I(x)[a℄==a(x),thevalueassignedto xbythefuntiona

I((t

1

;:::;t

n

))[a℄==(I(t

1

)[a℄;:::;I(t

n )[a℄)

I(f t)[a℄==App(I(f)[a℄;I(t)[a℄)

For a formula P, we always have I(P)[a℄ == True orI(P)[a℄ == False. The

interpretation of equality and the propositional onnetives is standard; only

membershipandquantiationaregivenspeialtreatment.

I(s=t)[a℄==True i I(s)[a℄==I(t)[a℄

I(s2t)[a℄==True i I(s)[a℄I(t)[a℄

I(t2T)[a℄==True i I(t)[a℄T +

I(:P)[a℄==True i I(P)[a℄==False

I(P ^Q)[a℄==True i I(P)[a℄==TrueandI(Q)[a℄==True

I(P _Q)[a℄==True i I(P)[a℄==TrueorI(Q)[a℄==True

I(P )Q)[a℄==False i I(P)[a℄==TrueandI(Q)[a℄==False

I(8x:T P)[a℄==True i I(P)[a e=x

℄==TrueforalleT +

I(9x:T P)[a℄==True i I(P)[a e=x

℄==TrueforsomeeT +

I(9

1

x:TP)[a℄==Truei I(P)[a e=x

℄==TrueforoneuniqueeT +

(5)

a e=x

(x)=eanda e=x

(y)=a(y)forally6=x).

Note, in partiular, that, under our semantis, the symbol \2" does not

representtrue membership, but onlymembership of the\dened part" of any

type.Similarly,thequantiersonlyrangeoverthedenedpartsoftherespetive

types.

Example 1. If o is aonstantof atypenats, andf isa funtion from nats to

nats,then

I(f(o)2nats)==App(f

I

;o

I

)nats +

:

u t

We may simulate our semantis in the lassial semantis in the following

way[11℄.Let be aspeiationwith exatlythe givensets T

1

;:::;T

n . Then

thedelarationofeahT

i

isreplaed by thedelarationofanewgivenset T

i .

Subsequently, adelaration for eah T

i

is added asserting it to be asubset of

T

i

.Therestofremainsunhanged.Now,underthelassialsemantis,every

expression will return a value of its type T

i

; the \undened" expressions are

thosethat donotreturnavalueofthesubsetT

i

oftheirtype.

Wemaynowdenemodelsin theusualway.

Denition1 (Model).An interpretation I isamodelof aspeiation if

all axiomsin are satised byI under allvariable assignments a.

Forexample,letbeaspeiationinvolvingthetypenats,amemberoof

nats,twofuntionssandf from natstonats,andtheaxioms

f8x:nats:x=s(x); f(o)=s(f(o))g:

Then f(o)is oftypenats, but thevalueof App(f

I

;o

I

)in anymodel of will

notbeinnats +

inordertoavoidviolatingtherstaxiom.Havingdenedwhih

interpretationsaremodelsofaspeiation,weannowdeneonsequene.

Denition2 (Consequene).AformulaP isaonsequeneofaspeiation

(or\valid"),denotedj=P,ifeverymodelofsatisesP underallvariable

assignments.

Inthispaper,weareonernednotsomuhwith theonsequenesaswith

the\indutiveonsequenes"ofspeiations|thoughthesetwotermsbeome

synonymousifweinlude theappropriate \indutionformulae" within aspe-

iation.Our goalis to present anindution priniple that allowsus to prove

suhindutiveonsequenes.First,welarifywhatwemeanbythisterminthe

ontextofspeiationsthat mayinvolvepartialfuntions.

3 Indutive Reasoning

Forourpurposes,afreetype isagiven set whoseelementsarefreelygenerated

by aset of onstrutors [20℄.For example,the elements of atypenats, repre-

sentingthe naturalnumbers, anbe generated from the nullary onstrutor o

(6)

aspeiationbytheabbreviation

nats::=ojshhnatsii:

Suh a statement would then be expanded into a delarationand aset of

axioms. The delarationintrodues the given set nats and the onstantso of

type nats and s of type P(natsnats). The axioms assert that s is a total

injetion, thatfog andtherange ofsare disjoint,and thatanysubsetof nats

that inludes o and is losed under s is the whole of nats. The latter axiom

orresponds to a strutural indution priniple for nats. SuÆient onditions

for the onsisteny of an arbitrary free type are outlined by Spivey [20℄; the

presentationofnats abovesatisestheseonditions.

The details of the expansion for any free type may be found in [23℄. For

illustration,theaxiomsfornatsare(equivalentto)thefollowingformulae:

1.Membership o2nats, s2P(natsnats)

2.TotalFuntion 8x:nats9

1

y:nats(x;y)2s

3.Injetivity 8x;y:natss(x)=s(y))x=y

4.Disjointness 8x:nats:o=s(x)

5.Indution 8nats

0

:Pnatso2nats

0

^

(8x:natsx2nats

0

)s(x)2nats

0 ) )

8x:natsx2nats

0

Underoursemantis,themeaningofthedelarationandaxiomsassoiated

withnatsisthat,ineverymodelofthespeiation,nats +

mustbeisomorphi

to theonstrutorgroundterm algebragenerated bytheonstrutors oand s.

Inotherwords,nats +

mayontainonlyobjetswhih ourasinterpretations

of onstrutorgroundtermsand, moreover,dierentonstrutorgroundterms

mustbeinterpretedasdierentobjets.Thisorrespondstothenotionofinitial

algebrasusually appliedinindutivetheoremproving,f. e.g.[4,13,15,25{27℄.

The strutural indution priniple assoiated with any free type allows us

toproveonjeturesthatholdforeveryelementofthetype.However,typially

wewish to prove properties of a partial funtion on its dened ases only, as

illustratedbythefollowingexamplefrom[13℄.

Example 2.

nats::=ojshhnatsii

di;quot:natsnats !nats

8x:natsdi(x;o)=x

8x;y:natsdi(s(x);s(y))=di(x;y)

8y:natsquot(o;y)=o

8x;y:natsquot(s(x);y)=s(quot(di(s(x);y);y))

WeusetheusualZbarnotationtoseparatethedelarationpartofaspei-

ationfromtheaxiompart.FortypesTandT 0

,weusetheexpressionf :T !T 0

tointrodueanewonstantf inthedelarationofaspeiationandtodenote

(7)

theassumptionthat f isa\partialfuntion"from T toT .Morepreisely,the

expansionoff 2T !T 0

is

f 2P(TT 0

) ^ 8x:T;y;z:T 0

(x;y)2f^(x;z)2f )y=z:

Clearly,di is expliitlydened only for x y and quot(x;y)is expliitly

denedonlyifyisadivisorofx.Notethatinthe\lassial"semantisthereisno

model of the quot speiation respeting thesemantisof freetypes, beause

quot(s(o);o) must be equal to s(quot(s(o);o)). However, our semantis solves

thisproblem,beausetheinterpretationofquot(s(o);o)isnowamemberofthe

arriersetnats

nnats +

. ut

Notethat wehavenotexpliitlyspeiedthedomainsof thefuntionsdi

andquotintheaboveexample.Ourapproahtopartialitythusdiersfromthe

more onventional one in whih the equations dening a funtion are usually

onditional onprediatesthat ensurethatthefuntion is assignedexpliitval-

ues only for argumentswithin its domain. In this onventional approah, the

valueofafuntion appliationisalwaysamemberofitstype,thisvaluesimply

beingleftunspeiedforargumentsoutsideof thefuntion'sdomain. Thisap-

proahthusmodelsunderspeiedratherthanpartial funtions.Inontrast,our

approahallowsafuntion appliationtobeundened forargumentsoutsideof

the funtion'sdomain. This makesourapproahsigniantlymoreexpressive,

allowingamoregenerallassof onsistentspeiations,andproviding several

otheradvantagesforspeiationandreasoning.

Inpartiular,therearemanyimportantandpratiallyrelevantalgorithms

with undeidable domains. Typialexamples are interpretersfor programming

languagesand sound and omplete alulifor rst-order logi. Forthese algo-

rithms, there donot exist any (reursive) prediates desribingtheir domains.

The onventional approah for modelling partial funtions annot handle suh

\real" partialfuntions.In ourframework,ontheother hand,suh algorithms

anbeexpressedwithoutdiÆulty,and,moreover,theprooftehniquedesribed

in thispapersupports theirveriation[12,13℄.Moregenerally,ourframework

hastheadvantagethatspeiationsanbeformulatedmuhmoreeasily,sine

onedoesnothavetodeterminethedomainsoffuntions.Consequently,ourap-

proahiswell-suitedtotheearly\loose"stagesofspeiationwhenthefuntion

domains maybestill unknown.Finally,our representationallowsproofswhih

donothavetodealwithdenednessonditions,whih makes(automated) rea-

soningmuh moreeÆient,f. [18℄.

Forthose aseswheredi and quotare(expliitly) denedit anbeshown

thatthefollowingonjeturesfollowfromtheabovespeiation(ifthespei-

ationisextendedbyappropriatedenitionsfor+and):

8x;y:natsdi(x;y)+y =x (1)

8x;y:natsquot(x;y)y=x (2)

Theproblem in trying to provethese onjetures is that the equations for

di and quot provide us with only suÆient onditionsfor these funtions to

(8)

overomethisproblem by addingsuitable\losureaxioms".Wheneverthere is

a model of the speiation where a funtion appliation is undened, these

losure axiomseliminate all models where this funtion appliation would be

dened.Examplesofsuhlosureaxiomsarethefollowing:

8x;y:natsdi(x;y)2nats ) y=o_9u;v:natsx=s(u)^y=s(v)

8x;y:natsquot(x;y)2nats )(x=o_9u:nats x=s(u)^

quot(di(s(u);y);y)2nats^

di(s(u);y)2nats).

Theselosureaxioms,theequationsfordi andquot,andthefreetypeaxioms

implyform;n2natsthatdi(m;n)isnotinnatsifmis\smaller"thann,and

that quot(m;n) is notin nats if m is not \divisible"by n. Most importantly,

nowtheaxiomsimplyouroriginalonjeturesintheforms

8x;y:natsdi(x;y)2nats)di(x;y)+y=x (3)

8x;y:natsquot(x;y)2nats)quot(x;y)y=x: (4)

Werefertospeiationsthatonsistonlyoffreetypes,funtiondelarations,

andequationsasequational.Forsuhspeiations,thedesiredpropertiesof

losureaxiomsaregivenbythefollowingdenition.

Denition3 (Closure Axioms). A set of losure axioms for an equational

speiation isasetof formulaeC onsistent with suhthat

6j=f(q

1

;:::;q

n

)2T implies [Cj=:(f(q

1

;:::;q

n )2T);

for eah n-ary funtion f (whose appliation has type T) and eah n-tuple of

appropriately-typed onstrutor groundterms(q

1

;:::;q

n

). Theadditionof aset

of losureaxioms toaspeiation isreferredtoas the losureof the speia-

tion.Inthoseaseswhereweassumethataspeiationinludesalltherelevant

losureaxioms,we will saythat the speiationisalosedsystem.

Fordi andquot, theirabovelosureaxiomsmaybederivedautomatially

fromtheirequations,butthisisnotsostraightforwardingeneral.Forexample,

onsiderafuntionf :nats!nats\dened"byonlytheequation

8x:natsf(x)=f(x):

Sine this equation tells us nothing about the values returned by f, we infer

thatf isundenedforallminnats,andtheorrespondinglosureaxiommust

supportthis inferene.Anappropriatelosureaxiomisthus

8x:nats:f(x)2nats:

However,itisnotobvioushowwemayderivethislosureaxiomautomatially

fromthegivenequation.Giesletal. [6,7,14℄havedevelopedtehniques forter-

minationanalysisofpartialfuntions,whihwouldeasilyndoutthedomainsof

(9)

thisis anundeidableproblem. Infat,wewillonlyusethe(non-onstrutive)

losureaxiomstodene ournotionof partialvalidity.Toprovepartialvalidity

in pratie, we will introdue the proof tehnique of losure indution, whih

allowsustoverifypropertiesofpartialfuntionswithoutknowingtheirdomains

andwithouthavingtoomputelosureaxiomsexpliitly.

Denition4 (Partial Validity). For an equational speiation we say

that aonjetureP ispartially valid if[Cj=P holds for any setof losure

axioms C.

Inpratie,theveriationofpartialvalidityofaonjetureisaomplished

in two separate steps.The rst is aproof of the f(x)-validityof a onjeture,

whihmeansthat theonjetureisvalid forallthoseinstantiationsofx where

f(x)isdened.Theseproofsaresupportedbytheprinipleoflosureindution.

Denition5 (f(x )-Validity).Letbeaspeiationinvolvingthe freetypes

T

1

;:::;T

n

;T and the funtion f : T

1

T

n

! T. Let x

1

;:::;x

n

be vari-

ables of types T

1

;:::;T

n

, respetively, and let P be a quantier-free formula.

1

Wesay that the onjeture8x

1 :T

1

;:::;x

n :T

n

P isf(x)-valid,where x rep-

resents x

1

;:::;x

n ,if

2

j=P(q

1

;:::;q

n

)holds for every sequene q

1

;:::;q

n of

onstrutor groundtermssuhthat j=f(q

1

;:::;q

n )2T.

Theonjetures(1)-(4)arerespetivelydi(x;y)-valid andquot(x;y)-valid.

Foralosedsystem,P isf(x)-validi

j=8x

1 :T

1

;:::;x

n :T

n

(f(x)2T )P):

It is lear that this notion of f(x )-validity does not make any sense for the

lassial semantis of \2": f(q

1

;:::;q

n

)2 T holds automatially in that ase,

andthusf(x)-validityollapsestogeneral(indutive)validity.

Theseondstepin provingpartialvalidityofaonjetureP isaproofof

j=8x

1 :T

1

;:::;x

n :T

n

:f(x )2T )P: (5)

If(5)anbeveried,thenf(x)-validityofP impliesthatP isaonsequeneof

eahlosureof,andthuspartiallyvalid.Toseethis,letI beaninterpretation

thatisamodelof[Candletq

1

;:::;q

n

bearbitraryonstrutorgroundterms.

Wehave toshowthat I is amodel of P(q

1

;:::;q

n

).If j=f(q

1

;:::;q

n )2T,

thenthelaimfollowsfromf(x)-validityofP.Otherwise,6j=f(q

1

;:::;q

n )2T

andhene,[Cj=:(f(q

1

;:::;q

n

)2T).AsI isamodelof[C,I satises

:(f(q

1

;:::;q

n

)2T)andby(5)wehavethatI isamodelofP(q

1

;:::;q

n ).

WerefertoRequirement(5)asthepermissibility ondition [13℄.Notethatif

isnotalosedsystem,thenproving(5)is,ofourse,notthesameasproving

forallonstrutorgroundtermsq

1

;:::;q

n

6j=f(q

1

;:::;q

n

)2T implies j=P(q

1

;:::;q

n

): (6)

1

Itdoesnotmatterifthexi donotourinP,orifothervariablesdoourinP.

2

WedenotebyP(q

1

;:::;q

n

)theformulaP witheahvariablex

i

replaedbyq

i .

(10)

would onstitutea proof of theindutive validity ofP (instead of just partial

validity). Proving the permissibility ondition beomes trivial if suitable hy-

potheses are inludedin the onjeture, asin theonjetures (3) and (4) and

theonjetureofthefollowingexample.

Example 3. SupposewehavethefreetypeA::=ajb,thefuntion f :A !A,

andthesingleaxiomf(a)=a.Toprovethat

8x:Af(x)2A)f(x)=x (7)

is partially valid werst prove its f(x)-validity. Sine f is (expliitly) dened

onlyfora,wehaveto showf(a)2A)f(a)=a, whih islearlyvalidbythe

givenaxiom.Wenowprovethepermissibilityondition

8x:A:f(x)2A)(f(x)2A)f(x)=x);

whihisalsolearlyvalid.Thisompletestheproofof(7)'spartial validity. ut

Note that our logi is non-monotoni w.r.t. extensions of thespeiation.

Forexample,f(b)2A)f(b)=bisaninstaneof(7)andhene,itispartially

valid.Butaddingf(b)=asubsequentlytoourspeiationwouldmakef(b)2

A)f(b)=band(7)false.(Butnotealsothatthenon-monotoniityofourlogi

hastheadvantagethatweneverneedanyonsistenyheks,whiharerequired

in monotoni frameworks forpartialityand whihare diÆultto automatefor

non-terminatingfuntions.)Wedisussthisproblemfurtherinthenextsetion.

4 Closure Indution

Inpriniple,forf(x)-validitywehavetoonsiderinnitelymanyinstantiations.

To perform suh proofs (automatially), we introdue the priniple of losure

indution.Werestritourselvestoequationalspeiationswhose equationsE

areuniversally quantiedoverthe(dened parts)oftherespetivetypes|we

willfrequentlyomittheirquantiersintherestofthisdisussion.

Denition6 (EquationsDeningFuntions).AsubsetE 0

ofEdenesthe

funtion f if E 0

onsistsof all equationsfrom E ofthe formf(t

1

;:::;t

n )=r.

Denition7 (Closure Indution). Supposethat f :T

1

T

n

!T (for

free types T

1

;:::;T

n

and T) is a delared funtion symbol dened by a set of

equations ofthe form

f(t

11

;:::;t

1n )=r

1

; :::; f(t

m1

;:::;t

mn )=r

m

suhthateahr

i

hasa(possiblyempty)setofsubtermsofthe formff(s

i1 );:::;

f(s

iki

)g.Let P be aquantier-freeformula, let

i

bethe (possibly empty)on-

juntionoftheformulaeP(s

ij

)forj=1:::k

i

,andlet8F denotetheuniversal

(11)

\fromthe f(x)-validity of

8(

1 )P(t

11

;:::;t

1n

)) ^ ::: ^ 8(

m )P(t

m1

;:::;t

mn ))

inferthe f(x )-validity of8x

1 :T

1

;:::;x

n :T

n P."

Notethatlosureindutiondiretlyorrespondstothetehniquesommonly

used in indutive theorem proving (suh as over set indution or reursion

analysis), f. e.g. [5,9,19,25,27℄. However,the important dierenes are that

our indution priniple also works for non-terminating partial funtions (like

the indution priniple of [13℄) and that it anbe used in the framework of a

simply-typedset-theoretilanguage(unlike theindutionprinipleof[13℄).

Aslosureindution provesonlyf(x)-validity(anditanalsobeappliedif

f ispartial), toverifythatP is partiallyvalidw.r.t.thespeiation,wemust

alsoprovethepermissibilityondition(5).Ifweonsideraspeifuntion,say

quot, wemayexpress the indution prinipleand theassoiatedpermissibility

onditioninthelanguageF itself:

8p:P(natsnats)(8y:nats(o;y)2p

^8x;y:nats((di(s(x);y);y)2p)(s(x);y)2p)

^8x;y:nats(:quot(x;y)2nats)(x;y)2p))

)(8m:natsnatsm2p):

Thus,weshowthataonjeturepholdsifquotisexpliitlydened,andthatp

alsoholdswhenquotisnotdened.Sinewehaveexpressedtheprinipleasan

F formula,wemayadditasanaxiomtothespeiation.

Thispossibilityofstatingtheindutionruleontheobjetlevelisduetothe

expressiveness of ourset-theoreti language(this was notpossiblein the rst-

order languageof [13℄).Not onlydoes thisdemonstrate that losure indution

may be simulated within F, thus allowing a quite straightforward simulation

of losure indution in CADiZ, without the need to implement the inferene

rule (at least for initial experimental purposes), but it also provides a partial

solutionto theproblem of non-monotoniity. Theproblem isthat while anew

axiommaybeonsistentwiththeinitiallygivenaxioms,itmaynotbeonsistent

with someprovenonjetures. Representinglosure indution asanadditional

axiom eliminates this possibility, and makesmore transparent to the speier

what propertiesarebeingassignedtoeahfuntion.

WenowdesribesuÆientonditionsunderwhihlosureindutionissound.

Firstly,theargumentstoeahfuntiondenition mustbe\onstrutorterms",

and, seondly, if f(q

1

;:::;q

n

) is equal to a type element q, then it must be

\reduible"toq.Fortheformalexpressionofthese onditions,wereinterpreta

setofFequationsasasetofrewriterules.Thenextthreedenitionsrestatethe

requirednotionsfromthetheoryof termrewriting.Foradetailedintrodution

totermrewritingseee.g.[2,10℄.

Denition8 (Cbv-Rewriting). A rewrite rule has the form l !r, where l

is a non-variable term, r is a term, and every variable in r also ours in l.

(12)

evaluation strategy. For a set of rules R , let )

R

be the smallest relation suh

that s)

R

t holds if there isa rulel!r in R suh that some subterm s 0

of s

isan instane l of l,for eah variable x in lthereissome onstrutor ground

term q suh that x )

R

q,and t iss with (some ourrene of) s 0

replaed by

r.Inthis ase, wesaythat theterm s bv-rewritesinonesteptoaterm t via

asetofrulesR .Atermsbv-rewrites(or\bv-redues")inzeroormoresteps

tot if s)

R

t, the notation )

R

denoting the reexive andtransitivelosure of

)

R .

Denition9 (Construtor System). Let E be the equations dening a set

of funtionsF.Providedthat orientingE fromleft torightyields rewrite rules,

weall these rulesthe rewritesystemorrespondingtoE.A setof rulesR isa

onstrutor system if the proper subterms of the left-hand sides of R -rules are

builtfromfree-typefuntionsymbols(thatis,\onstrutors")andvariablesonly.

Nowweintroduealoalizedonuene(andtermination)propertydepend-

ingonE.

Denition10 (Type Convergene). Supposethat aspeiation onsists

of asetof freetypes, asetof funtion delarations F,andaset ofequations E

dening the funtionsinF.If R isthe set of rewrite rules orresponding toE,

thenwesaythatR istypeonvergentforthefuntionf :T

1

T

n

!T if,

wheneverj=f(q

1

;:::;q

n

)=q for any onstrutorgroundtermsq

1

;:::;q

n

;q,

then we have f(q

1

;:::;q

n ))

R

q; if this holds for all funtions in F, then we

saythat R istypeonvergent.

Finally,weareableto presentourmain result.

Theorem1 (Soundness of Closure Indution). Let R andf be asabove.

Then losureindution proves f(x)-validity ifR isaonstrutor systemthatis

typeonvergentfor f.

AproofmaybefoundintheAppendix.Informally,theargumentisasfollows.

If R is a typeonvergentonstrutor system for f, then, for eah appliation

f(q) that is equal to a onstrutor ground term, we an nd a rule l ! r

suh that lmathes f(q) and the orresponding instanes of any appliations

of f in r are smaller than f(q ) with respet to some partiular well-founded

ordering.Consequently, in theappliationof losureindution to aformulaP,

wegeneratealltheasesforwhihfisdened,and,foreahsuhase,weassume

instanesofP thataresmalleraordingtothiswell-foundedordering.Thus,if

thehypothesesoflosureindutionaref(x)-valid,thenso istheonlusion.

Thatlosureindutionisunsoundwhentheassoiatedrewritesystemisnot

typeonvergentisillustratedbythefollowing.

Example 4. LetE be

ff(o)=o; 8x:natsf(x)=f(s(x))g:

(13)

E. However, by losure indution we are also able to prove the learly false

onjeture 8x : natsf(x) x (for the usual denition of ), givingus 8x :

natsox.Theproofproeedsasfollows.The\basease"isf(o)o,whih

isobviouslyvalid.Inthe\stepase"weprove

8x:natsf(s(x))s(x) ) f(x)x:

Thismaybereduedto

8x:natsf(x)s(x))f(x)x

by the seond dening equation of f. But this is learly valid by the usual

propertiesof(sine8x:natsf(x)=oand thus,8x:natsf(x)2nats).

Weareleftto provethepermissibilityondition,whihinthis aseis

8x:nats:f(x)2nats)f(x)x:

But we know that 8x : natsf(x) = o holds, whih is inonsistent with the

hypothesis of this permissibility ondition; thus, the ondition holds trivially,

andtheonjetureis\proven". ut

Theproblemin this exampleis that, foreahn>0,f(s n

(o)) is equaltoa

onstrutorgroundterm,butnotreduibletooneviatherewritesystemorre-

spondingto thegiven axioms;thisrewrite systemisthus nottypeonvergent.

Forthe sound appliation of losure indution, wheneverf(q) is dened, the

attemptedproofthattheonjetureholdsforqmustrelyonindutionhypothe-

sesthataresmallerw.r.t.awell-foundedrelation;foraonstrutorsystem,type

onvergeneensuresthat thisonditionis satised.

ThattypeonvergenealoneisinsuÆientforthesoundnessoflosureindu-

tionisillustratedbythenextexample.Thus,onereallyneedsbothonditions,

i.e.,beingaonstrutorsystemandtypeonvergene.

Example 5. LetE be

f8x:natsf(x)=g(f(x)); 8x:natsg(f(x))=o; 8x:natsg(x)=xg:

Obviously,therewritesystemRorrespondingtoEistypeonvergent,butitis

notaonstrutorsystem.Bylosureindution,weanprovethefalseonjeture

8x:natsf(x)2nats)f(x)=s(o):

Theindutionformulaistrivial(theindution hypothesisisequaltotheindu-

tiononlusion)andthepermissibilityonjetureisalsoatautology. ut

Theprobleminthisexampleisthatwhilef(q)reduestooforeahonstru-

torgroundtermq,theonlypossiblesuhredutioninthegivensystemisviaan

\expansion"step. Consequently, we againannot onstrut a well-founded or-

deringthatjustiestheassumedindutionhypothesisintheproposedproof,and

wearenotsavedbyaseparateindutionaseforwhihtheindutionhypothesis

anbesojustied.

Finally,wegiveanexampleofthesuessfulappliationoflosureindution.

(14)

validityof

8x;y:natsdi(x;y)2nats)di(x;y)+y=x: (3)

Therulesrepresentaonstrutor systemthat is type onvergent;wemaythus

applylosureindution.Thisinvolvesproving

8x:natsdi(x;o)2nats)di(x;o)+o=x;

whihreduestothereexivityaxiom8x:natsx=x,andproving

8x;y:natsP(x;y))P(s(x);s(y));

where P(r;t) denotes di(r;t) 2 nats ) di(r;t)+t = r. The proof of this

seondsubgoalisalsostraightforward.Toprovethepartialvalidityoftheoriginal

onjeture(3),wealsoneedtoprovethepermissibilityonjeture

8x;y:nats:di(x;y)2nats)(di(x;y)2nats)di(x;y)+y=x);

butthis isatautology.

If we were to add the axiom 8x;y : natsdi(x;y) = di(x;y) to our

speiation,thentheassoiatedrewritesystemwouldstillbeatypeonvergent

onstrutor system, and thus losure indution would still be appliable. Now

an extra ase would be inluded in whih we assume the onjeture holds for

(x;y)in theproofthat itholds for(x;y);thislearlydoesnotorrespondtoa

well-foundedordering,butthedi(x;y)-validityoftheonjeturewillhavebeen

provenalreadybytheotherasesintheappliationofthelosureindution.

Thus, ompared to the indution priniple of [13℄, the present priniple of

losureindutionhastheadvantagethatitanalsodealwithoverlappingequa-

tions.(Anotheradvantageoverthatpreviousprinipleisthattherequirementof

typeonvergeneisloalizedtothefuntion underonsideration,i.e.,therules

neednotbetypeonvergentforother funtions.) ut

Thisexampleillustratesthefatthat losureindution doesnotinvolvethe

onstrutionofmerelya\overset"ofasesinthesense ofBronsardetal. [8℄.

Insteaditonstrutsallasessuggestedby afuntion denition.Utilizingonly

suÆientrulesto overallaseswould,infat,beunsound.Forexample,using

just theruledi(x;y)!di(x;y)togeneratetheindution aseswouldallow

usto proveanyonjeture,as(x;y)oversallpossiblepairsoftypeelements.

5 Denedness Rules

In general, losure indution is not alwayssuÆient to provef(x)-validity. In

ourexample,to provethequot(x;y)-validityof

8x;y:natsquot(x;y)2nats)quot(x;y)y=x (4)

(15)

ations.Forthis,Giesl[13℄ hasproposed denednessrulesforfuntions;in the

presentontextthese taketheform

fromf(t)2T infert

1 2T

1

and ::: andt

n 2T

n

foranytupleof termstandeahn-ary funtionsymbol.

The ondition that a set of rules is both a onstrutor system and type

onvergentis not suÆientto ensurethat the abovedenedness rules may be

applied soundly.Forexample,onsiderthetypeonvergentonstrutorsystem

ff(o)!o; f(o)!f(g(o))g;

where o 2nats is given and f and g are partial funtions from nats to nats.

Theformulaf(g(o))2nats followsfrom thissystem,butg(o)2natsdoesnot.

Toharaterizealassofrewritesystemswherethedenednessrulesaresound,

weproposeastrengtheningofthenotionoftypeonvergene.

Denition11 (Complete Type Convergene). Let be a speiation

whih onsists of asetof free types, aset offuntion delarations F,andaset

ofequations Edeningthe funtionsinF.If Risthesetofrewriterulesorre-

sponding toE,thenwe saythat R isompletelytypeonvergentij=t=q

impliest)

R

qfor all groundtermst andallonstrutor groundtermsq.

For example, the speiation of di and quot is ompletely type onver-

gent.Notethatherethesemantisoftheuniversalquantier8 isruial.Sine

it quanties over only the objets of nats +

, the speiation does not imply

equationslikequot(o;quot(s(o);o))=o.

Thedenednessrulesarejustiedforompletelytypeonvergentonstrutor

systems; the argument is as follows. Let C be a set of losure axioms for ,

let x be the variables in t (of type T

x

), let q be a onstrutor ground term

tuple, and let [q =x℄denote thesubstitution of x by q. If j= f(t)[q =x℄2 T,

then we have j= f(t)[q =x℄ = q for some onstrutor ground term q and

thus,f(t)[q=x℄)

R

qduetotheomplete typeonvergeneofR .Consequently,

thetermst

1

[q=x℄;:::;t

n

[q=x℄alsobv-rewritetoonstrutorgroundterms(see

Lemma1intheAppendix).Itfollowsthatj=t

i

[q=x℄2T

i

foreahi,andthus

[C j= f(t)[q =x℄2T ) t

1

[q=x℄2T

1

^ ::: ^ t

n

[q =x℄2T

n (8)

holds. If, on the other hand, 6j= f(t)[q =x℄ 2 T, then (8) holds again, sine

[C j= :f(t)[q =x℄ 2 T by the denition of losure axioms. As (8) holds

for all onstrutor ground term tuples q , we nally obtain the desired result

[Cj=8x:T

x

f(t)2T )t

1 2T

1

^::: ^t

n 2T

n .

Wemay \simulate" these denedness rulestoo in F, in the following way.

Foreverydeningequationf(t)=rweaddtoourspeiationtheimpliation

8x:T

x

f(t)2T ) r 0

2T 0

foreverysubterm r 0

ofr(oftypeT 0

).

(16)

8x;y:natsquot(s(x);y)2nats)quot(di(s(x);y);y)2nats

8x;y:natsquot(s(x);y)2nats)di(s(x);y)2nats:

Now,usingthese denedness formulae,we anindeed provetheonjeture (4)

by losure indution. For instane, the rst impliation above is used in the

followingway.Theproofofquot(x;y)-validityof(4)involvestheproofof

:::)(quot(s(x);y)2nats)quot(s(x);y)y=s(x)):

Bythedenition ofquot,thismaybereduedto

:::)(quot(s(x);y)2nats)s(quot(di(s(x);y);y))y=s(x)):

We now wish to apply thedenition of \"to the left-hand side of theequal-

ity; but forthis to bepossible,the property quot(di(s(x);y);y)2 nats must

hold.Fortunately,sinewehavethehypothesisquot(s(x);y)2nats,thedesired

propertydoesholdbythedenednessformulaeforquot. ut

Of ourse, we need amethod to ensure (omplete)type onvergene auto-

matially. Let R bethe set of rewrite rulesorrespondingto the equations E,

where R is aonstrutor system. Moreover,letR 0

=fl !rjl! r 2 R ;

replaesallvariablesoflbyonstrutorgroundtermsg.ThenonueneofR 0

impliesompletetypeonvergeneofR .Thereasonisthat

j=t=q

iE 0

j=t=qwhereE 0

=fs

1 =s

2

j8xs

1

=s

2

2E; replaesxby

onstrutorgroundtermsg

it,

R 0

q byBirkho'stheorem [3℄

it)

R 0

q duetoR 0

'sonueneandasR 0

isaonstrutorsystem.

Finally,t)

R 0

q ofourseimpliest)

R q.

AsuÆientonditionforonueneofR 0

istherequirementthattherulesin

R(i.e.,thedeningequationsE ofthespeiation)shouldbenon-overlapping.

In other words,for two dierent equations s

1

=t

1 and s

2

= t

2

, theterms s

1

and s

2

must not unify. For example, the equationsfor di and quot are non-

overlapping. This suÆient riterion an easily be heked automatially. The

reason for this requirement being suÆient for R 0

's onuene is that )

R 0

is

equaltotheinnermostrewriterelation) i

R 0

forgroundonstrutor systemsR 0

andhavingnon-overlappingrulesimpliesonueneofinnermostredutions[16℄.

Soomparedto [13℄,therequirementoforthogonalityis notneededdue tothe

denition ofbv-rewriting.

6 Conlusion

Wehaveintroduedanew\losureindution"prinipleinordertoreasonabout

speiationsin asimply-typedZ-likeset-theoretilanguagethat inludespar-

tialfuntions.Forthispurpose,weadaptedGiesl'sindutionprinipleforpartial

(17)

grams withaneagerevaluationstrategy,in thepresentpaperweadaptedit to

equational speiations of ourset-theoreti language,and exhibited suÆient

onditionsinordertorenderthisindutionprinipleorret.

Inthis proess, we relaxed someof theassumptions Gieslmade about his

programs, showing that a suÆient ondition for the soundness of ourprini-

ple is that the rewritesystem orresponding to theequations is a onstrutor

systemthat istypeonvergentforthefuntionunderonsideration.Inorderto

employ thefrequently neessaryfurther rules for reasoning about denedness,

wealso haveto demand omplete type onvergene.A suÆientsyntatiri-

terion for omplete type onvergene (and thus type onvergene) is that the

rewriterulesorrespondingtotheequationaldenitions ofaspeiationarea

non-overlappingonstrutorsystem.

Note that the use of a muh more powerful language than Giesl's partial

funtional programs enables us to express the indution priniple within the

language itself. This allows for an easy implementation of our priniple and

solvesthenon-monotoniityproblemw.r.t.extensionsofspeiations.

For future work, we intend to nd riteria for allowing non-equations in

speiations, and we aim at relaxing the restrition to onstrutor systems.

Moreover,whilewedonotimposetheonstraintthatourequationsareleft-linear

asin [13℄,at themomentwestill haveto restritourselvesto non-overlapping

equations to ensure omplete type onvergene;weaker riteria are needed to

inreasetheappliabilityofourapproahtoawiderlassof speiations.We

plan also to onsider extensions to overonditional equations and to develop

morespei tehniquesfornestedormutually reursivedenitions.

A Proof of the Soundness Theorem for Closure Indution

Lemma1. Let R beaonstrutor system. For allgroundtermst andallon-

strutorgroundtermsq,ift)

R

qtheneahsubtermoftanalsobebv-redued

toaonstrutor groundterm.

Proof. Suppose t )

R

q.Weproeed by indution onthe struture of t.If t is

a onstant then the lemma is obvious. Otherwise, t has the form f(t). If f is

a onstrutor, then the lemma diretly follows from the indution hypothesis.

Otherwise,theredutionoft isasfollows:

f(t))

f(s))r)

q;

where t

i )

s

i

for all i and f(s) = l for a rule l ! r. Here, l has theform

f(u). By the denition of bv-rewriting, x redues to a onstrutor ground

termforallvariablesxinu.AsRisaonstrutorsystem,allu

i

areonstrutor

terms and hene, eah u

i

also redues to a onstrutor ground term. Thus,

as t

i )

s

i

= u

i

, eah t

i

redues to a onstrutor ground term. For proper

subterms of the t

i

, reduibility to aonstrutor ground term follows from the

indution hypothesis. ut

(18)

rewriting).Forexample,viatheonstrutorsystemf(x)!o thetermf(g(o))

rewritestoo,thoughg(o)isirreduible.Butwhenusingbv-rewriting,g(o)must

bereduibleto aonstrutorgroundterminordertoredue f(g(o)) too.

Denition12 (Full Redution in n Steps). Let R beaset ofrewrite rules

andlet s,t be terms. Wesay that sbv-reduesto t in nstepsviaR , denoted

s)

R;n

t,ifthereisarulel!rinRsuhthattisswiththesubtermlreplaed

by r andif,for eah variable x

i

(1ij)ourring inl,x

i

\fully redues"

tosome onstrutorgroundterm q

i ink

i

stepsvia R ,andif k

1

++k

j

=n.

We say that s fully redues to t in n steps viaR , denoted s ) n

R

t, if there is

somet 0

suhthat s)

R;i t

0

) j

R

t, andi+j+1=n.

Thus,\fullredution"ountsalltheruleappliationsinvolvedintherewriting.

Lemma2. Let R be a onstrutor system involving the funtion f : T

1 :::

T

n

!T.Wedenetherelation>

f

overn-tuplesofgroundtermsasfollows:s

>

f

tithereexistsa onstrutorgroundterm qsuhthat fs) i

R

C[ft℄) j

R q

(where C denotes some ontext), i > 0, and there is no k < i+j and no

onstrutor groundterm psuhthatfs) k

R

p.Then >

f

iswellfounded.

Proof. Suppose s

1

>

f s

2

>

f s

3

>

f

:::; then

fs

1 )

i

1

R C

1 [fs

2

℄;fs

2 )

i

2

R C

2 [fs

3

℄;:::;

andC

1 [fs

2

℄;C

2 [fs

3

℄;:::allreduetoonstrutorgroundterms.Sinefs

1 fully

reduestoaonstrutorgroundterminaminimumofi

1 +j

1

steps,theminimum

numberofstepsforthefullredutionofC

1 [fs

2

℄isj

1

.Butinthatasefs

2 fully

redues to someonstrutor ground term pin at mostj

1

steps, by Lemma 1.

Thus,wehave

i

1 +j

1

>j

1 i

2 +j

2

>j

2 i

3 +j

3

>j

3 :::

Butthisisimpossible. ut

As a simple ounterexample for the well-foundedness of the same relation

withoutthe minimality ondition(i.e.,withoutthe requirementthat fs) k

R p

doesnotholdfork<i+j),onsiderR=ff(o)!o;f(o)!f(o)g.Thissetisa

onstrutorsystemandf(o)) 1

R

f(o)) 1

R

o,but>

f

wouldnotbewellfounded,

as wewouldhaveo>

f o.

Theorem1 (Soundness of Closure Indution). Let be a speiation

with free types and a set of (universally quantied)equations and let R be the

orrespondingrewrite system. Then losureindutionproves f(x)-validity in

if Risaonstrutorsystemthat istypeonvergent for f.

Proof. We wish to show that if the hypotheses of losure indution are f(x)-

valid then sois the onlusion. Note that due to Lemma 1,a onjeture P is

(19)

1 n

onstrutor ground)termsssuhthat j=f(s)2T. IfR is typeonvergent,

then j=f(s)2T is equivalentto theexisteneofaonstrutorgroundterm

qwithf(s))

R q.

Nowsupposethattheonlusionisfalse,thatis,thereisatermf(s

1

;:::;s

n ),

where f(s

1

;:::;s

n ) )

R

q for some ground onstrutor term q, suh that the

formula P(s

1

;:::;s

n

) is false,and that (s

1

;:::;s

n

) is minimal with respet to

>

f

among suh n-tuples. Without lossofgenerality, letf(s

1

;:::;s

n ))

R q be

theminimalredutionof f(s

1

;:::;s

n

)toaonstrutorgroundterm.

Sinef isnotaonstrutor, theredutionf(s

1

;:::;s

n ))

R

qmust involve

theappliation of arulel!r2R suh that f(s 0

1

;:::;s 0

n

) isan instanel of

l,wheres

i )

R s

0

i

foreahs

i

.Consequently,foranysubtermf(t

1

;:::;t

n )ofr,

wehavethat

(s

1

;:::;s

n )>

f (t

1

;:::;t

n ):

But if all theP(t

1

;:::;t

n

) were valid, then sowould be P(s 0

1

;:::;s 0

n

), by the

hypothesesoflosureindution,andheneP(s

1

;:::;s

n

)wouldbevalidaswell,

sine s

i )

R s

0

i

. Thus, ifl !r is anon-reursiverule,then wediretly obtain

a ontradition. Otherwise, one of the P(t

1

;:::;t

n

) must also be false, whih

ontraditsthe>

f

-minimalityof(s

1

;:::;s

n

). ut

Aknowledgement.Wewouldliketothanktheanonymousrefereesformany

helpfulomments.

Referenes

1. R.D.Arthan. UndenednessinZ:Issuesforspeiationandproof. InCADE-13

Workshop on Mehanisation of Partial Funtions. New Brunswik, New Jersey,

USA,1996.

2. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University

Press, 1998.

3. G.Birkho. Onthestrutureofabstratalgebras. Pro.CambridgePhilos.So.,

31:433{454, 1934.

4. A.BouhoulaandM.Rusinowith.Impliitindutioninonditionaltheories.Jour-

nal ofAutomatedReasoning,14:189{235,1995.

5. R.S.BoyerandJS.Moore. A ComputationalLogi. AademiPress,1979.

6. J.BrauburgerandJ.Giesl.Terminationanalysisbyindutiveevaluation.InPro.

CADE-15,LNAI1421,pages254{269.Springer,1998.

7. J.BrauburgerandJ.Giesl. Approximatingthedomainsoffuntionalandimper-

ativeprograms. Siene ofComputerProgramming,35:113{136,1999.

8. F.Bronsard,U.S.Reddy,andR.W.Hasker.Indutionusingtermorders.Journal

of AutomatedReasoning,16:3{37,1996.

9. A. Bundy,A. Stevens,F.vanHarmelen,A. Ireland, andA. Smaill. Rippling:A

heuristifor guidingindutiveproofs. ArtiialIntelligene,62:185{253,1993.

10. N.DershowitzandJ.-P.Jouannaud. Rewritesystems.InHandbook ofTheoretial

Computer Siene,volumeB,pages243{320.North-Holland,1990.

(20)

Workshop, Ilkley,UK,1998.Springer. http://www.ewi.org.uk/ewi/.

12. J. Giesl. The ritial pair lemma: A ase study for indution proofs with par-

tial funtions. TehnialReportIBN 98/49, TUDarmstadt, 1998. http://www.

inferenzsysteme.informatik.tu-darmstadt.de/reports/notes/ibn-98-49.ps.

13. J.Giesl.Indutionproofswithpartialfuntions.JournalofAutomatedReasoning,

2000.Toappear.PreliminaryversionappearedasTehnialReportIBN98/48,TU

Darmstadt, Germany. Availablefrom http://www.inferenzsysteme.informatik.tu-

darmstadt.de/giesl/ibn-98-48.ps.

14. J.Giesl,C.Walther,andJ.Brauburger. Terminationanalysisforfuntionalpro-

grams. InW. BibelandP.Shmitt,editors,AutomatedDedution { ABasis for

Appliations,Vol.III,AppliedLogiSeries10,pages135{164.Kluwer,1998.

15. J.A.Goguen,J.W.Thather,andE.G.Wagner. Aninitialalgebraapproahto

thespeiation,orretness,andimplementationofabstratdatatypes.InR.T.

Yeh,editor,CurrentTrendsinProgrammingMethodology,volume4.Prentie-Hall,

1978.

16. B. Gramlih. Abstrat relations between restrited termination and onuene

propertiesofrewritesystems. FundamentaInformatiae,34:3{23,1995.

17. C. B. Jones. Partial funtions and logis: A warning. Information Proessing

Letters,54:65{67, 1995.

18. D. Kapur. Construtors an be partial, too. In R. Vero, editor, Automated

Reasoning andits Appliations{ Essaysin Honorof Larry Wos,pages 177{210.

MITPress,1997.

19. D. Kapur and M. Subramaniam. New uses of linear arithmeti in automated

theoremprovingbyindution. JournalofAutomated Reasoning,16:39{78, 1996.

20. J.M.Spivey.TheZNotation:ARefereneManual,SeondEdition.PrentieHall,

1992.

21. I.Toyn.Zstandard(draft). AvailablefromtheDepartmentofComputerSiene,

UniversityofYorkathttp://www.s.york.a.uk/

ian/zstan,1999.

22. I.Toyn.CADiZ.AvailablefromtheDepartmentofComputerSiene,Universityof

Yorkatthewebaddresshttp://www.s.york.a.uk/

ian/adiz/home.html,2000.

23. I.Toyn,S.H.Valentine,andD.A.Duy.OnmutuallyreursivefreetypesinZ.In

ProeedingsInternationalConfereneofZandBUsers,ZB2000,LNCS.Springer,

2000. Toappear.

24. S.Valentine. Inonsistenyand undenedness inZ { apratial guide. InPro-

eedings 11th International Conferene of Z Users, ZUM'98, LNCS1493, pages

233{249.Springer,1998.

25. C.Walther. Mathematial indution. InD.M. Gabbay,C.J.Hogger,and J.A.

Robinson,editors,HandbookofLogiinArtiialIntelligeneandLogiProgram-

ming,volume2.OxfordUniversityPress,1994.

26. C.-P. Wirth and B. Gramlih. On notions of indutive validity for rst-order

equationallauses. InPro.CADE-12,LNAI814.Springer,1994.

27. H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mehanizable priniple of

indutionfor equational speiations. InPro.CADE-9,LNAI310, pages162{

181. Springer,1988.

Referenzen

ÄHNLICHE DOKUMENTE

The research part of this dissertation focuses on the following areas: (i) studies of BPV1 and EBV segregation elements with heterologous replicons; (ii) discus- sion

(Gráfico 3) El 63% de los trabajadores de las exportadoras se encuentra por debajo de la canasta familiar vital como está definida por el gobierno para una familia de 5 personas. El

In this paper, we have exactly solved the Dirac equa- tion under the condition of spin symmetry for the Mie- type potential in the presence of the tensor interaction by using the

Long-term exposure to fine particulate matter and incidence of type 2 diabetes mellitus in a cohort study: effects of total and traffic-specific air pollution.. Rajagopalan S,

Smoluchowski equation, coagulation process, stochastic particle method, Monte Carlo estimator, convergence... This paper studies a stochastic particle method for the numerical

Specifically, the taxonomic concept of Heterocapsa will shift from Stein’s (l.c.) work to the taxon that was originally described by Ehrenberg (l.c.) corresponding to the

Throughout this analysis, the following set of controls are used: the neighbourhood-effect, the number of previous arrests of the defendant, the race and gender of the

In the particular case where K and L are outer parallel bodies of convex bodies at distance r &gt; 0, the result will be deduced from a recent (local) translative integral formula