• Keine Ergebnisse gefunden

• The Sakai-Sugimoto model

N/A
N/A
Protected

Academic year: 2022

Aktie "• The Sakai-Sugimoto model"

Copied!
30
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Andreas Schmitt

Institut f¨ur Theoretische Physik Technische Universit¨at Wien 1040 Vienna, Austria

QCD at finite temperature and density from holography

• The Sakai-Sugimoto model

• T -µ phase diagram (and comparison to large-N c QCD)

• Effects of magnetic fields:

“chiral spirals”, “chiral magnetic effect”

A. Rebhan, A. Schmitt, S.A. Stricker, JHEP 0905, 084 (2009); JHEP 1001, 026 (2010)

(2)

• The gauge/gravity duality (page 1/2): basic idea

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

For a pedagogical review, see S. S. Gubser, A. Karch, Ann. Rev. Nucl. Part. Sci. 59, 145 (2009)

string theory

(in higher dimensions) ⇔ gauge theory

(on boundary)

original “AdS/CFT correspondence”:

string theory on AdS 5 × S 5 ⇔ N = 4 SU (N c ) SYM theory on R 3,1 R 4

4 s = g YM 2 N c ≡ λ

R curvature radius; ℓs string length

s ≪ R

supergravity limit ( easy! )

λ ≫ 1

strong coupling limit

( difficult! )

(3)

• The gauge/gravity duality (page 2/2): overview

• QCD

– compare with N = 4 SYM

compute plasma properties ( → heavy-ion collisions)

viscosity G. Policastro, D. T. Son, A. O. Starinets, PRL 87, 081601 (2001)

jet quenching H. Liu, K. Rajagopal, U. A. Wiedemann, PRL 97, 182301 (2006)

expanding plasma R. A. Janik, R. B. Peschanski, PRD 73, 045013 (2006)

– find gravity dual of QCD

add flavor to AdS/CFT A. Karch, E. Katz, JHEP 0206, 043 (2002)

Sakai-Sugimoto model T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

bottom-up approach Erlich, Katz, Son, Stephanov, PRL 95, 261602 (2005)

• Other applications: cold atoms (unitary Fermi gas),

D. T. Son, PRD 78, 046003 (2008); K. Balasubramanian, J. McGreevy, PRL 101, 061601 (2008)

(high-T c ) superconductivity, etc ...

S. A. Hartnoll, C. P. Herzog, G. T. Horowitz, PRL 101, 031601 (2008)

(4)

• The Sakai-Sugimoto model in two steps

1. Background geometry with D4-branes

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)

M. Kruczenski, D. Mateos, R. C. Myers, D. J. Winters, JHEP 0405, 041 (2004)

2. Add flavor D8-branes

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

(5)

• The Sakai-Sugimoto model:

background geometry (page 1/3)

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)

M. Kruczenski, D. Mateos, R. C. Myers, D. J. Winters, JHEP 0405, 041 (2004)

N c D4-branes compactified on circle x 4 ≡ x 4 + 2π/M KK

N D4−branes

c

• 4-4 strings → adjoint scalars & fermions, gauge fields

• periodic x 4 → break SUSY by giving mass

∼ M KK to scalars & fermions

⇒ SU (N c ) gauge theory

λ = g 5 2 N c 2π/M KK

λ ≪ 1 λ ≫ 1 dual to large-N c QCD √

x (at energies ≪ M KK )

supergravity works x √

(6)

• Background geometry (page 2/3): two solutions Confined phase

ds2conf = u R

3/2

[dτ2 +dx2 +f(u)dx24] +

R

u

3/2

du2

f(u) + u2dΩ24

u u= 8

u= uKK 1/MKK x4

1/(2 T)π τ

MKK = 3 2

u1/2KK

R3/2 f(u) ≡ 1− u3KK u3

Wick rotated regular geometry

Deconfined phase

ds2deconf = u R

3/2

[f˜(u)dτ2ijdx2 + dx24] +

R

u

3/2

du2

f˜(u) +u2dΩ24

u u= 8

u= u 1/MKK x4

T

1/(2 T)

τ π

T = 3 4π

u1T/2

R3/2 f˜(u) ≡ 1 − u3T u3

Wick rotated black brane

(7)

• Background geometry (page 3/3):

deconfinement phase transition

x4 x4 x4

deconfined confined

temperature

τ τ

τ

T c = M KK

(8)

• Add flavor (page 1/2)

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

• add N f D8- and D8-branes, separated in x 4

0 1 2 3 4 5 6 7 8 9

D4 x x x x x

D8/D8 x x x x x x x x x

D8 D8

D4

L

x x

x4

0−3 5−9

• 4-8, 4-¯8 strings

→ fundamental, massless chiral fermions

under U (N f ) L × U (N f ) R

⇒ quarks & gluons

(9)

• Add flavor (page 2/2): Chiral symmetry breaking

• background geometry unchanged if N f ≪ N c (“probe branes”)

→ “quenched” approximation

• gauge symmetry on the branes → global symmetry at u = ∞

SU(N )

f R

SU(N )

f L

L x

4

D8

D8 L x

4

SU(N )

f L+R

u

• chiral symmetry breaking

SU (N f ) L × SU (N f ) R → SU (N f ) L+R

(10)

• Conjectured QCD phase diagram in T -µ plane

“real” QCD

N. Cabibbo, G. Parisi, PLB 59, 67 (1975)

large-N c QCD

L. McLerran, R. D. Pisarski, NPA 796, 83 (2007) L. McLerran, K. Redlich, C. Sasaki,

NPA 824, 86 (2009)

(11)

• More (conjectured) details

liq

T

µ

gas

QGP

CFL

nuclear superfluid

heavy ion collider

neutron star

non−CFL hadronic

M. G. Alford, A. Schmitt, K. Rajagopal, T. Sch¨afer, RMP 80, 1455 (2008)

Physical systems:

heavy-ion collisions (intermediate T , small µ)

neutron stars

(small T , intermediate µ)

• Challenging (strongly coupled!) regions at intermediate T , µ

• Try large-N c (Sakai-Sugimoto) approach

(12)

• T -µ phase diagram (page 1/4)

• chemical potential introduced through gauge fields on D8 branes

• confinement ⇔ chiral symmetry breaking

Tc

T

µ

deconfined

χ S restored

confined χ S broken

• M KK = 949 MeV (fit to ρ mass) ⇒ T c ≃ 150 MeV

(13)

• T -µ phase diagram (page 2/4)

• deconfined, chirally broken phase for L < 0.3 π/M KK

O. Aharony, J. Sonnenschein, S. Yankielowicz, Annals Phys. 322, 1420 (2007) N. Horigome, Y. Tanii, JHEP 0701, 072 (2007)

deconfined S broken χ

T

µ

Tc

deconfined χS restored

confined χ S broken

L

(14)

• T -µ phase diagram (page 3/4)

• “NJL limit” L ≪ π/M KK

confined χS broken

deconfined S broken χ

T

µ

Tc

χ S restored deconfined

• differences to “QCD limit”: crystalline phases vs. “chiral spiral”?

D. Nickel, PRD 80, 074025 (2009)

T. Kojo, Y. Hidaka, L. McLerran, R. D. Pisarski, arXiv:0912.3800 [hep-ph]

F. Preis, A. Rebhan, A. Schmitt, work in progress

(15)

• T -µ phase diagram (page 4/4)

Holographic nuclear matter:

T

µ

Tc

deconfined χS restored

n = 0

B

source 4−brane

n = 0

B

• baryons introduced as instantons

H. Hata, T. Sakai, S. Sugimoto, S. Yamato, Prog. Theor. Phys. 117, 1157 (2007)

• homogeneous baryon number from 4-branes wrapped on S 4

O. Bergman, G. Lifschytz, M. Lippert, JHEP 0711, 056 (2007)

• same diagram from large-N c QCD, “quarkyonic matter”

L. McLerran, R. D. Pisarski, Nucl. Phys. A 796, 83 (2007)

(16)

• Supercurrents in chirally broken phase (page 1/2)

A. Rebhan, A. Schmitt, S.A. Stricker, JHEP 0905, 084 (2009)

• “Stress” on h ψ ¯ R ψ L i through chemical potential µ

→ anisotropic (or even crystalline) “pairing”

• Sakai-Sugimoto: magnetic field B needed to create σ ∇ π 0 − π 0 ∇ σ = µf (B ) ∝ µ (for large B )

• solution to the EOMs on D8-branes with

A 1 (z = ±∞ ) = − x 2 B:

B=0

Μ

ÑΠ0

-40 -20 0 20 40

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

uKK

gaugefields

(17)

• Supercurrents in chirally broken phase (page 1/2)

A. Rebhan, A. Schmitt, S.A. Stricker, JHEP 0905, 084 (2009)

• “Stress” on h ψ ¯ R ψ L i through chemical potential µ

→ anisotropic (or even crystalline) “pairing”

• Sakai-Sugimoto: magnetic field B needed to create σ ∇ π 0 − π 0 ∇ σ = µf (B ) ∝ µ (for large B )

• solution to the EOMs on D8-branes with

A 1 (z = ±∞ ) = − x 2 B:

B=0.5

Μ

ÑΠ0

-40 -20 0 20 40

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

uKK

gaugefields

(18)

• Supercurrents in chirally broken phase (page 1/2)

A. Rebhan, A. Schmitt, S.A. Stricker, JHEP 0905, 084 (2009)

• “Stress” on h ψ ¯ R ψ L i through chemical potential µ

→ anisotropic (or even crystalline) “pairing”

• Sakai-Sugimoto: magnetic field B needed to create σ ∇ π 0 − π 0 ∇ σ = µf (B ) ∝ µ (for large B )

• solution to the EOMs on D8-branes with

A 1 (z = ±∞ ) = − x 2 B:

B=1

Μ

ÑΠ0

-40 -20 0 20 40

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

uKK

gaugefields

(19)

• Supercurrents in chirally broken phase (page 1/2)

A. Rebhan, A. Schmitt, S.A. Stricker, JHEP 0905, 084 (2009)

• “Stress” on h ψ ¯ R ψ L i through chemical potential µ

→ anisotropic (or even crystalline) “pairing”

• Sakai-Sugimoto: magnetic field B needed to create σ ∇ π 0 − π 0 ∇ σ = µf (B ) ∝ µ (for large B )

• solution to the EOMs on D8-branes with

A 1 (z = ±∞ ) = − x 2 B:

B=3

Μ

ÑΠ0

-40 -20 0 20 40

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

uKK

gaugefields

(20)

• Supercurrents in chirally broken phase (page 2/2)

• usual U (1) superfluid (e.g. 4 He): superflow via φ(x) = φ 0 e iqz

superflow in z direction with velocity ∝ q (rotation in U(1) space)

• Sakai-Sugimoto: σ ∇ π 0 − π 0 ∇ σ ∝ µ (axial) supercurrent (rotation in chiral space)

• “chiral spiral” σ − iπ 0 ∝ e 2iµz (rotation in chiral space)

G. Basar, G. V. Dunne, M. Thies, PRD 79, 105012 (2009)

• “quarkyonic chiral spiral” (rotation in spin space)

T. Kojo, Y. Hidaka, L. McLerran, R. D. Pisarski, arXiv:0912.3800 [hep-ph]

(21)

• The Chiral Magnetic Effect (CME)

q

L

q

R

q

R

momentum spin

B ⇒ electric current

parallel to B

J = e 2 N c

2 µ 5 B

A.Y. Alekseev, V.V. Cheianov, J. Fr¨ohlich, PRL 81, 3503 (1998) K.Fukushima, D.E.Kharzeev, H.J.Warringa, PRD 78, 074033 (2008)

• analogously for axial current:

M.A. Metlitski, A.R. Zhitnitsky, PRD 72, 045011 (2005)

J 5 = e 2 N c

2 µB

(22)

• CME in heavy-ion collisions

+

B

• non-central collisions: eB ∼ 10 17 G

V. Skokov et al., Int. J. Mod. Phys. A24, 5925 (2009)

• N 5 from QCD axial anomaly dN 5

dt = − g 2 16π 2

Z

d 3 x F µν a F ˜ a µν (large T : sphalerons)

• simplified description with µ 5 : take “snapshot” with conserved N 5

• “event-by-event” charge separation

B. I. Abelev et al. [STAR Collaboration], PRL 103, 251601 (2009)

(23)

• CME in the Sakai-Sugimoto model

A. Rebhan, A. Schmitt, S.A. Stricker, JHEP 1001, 026 (2010)

• maximal separation L = π/MKK

• one flavor Nf = 1

• holographic coordinate u → z ∈ [−∞,∞] (broken) z ∈ [0,∞] (symmetric)

• gauge choice Az = 0

S = S YM + S CS

SYM = κMKK2 Z

d4x Z

−∞

dz

k(z)FF + h(z)

2MKK2 FµνFµν

SCS = Nc 24π2

Z

d4x Z

−∞

dz AµFFρσǫµνρσ

k(z) ≡ 1 +z2 κ ≡ λNc

216π3

equations of motion δ ( L YM + L CS )

δA µ = 0

boundary conditions

A 0 (z = ±∞ ) = µ L/R

A 1 (x 2 , z = ±∞ ) = − x 2 B

(24)

• Chiral currents

• YM and CS contributions to chiral currents

H. Hata, M. Murata, S. Yamato, PRD 78, 086006 (2008)

K. Hashimoto, T. Sakai, S. Sugimoto, Prog. Theor. Phys. 120, 1093 (2008)

S = S YM + S CS

⇒ J L/R µ ≡ − δS

δA µ (x, z = ±∞ ) = J L/R,YM µ + J L/R,CS µ

• sometimes CS contribution is ignored

H. U. Yee, JHEP 0911, 085 (2009)

D. T. Son, P. Surowka, PRL 103, 191601 (2009)

only YM part in asymptotics of A µ :

A µ (x, z) = A µ (x, z = ±∞ ) ± J L/R,YM µ 2κM KK 2

1

z + O

1 z 2

.

(25)

• Anomalies

• axial and vector anomalies [

FµνL/R(x) ≡ Fµν(x, z = ±∞)

]

µ J 5 µ = N c 24π 2

F µν V F e V µν + F µν A F e A µν

µ J µ = N c

12π 2 F µν V F e A µν

“consistent” anomaly

W.A. Bardeen, Phys. Rev. 184, 1848 (1969); C.T. Hill, PRD 73, 085001 (2006)

• need Bardeen’s counterterm

∆S = c Z

d 4 x(A L µ A R ν F ρσ L + A L µ A R ν F ρσ Rµνρσ (here interpreted as holographic renormalization)

→ determine c to get QED (“covariant”) anomaly

(26)

• Correct anomaly with Bardeen’s counterterm

• Bardeen’s counterterm ∆S → new chiral currents J ¯ L/R µ ≡ J L/R,YM µ + J L/R,CS µ + ∆ J L/R µ

µ J ¯ 5 µ = N c

2 F µν V F e V µν + N c

24π 2 F µν A F e A µν

µ J ¯ µ = 0

“covariant” anomaly

J.S. Bell, R.Jackiw, Nuovo Cim. A60, 47 (1969); S.L. Adler, Phys. Rev. 177, 2426 (1969)

• conservation of vector current

& correct decay rate π 0 → 2γ

(27)

• Use YM currents?

• notice: YM part alone gives

µ J YM,5 µ = N c2

F µν V F e V µν + F µν A F e A µν

µ J YM µ = N c

2 F µν V F e A µν

• seems OK for F A = 0

• J YM µ 6 = ¯ J µ even if F A = 0

• J YM µ not strictly conserved (need ∇ µ 5 for charge separation

at RHIC!)

µ5

µ5= 0

= 0

B

+++

µ5= 0

(28)

• Results for currents

A. Rebhan, A. Schmitt, S.A. Stricker, JHEP 1001, 026 (2010)

absence of CME

axial current

as expected

(29)

• Possible problems in current approach – Need to consider conserved N 5 ?

V. A. Rubakov, arXiv:1005.1888 [hep-ph]

A.Y. Alekseev, V.V. Cheianov, J. Fr¨ohlich, PRL 81, 3503 (1998)

– Careful distinction of chemical potential and source for currents

A. Gynther, K. Landsteiner, F. Pena-Benitez, A. Rebhan, arXiv:1005.2587 [hep-th]

– Need to work in canonical ensemble?

H.U. Yee, Talk at BNL Workshop, April 26 - 30, 2010 A. Rebhan, A. Schmitt, S.A. Stricker, work in progress

• Or take result seriously ...

– strong-coupling vector current differs from weak-coupling current (unlike axial current) – similar to NJL-like models

E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, PRC 80, 032801 (2009) K. Fukushima, M. Ruggieri, arXiv:1004.2769 [hep-ph]

(30)

• Summary

• the Sakai-Sugimoto model provides a ”top-down” gauge/gravity duality for a non-supersymmetric, strongly-coupled SU (N c ) gauge theory with confinement and chiral symmetry breaking ( → large-N c QCD)

• for finite magnetic field and chemical potential, the model exhibits supercurrents (”chiral spirals”?) and finite baryon number in the chirally broken phase

• the chiral magnetic effect can be computed via introducing

an axial chemical potential

Referenzen

ÄHNLICHE DOKUMENTE

As a matter of fact, there is a way to extract the required in nite volume information out of values calculated on nite lattices: instead of using a single lattice size, one has

Our results are novel not only because of the previously unknown inhomogeneous black hole solution, but also because of the effect of a large magnetic field inducing rather

it is possible to embed the solution described in section 5.1.2 into string theory, at least for the η = 1 case (see [129]), in principle it should be possible to compute

(b) The non-perturbative result for the pressure in SU ( 3 ) gauge theory as a function offl along with the Monte Carlo data of ref.. [4], based on perturbative

The universal scaling behaviour of g4 in the vicinity of the critical point can be explored to determine the ,,ritical couplings for larger values of N~ without

The second focus of this thesis is a far away from equilibirium system in which a steady heat current emerges as a consequence of bringing together two indepen- dently

In fact, causality conditions like this one are an important subject even in the absence of higher curvature corrections: If entanglement entropy (or another physical quantity of

In particular, in the regime at which the quantum field the- ory description can be assumed to be strongly coupled, the dual gravity theory description corresponds to a weakly