• Keine Ergebnisse gefunden

Stable isotope ratios in alpine rock ptarmigan and black grouse sampled along a precipitation gradient

N/A
N/A
Protected

Academic year: 2022

Aktie "Stable isotope ratios in alpine rock ptarmigan and black grouse sampled along a precipitation gradient"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Stable isotope ratios in alpine rock ptarmigan and black grouse sampled along a precipitation gradient

Nina Dehnhard

a,∗

, Elizabeth Yohannes

b

, Hannes Jenny

c

, Gernot Segelbacher

d

aUniversityofAntwerp,DepartmentBiology–BehaviouralEcology&EcophysiologyGroup,CampusDrieEiken, Universiteitsplein1,2610Antwerp(Wilrijk),Belgium

bUniversityofKonstanz,LimnologicalInstitute,Mainaustrasse252,78457Konstanz,Germany

cDepartmentofWildlifeandFisheryServiceGrison,Loëstrasse14,7001Chur,Switzerland

dWildlifeEcology&Management,UniversityofFreiburg,TennenbacherStr.4,79106Freiburg,Germany

Abstract

Rockptarmigan(Lagopusmuta)andblackgrouse(Tetraotetrix)aretwocloselyrelatedalpinebirdspeciesthatformrelict populationsintheEuropeanAlps.Besidesmanifoldanthropogenicinfluencesinthisregion,globalclimatechangeisforecastto leadtosignificantchangesintemperaturesandprecipitation.Wehereanalysedstableisotoperatios(␦13Cand␦15N)offeathers ofbothbirdspeciesandtheirpotentialdietaryplantsacrossalongitudinalprecipitationgradientinsouth-eastSwitzerland.

Plant␦13Cwashigherathigheraltitudesandindrierareas(coincidingwithhigherlongitudes)whileplant␦15Ndidnotdiffer geographically.Blackgrouse␦13Creflectedthelongitudinalpatterninprecipitationandplant␦13C,andtherewasnoindication forachangeindietarycompositionwithprecipitation(i.e.nosignificantchangesin␦15N).Incontrast,rockptarmigan␦13Cwas independentofprecipitationandplant␦13Cvaluesandshowedasignificantincreasein␦15Ntowardsdrierareas,suggestinga potentialdietaryshift.

Inrockptarmigan,wefurthermoreinvestigatedintraspecificdifferenceswithage,betweenmalesandfemalesandamong years, anddidnot findany biologically meaningful intraspecificdifferences.Interspecifically, rockptarmiganfeathershad significantlyhigher␦13Candlower␦15Nvaluesthanblackgrouse,reflectingadietarysegregationbetweenbothspecies.This maypartlybeduetothehigheraltitudinaldistributionofrockptarmiganincombinationwithanaltitudinalgradientinplant

13C.Inaddition,however,speciesalsosegregatedin␦15N,mostlikelycausedbyahigherproportionofinvertebratedietin blackgrouse.

Zusammenfassung

Alpenschneehuhn(Lagopusmuta)undBirkhuhn(Tetraotetrix)sindzweinaheverwandteVogelarten,dieReliktpopulationen indenEuropäischenAlpenbilden.NebenvielfältigenanthropogenenEinflüssenindieserRegionwerdenwegendesglobalen KlimawandelssignifikanteVeränderungen inTemperaturund Niederschlagerwartet.Wiranalysierten diestabile Isotopen- zusammensetzung(␦13Cund␦15N)vonFedernsowie potentiellenNahrungspflanzenentlangeinesNiederschlagsgradienten imSüdostenderSchweiz.

Correspondingauthor.Tel.:+32032652347;fax:+32038202271.

E-mailaddress:nina.dehnhard@uantwerpen.be(N.Dehnhard).

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-348936

https://dx.doi.org/10.1016/j.baae.2016.04.007

(2)

Die␦13C-WertederNahrungspflanzennahmenmitTrockenheit(übereinstimmendmitzunehmendenLängengraden)undHöhe zu,währenddieGeographiekeineAuswirkungenaufdie␦15N-WertederNahrungspflanzenhatte.␦13C-WertevonBirkhuhn- federnreflektiertendenlongitudinalenGradienteninNiederschlagundPflanzen-␦13C-Werten,undesgabkeineAnzeichenfür eineÄnderungderNahrungszusammensetzungentlangdesNiederschlagsgradienten(d.h.keinesignifikantenVeränderungen in␦15N).InAlpenschneehuhnfedernhingegenwarendie␦13C-WerteunabhängigvonNiederschlagundPflanzen-␦13C-Werten.

Die␦15N-WerteinAlpenschneehuhnfedernnahmenzudemsignifikantmitTrockenheitzu,waspotentiellaufeineVeränderung derNahrungszusammensetzungentlangdesNiederschlagsgradientenhinweist.

An Alpenschneehühnern untersuchten wir auch intraspezifische Unterschiede zwischen Altersklassen, Männchen und Weibchen sowie verschiedenen Jahren, fanden jedoch keine biologisch aussagekräftigen intraspezifischen Unterschiede.

Interspezifischwiesen Alpenschneehuhnfedernsignifikanthöhere␦13Cund niedrigere␦15N-Werteauf alsBirkhühner, was eineAbgrenzungderbeidenArteninihrerNahrung reflektiert.DieskannzumTeildurchdieunterschiedlicheNutzungdes LebensraumsinKombinationmitdemGradienteninPflanzen-␦13CmitansteigenderHöheerklärtwerden.Alpenschneehühner erschließenauchhochalpineRegionen,währendBirkhühnernahederBaumgrenzeverbleiben.Zusätzlichunterschiedensich beideArtenjedochauchinihren␦15N-Werten,wasvermutlichdurcheinenhöherenAnteilvonInvertebrateninderNahrung vonBirkhühnernverursachtwird.

Keywords: EuropeanAlps;Globalclimatechange;Plantisotope;Precipitation;Stableisotopeanalysis

Introduction

Astypicalformountainousareas,theEuropeanAlpsshow ahighdiversityofdifferentclimatezonesonarelativelysmall scale,mainlydrivenbythecontinuoustemperaturedecrease withelevation(Frey&Lösch2004).Inaddition,theEuro- peanAlpsformabarrieragainstweatherfronts,whichleads tohigherprecipitationattheedgesanddrierconditions in thecentralareas(Frey&Lösch2004).Astemperatureand moistureareimportantdeterminantsoftheecologicalniche ofplantsandanimals(Begon,Townsend,&Harper,2006), thisdiversityinAlpineclimatehabitatsisalsoreflected in thediversityofhabitatsandspecies.ThisrichnessinAlpine wildlifeis,however,severelyaffectedbyanthropogenicinflu- ences,such as the use of pasturesand changesin grazing regimes (Meusburger &Alewell 2008; Patthey, Signorell, Rotelli,&Arlettaz,2012;Paschettaetal.,2013),installation ofhydroelectricpowerplants(Truffer,Markard,Bratrich,&

Wehrli,2001;Fette,Weber,Peter,&Wehrli,2007),orrecre- ationalsnowsportactivities(Braunisch,Patthey,&Arlettaz, 2010; Negro, Isaia, Palestrini, Schoenhofer, & Rolando, 2010).Inaddition,theEuropeanAlpsareoneoftheareaswith thestrongestobservedwarmingtrendworldwide,regionally showingincreasesof1–2Cofaverageannualairtempera- tureduringthe20thcentury(Begert,Schlegel,&Kirchhofer, 2005;Parolo &Rossi 2008).Along withfurthertempera- tureincreases,climatemodelsfortheEuropeanAlpspredict changesinprecipitationpatterns,withgenerallydriersum- mers and wetter winters (including rain), andan increase of extreme weather events including extreme rainfalls but alsotemporaldroughts(Zimmermann,Gebetsroither,Züger, Schmatz,&Psomas,2013;Gobietetal.,2014).Theseclima- tologicaleffectswillleadtoanelevationofthetreeline,which ispartlyalreadyvisible(Dullinger,Dirnböck, &Grabherr,

2004).Inadditiontolandusechangeswewilllikelyobserve areductioninsizeofhigh-alpinemeadowhabitatsthatgoes alongwithanoverallbiodiversityloss(Dirnböck,Dullinger,

&Grabherr,2003;Engleretal.,2011).

Manyofthenowthreatenedhigh-altitudespeciesarerelict speciesthathavesurvivedinmountainousareassincethelast glacialperiod,boostinglocalbiodiversity(Ohlemülleretal., 2008; Dirnböck, Essl, & Rabitsch, 2011).Two prominent andcloselyrelatedspeciesthatformrelictpopulationsinthe EuropeanAlpsarerockptarmigan(Lagopusmuta)andblack grouse(Lyrurustetrix).Rockptarmiganarefoundinrocky areasabovethetreeline(fromabout1800manduptomore than3000m)(GlutzvonBlotzheim,Bauer,&Bezzel,1973;

Pernollet, Korner-Nievergelt, & Jenni, 2015). In contrast, blackgrouseshowaborealdistribution,withthemainalpine habitatbeingtheupperforestedge,i.e.theareaofthetree line(GlutzvonBlotzheimetal.1973).Populationsofboth species in the European Alps were considered as stable until the mid-1990s (Schmid, Luder, Naef-Daenzer, Graf,

&Zbinden,1998;Peronace,Cecere, Gustin,&Rondinini, 2012). However, in the following decade rock ptarmigan declinedbyabout30%inbothSwitzerland(Keller,Gerber, Schmid,Volet,&Zbinden,2010)andItaly(Peronaceetal.

2012).In thesameperiod, blackgrousenumbers declined byupto20%inItaly(Peronaceetal.2012).Whetherthese decliningtrendsthat alsopersist onaglobal scale(Storch 2007)arealreadycausedbytheeffectsofclimatechange,or potentiallyotheranthropogenicinfluences,isunknownand analysesareaggravatedbythefactthatpopulationdeclines vary insize amongregions(Furrer et al.2016).However, with ongoingclimate change effects, bothrockptarmigan andblackgrousewillhavetotracktheshiftofthetreeline tohigher elevations,atrendthatis alreadyvisibleinrock ptarmigan(Pernolletetal.2015).Especiallyunderwarming

(3)

scenarios exceeding 2C, both species will furthermore sufferfromalossinsuitablehabitat(Revermann,Schmid, Zbinden,Spaar,&Schroder,2012;Zurelletal.,2012).

Bothrockptarmiganandblackgrousefeedpredominantly onplants,especiallyonleafsandbudsofheather(Ericacea), includingbilberry(Vacciniummyrtillus),mountaincranberry (Vaccinium vitis-idaea) and black crowberry (Empetrum nigrum) as well as dwarf willows (Salix herbacea, Salix retusa)and–especiallyyoungchicks–alsooninsects(Glutz von Blotzheim et al. 1973; Lieser, Zakrzewski, & Sittler, 1997; Bertermann, Weber-Sparenberg, Pechura, Renard,

& Bergmann, 1998; Starling-Westerberg 2001; Beeston, Baines,&Richardson,2005).Habitatsuitabilitymodelsfor thepresenceofbothspeciesintheEuropeanAlpsgenerally reflectthe importanceofpatchyandheterogeneoushabitat structuresforfoodandshelter(Favaron,Scherini,Preatoni, Tosi,&Wauters,2006;Zohmann&Wöss2008;Pattheyetal.

2012).Schweiger,Nopp-Mayr,&Zohmann(2012)further- morehighlighted the importanceof dwarfshrubs for both species,andanthills(reflecting aninsectfood source)for blackgrouse.Whilecurrentdietandhabitatcharacteristics appear to be well known, it remains open how the pre- dictedchanges intemperature, precipitation, reduced (and higher elevated) suitable habitat and changed plant com- position will affect diet and in the long term population trajectories.

Asafirststepwehereaimtoinferhowprecipitationpat- ternsmayaffectsummerdiet,bycomparingdietarychanges along a distinctgradient in precipitationwithin the Swiss canton of Grisons (Frei & Schär 1998; see Fig. 1). Sta- bleisotopes,particularlythecombinationof␦15Nand␦13C isotoperatiosprovideacomprehensivepictureofdietaryrela- tionships: ␦15Nincreases with each trophic level and can thereforebeusedtoassessthetrophicpositioninthefoodweb (reviewedinCaut,Angulo,&Courchamp,2009).Incontrast,

13Cvarieswithbed-rockandbetweenC3andC4-plants(Fry 2006).Furthermore,␦13Cratiosinplantsdecreasewithrain- fall(Stewart,Turnbull,Schmidt,&Erskine,1995;Ferrio&

Voltas2005)andincreasewithelevation(Körner,Farquhar,

&Roksandic,1988; Vande Water, Leavitt,&Betancourt, 2002).Feathersareafrequentlyanalysedtissueandreflectthe dietduring,orshortlypriortomoult,astheyremainmetaboli- callyinertaftertheirformationandevenafterdeath(Bearhop, Waldron,Votier,&Furness,2002).Blackgrousemoulttheir entireplumage,androckptarmigantheirprimary andsec- ondarywingfeathersduringthesummermonths,towardsthe endofthechickrearingperiod(GlutzvonBlotzheimetal.

1973).Thefeathersamplesanalysedinthisstudytherefore reflectthedietduringsummer.

By analysing precipitation patterns, plant and feather isotopes,we thus aimedto(1) investigatepotential differ- encesinisotopiccompositionandconsequentlydietrelated to regional precipitation patterns. Based on the literature, we expected plant␦13C andconsequentlyfeather ␦13C to increasealongtheprecipitationgradientwithlongitude,but expectednochangesinplantandfeather␦13Cwithlatitude.

We furthermore expected generally higher ␦13C valuesin plantsamplesathigheraltitudesandconsequentlyinfeathers ofrockptarmigancomparedtoblackgrouse.

Plant␦15Nvaluesshouldnotbeaffectedbyprecipitation, and we thereforeexpected nogradient inplant ␦15Nwith longitudeoraltitude.Wehadnospecificexpectationsasto howprecipitationwouldaffectdietarycompositionof rock ptarmiganandblackgrouse.However,ifprecipitationwould affectthefoodchoiceofeitherofthespecies,weexpectedto seeachangein␦15Nwithlongitude.

We further investigated (2) intra-specific dietary differ- encesbetweenadultandimmaturebirdsandbetweenadult malesandfemalesinrockptarmigan.Asjuvenileshavebeen described to feedon a moreinsect-rich diet, we expected tofindhigher␦15Nvaluesinfeathersofimmatures(i.e.the firstsetofprimariesandsecondariesthatisbuiltwhenstill guardedbythehens)comparedtoadults(moultedinsum- meratthesametimeaschickrearing).Finally(3),wetested whetherrockptarmiganandblackgrousedifferintheirdiet.

Duetothedifferencesinaltitudinaldistributionduringsum- mer,weexpectedtofindhigher␦13Cvaluesinrockptarmigan thanblackgrouse.Assumingasimilardietinbothspecies, wehoweverexpectedsimilar␦15Nvaluesinbothspecies.

Materials and methods

Collectionoffeathers

Feathersofblackgrouseandrockptarmiganwereobtained fromseveralhuntingdistrictswithinGrisons(Fig.1),during thehuntingseasonbetweenmid-OctobertoendofNovember.

Hunters wereobligedtodeliverfeather samplesfromshot black grouse(secondarywing feathersor bodycoverts;in 2005–2007),androckptarmigan(secondarywingfeathers;

in 2008–2012) tothe Department of Wildlife andFishery ServiceGrison. Featherswerestoredinplasticbags along withinformationaboutageandsex(identifiedfromplumage characteristics). Forblack grouse,the detailed coordinates oftheshotlocationswerealsoregistered,whereasforrock ptarmiganonlythemunicipalitywasnoted.Forsubsequent analysesregardinglocations,wethereforeusedtheprinciple town/villagewithinthemunicipalityforrockptarmigan,but thedetailedlocationforblackgrouse.

Feathersfromblackgrouseweresolelyfrommalebirds, eitheradultorimmature.Feathersfromrockptarmiganwere from both sexes andincluded bothadults andimmatures.

In few cases(N=11 out of 190 feather samples in total), sexor agewas notnoted, andsample sizes thereforevary slightly among analyses. In order to understand potential intra-specificvariationinstableisotoperatiosacrossyears, betweensexes,andage(adultsandimmatures),wechosethe municipalitywiththehighestnumberofshotanimals(Pon- tresina; see location in Fig. 1) andanalysed atotal of 78 samples fromrockptarmigan,equallycoveringbothsexes and age groups from the years 2008 to 2012. To analyse

(4)

Fig.1. LocationofSwitzerland(blackframe)andGrisons(blue-greencoloured)withintheEuropeanAlps(insertedplotintop-leftcorner).

Themainfigureshowsthesumofprecipitation(inmm;seelegendonthelefthandside)intheyear2013inGrisonsandsamplelocationsof plants(green),rockptarmigan(red)andblackgrouse(black)feathers.Forthetwogrousespeciesthesizeofthedotsreflectsthenumberof sampledindividualsintheyear2005(blackgrouse)and2009(rockptarmigan,respectively).LukmanierpassandOfenpass(markedwithlarge greendots)arethelocationswhereplantsweresampledmoreintensivelytocompareinterspecificisotopicvariation.Pontresina,thelocation wheremostrockptarmiganwereshot,ishighlightedassamplesfromthislocationwereusedforinter-annualandintra-specificcomparisons ofisotoperatios.AtotalofN=137feathersamplesofrockptarmigan,N=53feathersamplesofblackgrouseandN=197plantsampleswere analysed.Sumofprecipitationasshownhereisbasedonspatialinterpolationofweatherstationdata(accordingtoRhiresYv.1.0.;detailsin Freietal.1998).ThebackgroundmapwasmodifiedbasedonafigureprovidedbyMeteoSwiss.(Forinterpretationofthereferencestocolor inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

thegeographiceffectsandspeciesdifferences,blackgrouse feathers from 2005 (N=53 samples) and rock ptarmigan feathers from 2009 (N=59 samples) from across Grisons (N=19 and 21 municipalities for black grouse and rock ptarmigan,respectively)wereanalysed(Fig.1).

Collectionofplantsamples

Plantswere sampled between10th of July and 23rd of August 2013. Sampling locations were distributed across Grisonsmatchingtheoverallhuntinglocationsofthebirds (Fig.1).Perlocation(e.g.Vilan),wecollectedplantsamples atonetotwodifferentplots, ifpossibleatdifferent eleva- tions(e.g.oneat1900m,andoneat2300m;seeTableA1 fordetailsaboutsampledplantspeciesperlocation).Ateach plot,we collected3–5 samples perplant species,andide- allyfromatleasttwospecies(dependingonavailabilityat the plot), generally onefrom the family Ericacea (mostly bilberry, Vaccinium myrtillus) and the second either from Salicacea (Salix reticulata) orRoseacea (Geummontanum orDryasoctopetala).Eachsampleconsistedofonebranch withseveralleaves,andsampleswerecollectedfromseparate specimensthatgrewatleast3mapartfromeachother.

In orderto estimate the isotopic variation among plant species also within the plant family Ericacea, we covered twolocations(OfenpassandLukmanierpass;seeFig.1)more closelyandanalysedsamplesfrom6and7species,respec- tively.

Stableisotopeanalyses

Plant sampleswere dried inadrying ovenat 50Cfor at least 48h. We ground two leaves per individual plant andmixedthemthoroughly.Sub-samples(ca.0.5mg)were weighed into 0.3mm×0.5mm tin capsulesto the nearest 0.001mg,usingamicro-analyticalbalance.

Forfeather samples, weused the distal endof feathers.

Only feathersfree of visiblecontamination(dirtor blood) wereused.Featherswererinsedwith75%ethanolandsubse- quentlywithdistilledwater,andthendriedinadryingoven at50Cforatleast 24h.Sub-samples of0.8–0.9mgwere weighedintotincapsules.

Sampleswerecombusted inaPyrocube elementalanal- yser. The resulting CO2 and N2 were separated by gas chromatographyandadmittedintotheinletofaMicromass

(5)

(Manchester,UK) Isoprime isotoperatio massspectrome- ter(IRMS)fordeterminationof13C/12Cand15N/14Nratios.

Measurements are reportedin ␦-notation (␦13C and␦15N, respectively)relative tothe PeeDee Belemnite (PDB)for carbonandatmosphericN2fornitrogeninpartsperthousand deviations(‰)usingtheformula

δ(‰)=1000×

Rsample

Rstandard−1

Twosulfanilamides(iso-primeinternalstandards)andtwo Casein standards were used for every seven unknowns in sequence.Internallaboratory standards indicatedmeasure- menterrors(SD)of±0.05‰for␦13C,0.15‰for␦15N.

Weatherdata

WeobtainedprecipitationdatafromGrisons(108weather stations;fromtheSwissFederalOfficeofMeteorologyand Climatology,MeteoSwiss)as wellas from66weathersta- tions in adjacent areas within Switzerland, Austria (from Zentralanstaltfür MeteorologieundGeodynamik, ZAMG) andItaly (from AgenziaRegionale perla Protezionedell’

Ambientedella Lombardia,ARPA Lombardia). Wecalcu- latedthesumof precipitationof themonthsAprilthrough toAugust2013,i.e.thegrowthperiodoftheyearinwhich wecollectedplantsforisotopeanalyses.Weusedthesedata toanalyse geographicaldifferences inprecipitationwithin Grisons(seeStatistics,firststep).

Statisticalanalyses

All statistics were performed in R (version 3.1.1; R Core Team, 2014). We conducted linear models (LM) and linear mixed effect models (LMM) using the pack- ageslme4(Bates,Maechler,&Bolker,2011)andlmerTest (Kuznetsova, Brockhoff, & Christensen, 2014). We per- formed backwards-stepwise model selection, subsequently removing non-significant variables from the models. P- values were obtained from likelihood-ratio tests between modelswithandwithoutthefocalvariable.

Inthefirststep,weanalysedpotentialdifferencesiniso- topiccompositionandconsequentlydietarychangesrelated tothe regionalprecipitation pattern.We therefore(I) ana- lysedtheprecipitationpatternfortheyear2013inGrisons, runningaLMwiththesumofprecipitationduringthegrowth period (April–August) as dependent variable. Asexplana- tory variables, we included latitude and longitude of the weatherstationaswellasthetwo-wayinteractionterm(lat- itude*longitude).

Wethen (II) tookplant samples from alllocations into account, andstudied the effects of latitude, longitude and elevation on plant isotopes. We ran LMMsseparately for

15Nand␦13Casdependentvariables.Aselevationwassig- nificantlycorrelatedwithlatitudeandlongitude(Pearson’s R=−0.16and0.43,P=0.026and<0.001,respectively),we

conductedmodelsseparatelyforgeographiclocationandele- vationtoavoidcollinearity.Thefirstsetofmodelstherefore contained latitude,longitude andthe interactionterm(lati- tude*longitude)asexplanatorycovariatesandplantspecies asrandomeffect.Thesecondsetofmodelscontainedonly elevationasexplanatoryvariableandplantspeciesasrandom effect.

Forthe twomoreintensivelysampledlocationsof Luk- manierpass andOfenpass, we also tested whether isotope valuesdifferedamongplantspecies.Wethereforeconducted LMMswithplantspeciesasfixedeffectandthestudysiteas randomeffect.

Finally(III),weinvestigatedvariationofrockptarmigan (alldatafrom2009)andblackgrouse(alldatafrom2005)iso- topedatawithlatitudeandlongitude.Again,weranLMMs separatelyfor␦15Nand␦13C.Thestartingglobalmodelcon- tainedspecies(asfixedfactor)andbothlatitudeandlongitude (eachascovariates)andallpossibleinteractiontermsupto thethree-wayinteractionbetweenspecies,latitudeandlon- gitude(asexplanatoryvariables),aswellassexandage(as independentrandomvariables).

In addition to these regional effects, we analysed in a secondsteppotentialintra-specificdifferencesinbothrock ptarmiganandblackgrouse.Forrockptarmigan,weuseda separatedataset whichcontaineddatafromthe years2008 to 2012shot withinthe range of the municipalityof Pon- tresina.Weusedthisdatasettoinvestigatesex,ageandyear differences.LMsthereforecontainedsex,ageandyear(each asfixedfactor)andallpossibletwo-andthree-wayinterac- tions.Forblackgrouse,weexclusivelyused thedatafrom 2005fromacrossGrisons.

Finally, in the third and last step, we analysed poten- tial species differences betweenrockptarmiganand black grouse,usingaLMwithspeciesastheonlyexplanatoryfac- tor, applied tothe dataset of feather isotope datasampled across Grisons inthe years2005 (adultblack grouse)and 2009(adultrockptarmigan).

Results

Geographicaleffectsalongaprecipitation gradient

Within Grisons, precipitation during the growth sea- son 2013 (April–August) showed a significant interac- tion between latitude and longitude (LMM: F1=12.12, P<0.001). Tested separately, precipitationdecreased with latitude(LMM:F1=9.90,P=0.002)andlongitude(LMM:

F1=90.04, P<0.001), thusthesouthern andwestern parts of the canton received more precipitation than the north- ernandeasternparts,coincidingwiththeannualpatternof precipitation(Fig.1).

Withinthesamegeographicalrange,plant␦13Cincreased significantly with elevation (LMM: F1=28.65, P<0.001) (Fig. 2)and withlongitude,i.e. from westto east(LMM:

(6)

Fig.2. Effectsofelevationon␦13Cand␦15Nofplants.Regression linesareshownforsignificanteffectsonly.

F1=23.98,P<0.001),whiletherewasnosignificanteffect oflatitude(LMM:F1=3.19,P=0.090)(Fig.3).Plant␦15N valueswerenot significantlyaffectedbyelevation (LMM:

F1=0.07, P=0.800) (Fig. 2), latitude (LMM: F1=2.09, P=0.090)orlongitude(LMM:F1=0.38,P=0.536)(Fig.4).

Focussingonthevariationamongplantspecies,wefound asignificant specieseffectonboth␦13Cand␦15N(LMM:

F10=11.76,P<0.001andF10=2.36,P=0.006for␦13Cand

15N,respectively)atthetwointensivelysampledlocations ofLukmanierpassandOfenpass(TableA1).Speciesdiffer- encesin␦13Cand␦15Nwerealsopresentwithinthefamily Ericacea(LMM:F7=13.04and2.07,P<0.001and0.028, respectively),anddifferencesfor␦13Cremainedsignificant evenwithin the samegenus: Mountaincranberry, V.vitis- idaea,andbilberry,V.myrtillus,sampledatthesamestudy plot(i.e.samegeographiclocationandelevation)differedsig- nificantlyintheir␦13Cvalues(LMM:F1=20.80,P=0.002), butnotintheir␦15Nvalues(LMM:F1=0.99,P=0.348).

Analysing rock ptarmigan and black grouse data from across Grisons, we obtained a significant three-wayinter- actiontermbetweenspecies,latitudeandlongitudeforboth

13C(LMM:F1=3.77,P=0.024)and␦15Nvalues(LMM:

F1=4.35,P=0.018).Wethereforecontinuedwithseparate analysesforbothspecies.

In rockptarmigan, feather␦13Cwasindependentof lat- itude (LMM: F1=0.52, P=0.444) and longitude (LMM:

F1=0.122,P=0.717;Fig.3).Feather␦15Nwasindependent of latitude(LMM:F1=0.08,P=0.906)butincreasedwith longitude(LMM:F1=6.11,P=0.013;Fig.4).

Inblackgrouse,theinteractiontermoflatitudeandlongi- tudehadasignificanteffectonfeather␦13C(LMM:F1=7.69, P=0.005).Analysedinseparatemodels,␦13Cincreasedwith longitude(LMM:F1=6.99,P=0.009)butwasnotaffected bylatitude(LMM:F1=0.65,P=0.412;Fig.3).Feather␦15N wasindependentoflatitude(LMM:F1=1.33,P=0.243)and longitude(LMM:F1=0.12,P=0.729;Fig.4).

Intra-specificdifferencesinrockptarmiganand blackgrouse

Wetestedintra-specificdifferencesinrockptarmiganwith a 4-year dataset from the municipality of Pontresina and foundthatfeather␦13Cvaluesweremarginallylowerinmales thanfemales (LM:F1=4.44,P=0.039;Fig.A1).Further- more,theinteractionbetweenyearandage(LM:F1=2.59, P=0.045;Fig. A2) was significant. Albeit significant, the overalldifferenceswereratherweak(Figs.A1andA2).Rock ptarmiganfeather ␦15Nvalueswere notaffectedby either year,sexorageoranyinteractionterm(LM:allF1≤1.69, allP≥0.164).

InblackgrousesampledacrossGrisons,feather␦13Cand

15Nvaluesdidnotdifferbetweenadultandimmaturemales (LM:F1=0.07and0.01,P=0.798and0.986for␦13Cand

15N,respectively).

Speciesdifferencesbetweenrockptarmiganand blackgrouse

Overall,adultrockptarmiganhadsignificantlyhigher␦13C values(LM:F1=77.36, P<0.001)andsignificantlylower

15Nvalues(LM:F1=118.62,P<0.001)thanadult black grouse,withisotopicvaluesofbothspeciesshowingnoover- lap(Fig.5).

Discussion

Effectoflatitudeandlongitudealongthe precipitationgradient

Grisons shows a distinct precipitation gradient, with decreasingspringandsummerrainfallsfromwesttoeast.In agreementwithourexpectation,plant␦13Cincreasedwith longitude,butnotlatitude,andnoeffectofeitherlatitudeor longitude wasfoundfor plant␦15N.Thesamepattern was foundforblackgrousefeathers,suggestingthatthedietary compositionofblack grousedidnotchange alongthepre- cipitationgradientwithlongitudewithinthestudyarea.

(7)

Fig.3. Effectsoflatitudeandlongitudeon␦13Cofplants,rockptarmiganandblackgrousefeathers.Notethatthescalingfor␦13Cdiffers betweentheplantsandthetwogrousespecies.Regressionlinesareshownforsignificanteffectsonly.

Incontrast,inrockptarmigan,wefoundadifferenteffect:

While␦13Cinfeathersdidnotdifferwitheitherlatitudeor longitude,␦15Nincreasedwithlongitude.The lattermight suggest that the proportion of insects in the rock ptarmi- gandiet increased from west to east, andtherefore along theprecipitationgradient.Albeitsignificant,theeffectitself wasrathersmallandmightonitsownbebiologicallyhardly meaningful.Inaddition,however,thelongitudinaleffectof plant␦13Cwasnotreflectedinrockptarmiganfeatheriso- topes. Considering that rock ptarmigandiet appears tobe based even moreon plants than that of black grouse (for whichtheeffectwasvisible),thisissurprising.Potentially, thesecombinedeffectsin␦13Cand␦15Nthereforedosuggest achangeindietarycompositionand/orfoodsourcesofrock ptarmiganoverthelongitudinalprecipitationgradient.

Intra-specificvariationinisotopes

Againstourexpectations,wefoundnoage-dependentdif- ferencesindietary compositionineitherrockptarmiganor black grouse.Although invertebratediet is expectedtobe commoninimmatureindividuals,wefoundnodifferencesin

15N(whichwouldhaveindicatedamoreinvertebrate-rich diet in immatures).While young black grouse in Norway and northernEngland took substantiallymore insect prey

compared to adults (Starling-Westerberg 2001; Wegge &

Kastdalen2008),wearenotawareof anystudiesfromthe European Alps that comparedthe diet betweenadultsand juveniles.Inrockptarmigan,earlierstudiesfromGreenland and the Alps suggested that dietary segregation with age mightbelessstrongcomparedtoblackgrouse(Lieseretal.

1997 andliterature therein). Furthermore, potential differ- ences inthe dietmightdecrease withageofthe juveniles, andmaynotbepresentany moreduringformationofsec- ondarywingfeathers(whichourisotopeanalyseswerebased upon).

Inter-specificdifferencesintheisotopicvalues anddiet

Blackgrousehadsignificantlylower␦13Candhigher␦15N levelsthanrockptarmigan,withnooverlapofisotopicval- ues.Asrockptarmiganaredistributedathigheraltitudesthan black grouse,andbasedonourexpectations (andfindings) thatplant␦13Cincreaseswithelevation,weanticipatedtofind thehere-observedspecies-segregationin␦13Cindependentof dietarypreferencesofbothspecies.Assumingasimilardiet inbothspecies,weexpectedtofindsimilar␦15Nvaluesin bothspecies.Instead,blackgrousefeathershadonaverage 2.5‰higher␦15Nvaluesthanrockptarmiganfeathers.This

(8)

Fig.4. Effectsoflatitudeandlongitudeon␦15Nofplants,rockptarmiganandblackgrousefeathers.Notethatthescalingfor␦15Ndiffers betweentheplantsandthetwogrousespecies.Regressionlinesareshownforsignificanteffectsonly.

Fig.5. Stablenitrogenandcarbonisotoperatios(‰)ofadultrock ptarmiganandblackgrouse.Eachpointrepresentsoneindividual adultbirdfromGrisons.N=38rockptarmiganand33blackgrouse, respectively.

differencecannotbeascribedtoaneffectofaltitude,asplant isotopesdidnotdifferin␦15Nwithelevation.Theoretically, thespeciesdifferencesin␦15Ncouldbeexplainedbyblack grousefeedingconsistentlyonplantspecieswithhigher␦15N

valuescomparedtorockptarmigan.However,variabilityin

15Nwasalsolargewithinplantspecies,evenwithinthesame studyplots,i.e.withinarangeofafewmetres(seestandard deviationsshowninTableA1).Itthereforeappearsunlikely that black grouseconsistently selectedfor plantspecimen withhigh␦15N,whereasrockptarmigandidtheopposite.A morelikelyexplanationforboththehigher␦15Nvaluesin blackgrouseandthelargerintra-specificvariationin␦15Nin thisspecieswouldbethatblackgrousefeedonahigherpro- portionofinvertebratescomparedtorockptarmigan.Along thefoodchain,␦15Nincreaseswitheachtrophicstep(DeNiro

&Epstein1981;Minagawa&Wada1984).Thistrophicfrac- tionationrangesbetweenapproximately2‰ and5‰(Post 2002).Thedifferencein␦15Nbetweenblackgrouseandrock ptarmiganthereforerepresentedadifferencebyabouthalfto one trophic level, suggestingthat invertebrates make upa considerableamountofdietinblackgrouse.Incontrast,diet inrockptarmigancanbeexpectedtobebasedprimarilyon plantsduetotherathersmalldifference(onaverage2.22‰) in␦15Nbetweenanalysedplantmaterialandrockptarmigan feathers.

The literature so far ascribed a similar, mainly plant- baseddiettoadultsofbothofourstudyspecies(Glutzvon Blotzheimetal.1973;Lieseretal.1997;Bertermannetal.

1998;Starling-Westerberg2001;Beestonetal.2005).While

(9)

weareunabletoidentifywithcertaintywhetheradifferential plantdietortheproportionofinvertebratescausethediffer- encesin␦15N,ourdataclearlysuggestadietarysegregation betweenblackgrouseandrockptarmigan,whichhasnotbeen describedpreviously.

Potentialcaveatsofthisstudy

Weconductedstableisotopeanalysesonlyforalimited numberof plant specimen andplantspecies, not covering theentirefoodwebofrockptarmiganandblackgrouse.In particular,wedidnotsampleanyinvertebrates,which–with hindsight–couldhavehelpedwiththeinterpretationofour results.Variationinboth␦13Cand␦15Nwithinandbetween plantspecieswaslarge,alsowithinspeciesandwithinstudy plots(seeTableA1),andvariationwouldlikelybeevenlarger underinclusionofmoreplantspecimen.Duetothisstrong variationandthehighoverlapofisotopevaluesamongplant species,andfurtherlackofknowledgeaboutthefractionation factorsbetweenisotopicratiosinthe birds’foodandtheir feathers,wedecided againstrunningstableisotopemixing modelsas resultswould come withalargelevel of uncer- tainty.Consequently,wewere,however,notabletoestimate specificdietarycomponentsinthedietofrockptarmiganand blackgrouse.

Oursamplingdesignwasfurthermoresuboptimalinthat plants,rockptarmiganandblack grousefeathers hadtobe sampledinthree differentyears. Wetherefore cannotrule out entirely that long-term year-effects may have biased ourresults.However, wewould like toemphasisethat (1) therewerenosubstantialandbiologicallymeaningfulyear- differences in either ␦13C or ␦15N in feathers from rock ptarmigan within the municipality of Pontresina; and (2) accordingtoMeteoSwisstheprecipitationgradientwithlon- gitude inGrisons waspresent across the entire period for whichsamples from either birds or plants were obtained.

Wethereforeassumethat despite thesuboptimal sampling design, our finding of dietary segregation between rock ptarmiganandblackgrouseisrobust.

Conclusions/implicationsofthisstudy

Alpinewildlifeisseverelyaffectedbyanthropogenicinflu- ences,fromlandusepatternstoglobalclimatechangethat willaffecttemperatureandprecipitationpatternsintheAlps.

Oneaimofthisstudywasthereforetoinvestigatethedietary changes along a precipitation gradient within the central European Alps in both rock ptarmiganand black grouse.

Overall, ourdata suggestedapotential effectof precipita- tion onthe diet of rockptarmiganand noeffect onblack grouse.Themoresignificantandslightlyunexpectedresults ofthisstudywere,however,thedietarysegregationofrock ptarmiganandblackgrouse.

Acknowledgements

SaskiaRehse, CorinnaWaider,Claudia GreisandWolf- gang Kornberger helped with stable isotope analyses and Marc Mischke with generating the GIS plots. Thanks to DanSuriforhelpfuldiscussionsaboutprecipitationdataand Englishproofreading.WethankProf.K.O.Rothhauptandthe staffattheLimnologicalInstituteattheUniversityofKon- stanzforlogisticalsupport.ThisstudywasfundedbytheOtto WolffStiftung.NDwassupportedbytheFWO-Flandersdur- ingwritingofthismanuscript(grantnumbers1265414Nand 12Q6915N).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/

j.baae.2016.04.007.

References

Bates,D.,Maechler,M.,&Bolker,B.(2011).lme4:Linearmixed- effectsmodelsusingS4classes,Rpackageversion0.999375-42.

http://CRAN.R-project.org/package=lme4

Bearhop,S.,Waldron,S.,Votier,S.C.,&Furness,R.W.(2002).

Factors that influence assimilation rates and fractionation of nitrogenandcarbonstableisotopesinavianbloodandfeathers.

PhysiologicalandBiochemicalZoology,75,451–458.

Beeston,R.,Baines,D.,& Richardson,M.(2005).Seasonaland between-sexdifferencesinthedietofblackgrouseTetraotetrix:

Capsuledietarydifferencesbetweensexesandseasonsreflected diversityinplantavailabilityandhabitatpreferences.BirdStudy, 52,276–281.

Begert,M.,Schlegel,T.,&Kirchhofer,W.(2005).Homogeneous temperatureandprecipitationseriesofSwitzerlandfrom1864 to2000.InternationalJournalofClimatology,25,65–80.

Begon,M.,Townsend,C.R.,&Harper,J.L.(2006).Ecology–From individuals to ecosystems (4thed.). Malden, MA: Blackwell Publishing.

Bertermann,C.,Weber-Sparenberg,C.,Pechura,A.,Renard,A.-I.,

&Bergmann,H.-H.(1998).ZurErnährungvonAlpenschnee- hühnern Lagopus mutus helveticus im Sommer. Egretta, 41, 15–26.

Braunisch,V.,Patthey,P.,&Arlettaz,R.(2010).Spatiallyexplicit modelingofconflictzonesbetweenwildlifeandsnowsports:

Prioritizing areasforwinterrefuges.EcologicalApplications, 21,955–967.

Caut,S.,Angulo,E.,&Courchamp,F.(2009).Variationindiscrimi- nationfactors(15Nand13C):Theeffectofdietisotopicvalues andapplicationsfordietreconstruction.JournalofAppliedEcol- ogy,46,443–453.

DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distributionofnitrogenisotopesinanimals.GeochimicaetCos- mochimicaActa,45,341–351.

(10)

Dirnböck, T., Dullinger, S., & Grabherr, G. (2003). Aregional impactassessmentof climateand land-usechange on alpine vegetation.JournalofBiogeography,30,401–417.

Dirnböck,T.,Essl,F.,&Rabitsch,W.(2011).Disproportionalrisk forhabitatlossofhigh-altitudeendemicspeciesunderclimate change.GlobalChangeBiology,17,990–996.

Dullinger, S., Dirnböck, T., & Grabherr, G. (2004). Modelling climatechange-driven treelineshifts:Relative effectsof tem- peratureincrease,dispersalandinvasibility.JournalofEcology, 92,241–252.

Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmer- mann,N.E.,Araúja,M.B.,etal.(2011).21stcenturyclimate change threatens mountain flora unequally across Europe.

GlobalChangeBiology,17,2330–2341.

Favaron,M.,Scherini, G., Preatoni,D., Tosi,G., &Wauters, L.

(2006).Spacingbehaviourand habitatuse ofrockptarmigan (Lagopusmutus)atlowdensityintheItalianAlps.Journalof Ornithology,147,618–628.

Ferrio,J.P.,&Voltas,J.(2005).Carbonandoxygenisotoperatios inwoodconstituentsofPinushalepensisasindicatorsofpre- cipitation,temperatureandvapourpressuredeficit.TellusB,57, 164–173.

Fette,M.,Weber,C.,Peter,A.,&Wehrli,B.(2007).Hydropower productionandriverrehabilitation:Acasestudyonanalpine river.EnvironmentalModeling&Assessment,12,257–267.

Frei,C.,& Schär,C. (1998). Aprecipitationclimatologyof the Alps from high-resolution rain-gauge observations. Interna- tionalJournalofClimatology,18,873–900.

Frey,W.,&Lösch,R.(2004).LehrbuchderGeobotanik.Plfanze undVegetationinRaumundZeit.Munich,Germany:Elsevier.

Fry,B.(2006).Stableisotopeecology.NewYork:Springer.

Furrer, R., Schaub, M., Bossert, A., Isler, R., Jenny, H., Jonas, T., et al. (2016). Variable decline of alpine rock ptarmigan (Lagopus muta helvetica) in Switzer- land between regions and sites. Journal of Ornithology, http://dx.doi.org/10.1007/s10336-016-1324-8

GlutzvonBlotzheim,U.N.,Bauer,K.M.,&Bezzel,E.(1973).

HandbuchderVögelMitteleuropas. Band5.Galliformesund Gruiformes.FrankfurtamMain,Germany:AkademischeVer- lagsgesellschaft.

Gobiet,A.,Kotlarski,S.,Beniston,M.,Heinrich,G.,Rajczak,J.,

&Stoffel,M.(2014).21stcenturyclimatechangeintheEuro- peanAlps—Areview.ScienceoftheTotalEnvironment,493, 1138–1151.

Keller,V.,Gerber,A.,Schmid,H.,Volet,B.,&Zbinden,N.(2010).

RoteListeBrutvögel.Stand:GefährdeteArtenderSchweiz.

Körner,C.,Farquhar,G.D.,&Roksandic,Z.(1988).Aglobalsurvey ofcarbonisotopediscriminationinplants fromhighaltitude.

Oecologia,74,623–632.

Kuznetsova, A., Brockhoff, B., & Christensen, H. B. (2014).

lmerTest:Tests forrandomandfixed effectsforlinearmixed effectmodels(lmerobjectsoflme4package).Rpackageversion 2.0-11.http://CRAN.R-project.org/package=lmerTest

Lieser,M.,Zakrzewski,M.,&Sittler,B.(1997).Summerecology ofptarmiganLagopus mutusonTraill Island,NEGreenland.

DerOrnithologischeBeobachter,94,225–232.

Meusburger,K.,&Alewell,C.(2008).Impactsofanthropogenicand environmentalfactorsontheoccurrenceofshallowlandslides inanalpinecatchment(UrserenValley,Switzerland).Natural HazardsandEarthSystemScience,8,509–520.

Minagawa,M.,&Wada,E.(1984).Stepwiseenrichmentof15N alongfoodchains:Furtherevidenceand therelationbetween

15Nandanimalage.GeochimicaetCosmochimicaActa,48, 1135–1140.

Negro,M.,Isaia,M.,Palestrini,C.,Schoenhofer,A.,&Rolando, A. (2010).The impactofhigh-altitudeskipisteson ground- dwellingarthropodsintheAlps.BiodiversityandConservation, 19,1853–1870.

Ohlemüller, R.,Anderson,B.J., Araújo,M. B.,Butchart,S.H.

M.,Kudrna,O.,Ridgely,R.S.,etal.(2008).Thecoincidence ofclimaticandspeciesrarity:Highrisktosmall-rangespecies fromclimatechange.BiologyLetters,4,568–572.

Parolo,G.,&Rossi,G.(2008).Upwardmigrationofvascularplants followingaclimatewarmingtrendintheAlps.BasicandApplied Ecology,9,100–107.

Paschetta,M.,LaMorgia,V.,Masante,D.,Negro,M.,Rolando,A.,

&Isaia,M.(2013).Grazinghistoryinfluencesbiodiversity:A casestudyonground-dwellingarachnids(Arachnida:Araneae, Opiliones)intheNatural ParkofAlpiMarittime(NWItaly).

JournalofInsectConservation,17,339–356.

Patthey,P.,Signorell,N.,Rotelli,L.,&Arlettaz,R.(2012).Veg- etation structural and compositional heterogeneity as a key featureinAlpineblackgrousemicrohabitatselection:Conser- vationmanagementimplications.EuropeanJournalofWildlife Research,58,59–70.

Pernollet, C. A., Korner-Nievergelt, F., & Jenni, L. (2015).

Regionalchangesinthe elevationaldistributionoftheAlpine rock ptarmigan Lagopusmuta helveticain Switzerland.Ibis, 157.

Peronace,V.,Cecere,J.G., Gustin,M.,&Rondinini,C. (2012).

The 2011 red list of Italian breeding birds. Avocetta, 36, 11–58.

Post,D.M.(2002).Usingstableisotopestoestimatetrophicposi- tion:Models,methods,andassumptions.Ecology,83.

RCoreTeam.(2014).R:Alanguageandenvironmentforstatis- ticalcomputing.Vienna,Austria:RFoundationforStatistical Computing.http://www.R-project.org/

Revermann,R.,Schmid,H.,Zbinden,N.,Spaar,R.,&Schroder,B.

(2012).Habitatatthemountaintops:Howlongcanrockptarmi- gan(Lagopusmutahelvetica)surviverapidclimatechangein theSwissAlps?Amulti-scaleapproach.JournalofOrnithology, 153,891–905.

Schmid, H., Luder, R.,Naef-Daenzer, B., Graf,R., & Zbinden, N.(1998).SchweizerBrutvogelatlas.VerbreitungderBrutvögel in derSchweiz und im FürstentumLiechtenstein1993–1996.

Sempach,Switzerland:SchweizerischeVogelwarte.

Schweiger, A. K., Nopp-Mayr, U., & Zohmann, M. (2012).

Small-scalehabitatuseofblackgrouse(TetraotetrixL.)and rockptarmigan (Lagopusmuta helveticaThienemann)inthe Austrian Alps. European Journal of Wildlife Research, 58, 35–45.

Starling-Westerberg,A.(2001).Thehabitatuseanddietofblack grouseTetraotetrixin thePenninehillsofnorthernEngland.

BirdStudy,48,76–89.

Stewart,G.,Turnbull,M.,Schmidt,S.,&Erskine,P.(1995).13C naturalabundanceinplantcommunitiesalongarainfallgradient:

Abiologicalintegratorofwateravailability.FunctionalPlant Biology,22,51–55.

Storch, I.(2007). Conservation status of grouse worldwide:An update.WildlifeBiology,13,5–12.

(11)

Truffer,B.,Markard,J.,Bratrich,C.,&Wehrli,B.(2001).Green electricityfromAlpinehydropowerplants.MountainResearch andDevelopment,21,19–24.

VandeWater,P.K.,Leavitt,S.W.,&Betancourt,J.L.(2002).Leaf

13Cvariabilitywithelevation,slopeaspect,andprecipitationin thesouthwestUnitedStates.Oecologia,132,332–343.

Wegge,P.,&Kastdalen,L.(2008).Habitatanddietofyounggrouse broods:Resourcepartitioningbetweencapercaillie(Tetraouro- gallus)andblackgrouse(Tetraotetrix)inborealforests.Journal ofOrnithology,149,237–244.

Zimmermann, N. E., Gebetsroither, E., Züger, J., Schmatz, D., & Psomas, A. (2013). Future climate of the European

Alps. In G. A. Cerbu, M. Hannewinkel, G. Gerosa, & R.

Jandl (Eds.), Management strategies to adapt alpine space forests to climatechange risks (pp. 27–36). Rijeka, Croatia:

InTech.

Zohmann, M.,& Wöss, M.(2008). Springdensity and summer habitatuseofalpinerockptarmiganLagopusmutahelveticain thesoutheasternAlps.EuropeanJournalofWildlifeResearch, 54,379–383.

Zurell,D.,Grimm,V.,Rossmanith,E.,Zbinden,N.,Zimmermann, N.E.,&Schröder,B.(2012).Uncertaintyinpredictionsofrange dynamics:BlackgrouseclimbingtheSwissAlps.Ecography, 35,590–603.

Referenzen

ÄHNLICHE DOKUMENTE

A new database of Alpine rock falls and rock avalanches has been established, based on the compilation and verification of published

Within the InterregIIIa Rockslidetec project (2003-2006), a new inventory of Alpine rock falls and rock avalanches has been established, with two main goals: a) on short term,

Turkey is one key partner to be considered: Turkey has a vital strategic partnership with Washington and has been part of the European Single Market through

“assist the Kosovo institutions, judicial authorities and law enforcement agencies in their progress towards sustainability and accountability and in further devel- oping

The EU budget is by design inflexible, and the Multiannual Financial Framework (MFF) has been introduced precisely to stop yearly debates among member states about the size of

We use the lens of environmental justice to frame our analysis and highlight the failures of the leading fire narrative to recognize distinctions between the intentional swidden fire

Somit kann keine schädliche Frischluft ins Gebäude dringen, und der Geruch nach frischen Beton bleibt möglichst lange erhalten?. Die im Gebäude verwendeten feu- erverzinkte

The second plague epidemic, beginning in 1361, is not covered by Benedictow, and although mortality was lower than in the Black Death, it still killed some 10 percent of