• Keine Ergebnisse gefunden

Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment

N/A
N/A
Protected

Academic year: 2022

Aktie "Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment

Nicolai Müller

, Frank D. Scherag

1

, Michael Pester, Bernhard Schink

DepartmentofBiology,UniversityofKonstanz,78457Konstanz,Germany

Keywords:

Bacillus

Facultativelyanaerobicmetabolism Syntrophicoxidation

Sugarfermentation

a b s t r a c t

Anoveltypeofanaerobicbacteriawaspreviouslyisolatedfromprofundallakesedimentbydirectdilution ofthesedimentinmineralagarmediumcontainingglucoseandabackgroundlawnofMethanospirillum hungateiasasyntrophicpartner.TheisolatedbacteriagroupedwithaerobicBacillusspp.accordingto their16SrRNAgenesequence,andthemostcloselyrelatedspeciesisBacillusthioparans.Fermentative growthofthenovelstrainwithglucosewaspossibleonlyinthepresenceofsyntrophicpartners,and coculturesproducedacetateandmethane,insomecasesalsolactateandtracesofsuccinateasfermenta- tionproducts.Incontrast,thecloselyrelatedstrainsBacillusjeotgaliandBacillussp.strainPeC11areable togrowwithglucoseaxenicallybymixedacidfermentationyieldinglactate,acetate,formate,succinate, andethanolasfermentationproducts.Alternatively,theisolatedstraingrewanaerobicallyinpurecul- tureifpyruvatewasaddedtoglucose-containingmedia,andlactate,acetateandformatewerethemajor fermentationproducts,butthestrainneverproducedethanol.Aerobicgrowthwasfoundwithavariety oforganicsubstratesinthepresenceofpartlyreducedsulfurcompounds.Intheabsenceofsulfideand oxygen,nitrateservedasanelectronacceptor.StrainBoGlc83wascharacterizedasthetypestrainofa newspeciesforwhichthenameBacillusstamsiisp.nov.(DSM19598=JCM30025)isproposed.

Introduction

Inastudyonanaerobicsaccharolyticbacteriaintheprofundal sedimentofLakeConstance,Germany,weisolatedaslow-growing, spore-formingbacteriumwhichgrewwithglucose,fructose,and fewothersugarsonlyin syntrophicassociationwithhydrogen- orformate-oxidizingmethanogenicpartnerorganisms[18].This bacteriumdependedoncooperationwithapartnerorganism;inhi- bition of the methanogenic partner by bromoethane sulfonate preventedgrowthandsubstrateutilizationcompletely.Phyloge- neticanalysisindicatedthatthisnewisolateisrelatedtoaerobic sporeformersofthegenusBacillus,mostcloselyrelatedtoBacil- lus jeotgali [18]. Growth tests indicated that our isolate strain BoGlc83 couldalso grow aerobically, however, aerobic growth wasfoundonlyin complexgrowthmediaand wasnot easyto reproduce.

Correspondingauthor.Tel.:+497531883558;fax:+497531884047.

E-mailaddress:Nicolai.Mueller@uni-konstanz.de(N.Müller).

1Present address:Laboratory for Chemistry and Physics of Interfaces CPI, DepartmentofMicrosystemsEngineeringIMTEK,UniversityofFreiburg,79110 Georges-Köhler-Allee103,Freiburg,Germany.

Inthepresentstudy,thephysiologyofthisnewisolateisstudied, togetherwithataxonomicdescription.Further,thephysiologyof closelyrelatedstrainswasinvestigatedincludingBacillusthioparus whichwasdescribedinthemeantimeandisevencloserrelatedto strainBoGlc83[21,56].ThespeciesnameB.thioparuswasrevised laterandBacillusthioparanswasintroducedinstead[7].Moreover, Bacillussp.strainPeC11,anisolatefromgutsofbeetlelarvae,falls withinthesame groupof Bacillusstrains[10].The latterstrain cancoupleoxidationofe.g.glucosetoFe(III)reduction,whileB.

thioparuscangrowlithoautotrophicallyonthiosulfate[10,21].

OurdatashowthatBacillussp.BoGlc83isaversatileorganism abletogrowaerobicallyandanaerobicallywithvariousorganic substrates.Yet,inreducingmediathesubstraterangeisnarrow andthestraindependsonamethanogenicpartner,thusaccentu- atingitspotentialroleasaspecializedsugar-utilizingbacteriumin sulfidicsedimentsofafreshwaterlake.

Materialsandmethods

Originofbacterialstrains

EnrichmentandisolationofstrainBoGlcfromprofundalsed- iments of Lake Constance, Konstanz, Germany, were described earlier [18].Thestrain wasdepositedat theGermanCollection

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-309355

Erschienen in: Systematic and Applied Microbiology ; 38 (2015), 6. - S. 379-389 https://dx.doi.org/10.1016/j.syapm.2015.06.004

(2)

ofMicroorganismsandCell-Cultures(DSM19598)andtheJapan CollectionofMicroorganisms(JCM30025).Methanospirillumhun- gateistrainM1h wasfromourown straincollection.B.jeotgali (DSM18226)andBacillusmegaterium(DSM319)werepurchased fromtheGermanCollectionofMicroorganismsandCell-Cultures (DSMZ).B.thioparans strainBMP-1(CECT7196) waspurchased fromtheSpanishTypeCultureCollection(CECT).Bacillussp.PeC11 waskindlyprovidedbySvenHobbieandDr.AndreasBrune,Mar- burg,Germany.

Cultivationconditions

Foraerobicgrowth,cultureswereincubatedin10mlglasstubes withaluminumcapsorinErlenmeyerflaskswithcottonstoppers onashakerat200rpmand30C.AllBacillusstrainsusedinthis studywereroutinelycultivatedin LBmedium containing10g/l Bactotryptone,5g/lyeastextract,10g/lNaCland10mg/lMnSO4 forsporulation(modifiedDSMZ-mediumNo.1).Thismodification helpedtoincreasereproducibilityofaerobicgrowth.

Foraerobiccultivationindefinedmedium,weusedafreshwa- terminimalmediumcontainingHEPES(10mM),NaCl(17.1mM), MgCl2·6H2O(2mM),NH4Cl(4.7mM),andKCl(6.7mM).Thebasal medium was autoclaved at 121C and 1bar overpressure for 20min. After cooling toroom temperature, the following sup- plements wereaddedtothemedium fromconcentratedsterile stocksolutions:CaCl2·2H2O(1mM),K–Na–phosphatebuffer,pH 7.0(1mM),7-vitamin-solution(1×,afterWiddelandPfennig[53]), traceelementsolutionSL13(1×,afterWiddeletal.[51]andMüller etal.[18]).Thiosulfatewasaddedassulfursourceatconcentrations between2and10mM.Glucoseorothersubstrateswereaddedat concentrationsbetween2and10mMfromfilter-sterilizedstock solutions.

Fortesting thepHtolerance andoptimum,themediumwas bufferedwithamixtureofMES,HEPES,TrisandCHES(10mMeach) tocoverapHbufferingrangefrompH5.0to9.5.ThedesiredpHwas adjustedbyHClorNaOHtothebasalmediumbeforeautoclaving.

Glucosewasaddedataconcentrationof4mMandthiosulfateat 2mMforpH-tests.

Growthunderanoxic,reducingconditionswastestedinoxygen- freefreshwatermediumbufferedwith30mMsodiumbicarbonate plus1mMsodiumsulfideasreducingagentasdescribedbefore [18,51,52].Cultivation wasdonein 15-mlor 25-mlglass tubes sealedwithbutylrubberstoppersthatwererenderedanoxicby flushingtheheadspacewithaN2/CO2mixture(80%/20%).Tubes were filled after autoclaving aseptically with anoxic media by meansofN2-flushedsyringes.

Forcultivationofbacteriaunderanoxic,non-reducingcondi- tionsthesameanoxicmediumwasusedasmentionedabove,but Na2Swasomittedandinstead2mMNa2SO4or2mMNa2S2O3was addedasasulfursource.

Substratesorsupplementswereaddedfromanoxicstocksolu- tions. These stock solutions were made anoxic by repeatedly stirringundervacuumandgassingwith100%nitrogenasreported before[18].

Growthexperiments

Bacterialgrowthwasmonitoredat578nmwavelengthwitha tubespectrophotometer(M107,CamspecAnalyticalinstruments Ltd., Leeds, UK) measuring optical densities directly in culture tubes.Whenopticaldensitieshadtobemeasuredinsamplesfrom largerculturevessels,adouble-beamcuvettespectrophotometer (Uvicon860,Kontron,Zurich,CH)wasused.Opticaldensitiesin anoxic,reducedmediaweremeasuredbyaddingafewgrainsof sodiumdithionitetothecuvettestokeepresazurineinitsreduced andcolorlessstate.

Growthwas definedas an overall changein optical density OD578of≥0.1.TurbiditiesofafinalOD578of0.05–0.09werecat- egorizedas“poorgrowth”.LowervaluesofOD578weredefined as“nogrowth”. Cultureswereinoculated toaninitialOD578 of 0.005–0.05,meaningthat,withthedefinitionofgrowthmentioned above,aOD578 of 0.1correspondstoapproximately2–4dou- blings.

PCRofbacterial16SrRNAgenesandphylogeneticanalysis

DNA extraction, amplification,and analysisof the16S rRNA genesaswellascalculationofthephylogenetictreeweredone asdescribed earlier[18].Primersusedfor amplificationofbac- terial16SrRNAgeneswere27F(5-AGAGTTTGATCCTGGCTC AG-3)[6] and1492R (5-TACGGYTACCTT GTTACG ACTT-3) [50].Primersspecificforthe16SrRNAgeneofBacillussp.BoGlc83 wereconstructedusingtheBioEditsoftwaretool[9].The100most similar gene sequences available on theNCBI-database (www.

ncbi.nlm.nih.gov/) wereused for comparison. Theprimers thus obtainedwereBoGlcfw(5-CCTTGACGGTACCTGCCAGA-3)and BoGlcrev(5-GGCTCCAAGGTTGCCCCTAG-3)andwereusedto amplifya991DNAfragmentatanannealingtemperatureof55C asdescribedearlier[18].

Since several newbacterial isolates closely related to Bacil- lussp.BoGlc83weredescribedin themeantime,we createdan updatedphylogenetictreeusingthepreviouslypublishedpartial sequenceofthe16SrRNAgeneofstrainBoGlc83withalengthof 1488bp(accessionnumberAY189804,[18]).Sequencesofinter- est were manuallyselected and aligned with theSINA aligner [24].Thephylogenetictreewascalculatedwith1358unambigu- ouslyalignednucleicacidpositionsusingthemaximum-likelihood methodRAxMLasimplementedintheARB5.5softwarepackage (http://www.arb-home.de,[15,41]).Thenon-redundantSSURef- erencedatasetNr.99fromthearb-silvahomepagewasusedfor phylogenetic analysis (http://www.arb-silva.de, [25]). Bootstrap supportfortheindividualbranchesinthephylogenetictreewas calculated using 1000 bootstraps and the RAxMLalgorithm as implementedinARB(http://www.arb-home.de,[15,41]).

StrainBoGlc83 wasalsoidentified using theEzTaxonserver (http://www.ezbiocloud.net/eztaxon; [13]) on the basis of 16S rRNA gene sequence data.For aligning sequence datanot con- tainedintheEzTaxondatabase,NCBIBLAST(http://blast.ncbi.nlm.

nih.gov/Blast.cgi,[2])wasused.

DNA–DNAhybridization

DNA–DNAhybridizationwascarriedoutbyDr.CathrinSpröer oftheIdentificationServiceoftheDSMZ,Braunschweig.Germany.

Analyticalmethods

Glucose,pyruvate,succinate,lactate,formate,andethanolwere analyzedbyHPLCusinganAminexHPX-87Hion-exchangecolumn (BioRad,Munich,Germany)heatedto60Cwith5mMH2SO4as eluentataflowrateof0.6ml/minsuppliedbyaLC-10ATvppump (Shimadzu,Munich,Germany).Sampleswereinjectedintothesys- temwitha234autoinjector(Gilson,Limburg-Offheim,Germany).

Theanalysistimewas25minpersample.Analytesweredetected witharefractionindexdetectorRID-10A(Shimadzu)andthedata analyzedusingtheShimadzuLCsolutionsoftware.Sampleswere preparedasdescribedelsewhere[18].

Nitrate,nitrite,sulfate,andsulfitewereanalyzedwithanion chromatography systemusinganLCA A14anion exchangecol- umn(Sykam,Fürstenfeldbruck,Germany).Thedetectionrangewas between0.05and 1mM,therefore,sampleswerediluted1:100 withwaterbeforemeasurement.

(3)

ThiosulfatewasquantifiedbycyanolysisinthepresenceofCu2+

(modifiedafterNorandTabatabai[20]).Samplesweredilutedin distilled water toa final volumeof 900␮land in a concentra- tionrangeof10–400␮M.Then,50␮lofa0.1MKCNsolutionwas addedandthesampleswereincubatedatroomtemperaturefor 5min.Thereafter,thesamplesweremixedwith50␮lofa50mM CuCl2solutionandincubatedforfurther5minatroomtempera- turetorelease1molofSCNpermoleofS2O32−.Last,50␮l0.75M Fe(NO3)3in3MHNO3wasaddedandafteranadditionalincuba- tiontimeof2min,theresultingiron(III)cyanatewasquantifiedby recordingtheabsorbanceat460nminaU-1100spectrophotome- ter(Hitachi,Tokyo,Japan)againstacontrolassaymixturewithout thiosulfate.CalibrationcurveswererunusingNaSCNstandardsin arangeof10–400␮Minafinalvolumeof1mltowhicheach50␮l Fe(NO3)3in3MHNO3wasadded.

Determinationofintra-andextracellularelementalsulfurwas donebymeltingelementalsulfurinsamplesfrombacterialcultures at90CinthepresenceofKCNtoyieldSCN(modifiedafterSchedel andTrüper[30]).Samplesof50–100␮lcultureweremixedwith 3mlofa0.1MKCNsolutionin15mlplastictubesandincubated for20mininawaterbathheatedto90C.Sampleswereallowed tocooltoroomtemperatureand6.95–6.90mldistilledwaterand 500␮l0.75MFe(NO3)3in3MHNO3wereadded.Theabsorbance wasmeasured inplastic cuvettesat 460nmin a U-1100 spec- trophotometer(Hitachi,Tokyo,Japan)andconcentrationsofSCN werecalculatedusingcalibrationcurveswithNaSCNasdescribed above.

SulfitewasqualitativelydetectedusingsulfitetestpaperNo.907 63(Macherey-Nagel,Düren,Germany).Sulfatewasassayedusing thebariumchloridemethod[43].

Analyses ofrespiratory quinones,polarlipids, and fattyacid compositionwerecarriedoutbytheIdentificationServiceofthe DSMZandDr.BrianTindall,DSMZ,Braunschweig.Germany.Anal- ysisoftheG+CcontentofgenomicDNAwascarriedoutbythe IdentificationServiceoftheDSMZandDr.PeterSchumann,DSMZ, Braunschweig.Germany.

Oxidasewastestedusingoxidaseteststrips(Fluka)following themanufacturer’sinstructions. Presenceof catalasewastested by dropwise adding a 3% H2O2 solution to a colony on solid mediaortocellsuspensionsdroppedonaglassslide.Theoxidase andcatalase-negativeLactobacillusplantarumandtheoxidaseand catalase-positiveParacoccusdenitrificanswereusedasreference strains.

Chemicals

All chemicals were of analytical or reagent grade quality and purchased from Sigma (Deisenhofen, Germany), Fluka (Neu-Ulm, Germany), Serva (Heidelberg, Germany), Boehringer (Mannheim, Germany), Eastman Kodak (Rochester, NY, USA), Merck(Darmstadt,Germany),andPharmacia(Freiburg,Germany), gases were purchased from Messer-Griesheim (Darmstadt, Germany),andSauerstoffwerkeFriedrichshafen(Friedrichshafen, Germany).

Results

Quantificationofsugar-degradingbacteriainLakeConstance sediments

Sugar-degradingbacteriawerecountedaerobicallyandanaero- bicallybothinthepresenceandabsenceofM.hungateiasapartner.

After incubation for 2–3 months, anaerobic glucose-degrading colonieswerefounduptoatotalof3.8×107cells/cm3sediment.

Aerobiccountsindefinedfreshwatermediumwith2mMglucose

assolesubstrateyieldedcountsof7.4×107cfucm−3.Coloniesin theagarwereoftenfluffyand,inthecaseofanaerobicgrowth,sur- roundedbycoloniesofthemethanogenicpartnerorganism[18].

Bacterialcellsinthecoloniesinbothcaseswereshortrods,often withsubterminal ellipticalspores[18].ControlsbyPCRanalysis confirmedthatinbothcasesthesametypeofbacteriawasculti- vated.

OccurrenceofthistypeofbacteriainLakeConstancesediments wasverifiedalsobyamplificationofthe16SrRNAgeneofBacillus sp.BoGlc83usingprimersspecificforthisstrain.Directamplifica- tionoftheexpectedPCRfragmentfromDNAisolatedfromlake sediment was not successful.In anotherexperiment, DNA was isolatedfromsedimentstakenatdifferentwaterdepths(littoral sedimentandprofundalsedimentsat77mand145mwaterdepth) andusedastemplateforunspecific16SrRNAgeneamplification.

TheresultingPCRproductwasusedastemplateforanotherPCR withtheprimersspecificforBacillussp.BoGlc83.ThisPCRyielded theexpected991bpfragmentoftheBacillussp.BoGlc8316SrRNA genefromallthreesamples(datanotshown).

Chemotaxonomicandphenotypiccharacterizationofstrain BoGlc83

UponaerobiccultivationinmodifiedLBmedium,strainBoGlc83 grewasshort,irregularrodsof5–10␮mlengthand0.5–0.8␮m width. Chains of fiveor more cells were oftenobserved, espe- ciallyintheearlyexponentialphase.Thephylogeneticallyrelated strainsB.thioparans,B.jeotgali,andBacillussp.PeC11wereslightly shorterandthinner.StrainBoGlc83belongstothegenusB.accord- ingtoprevious16S-rRNAgeneanalyses[18].Itsclosestdescribed relativesareB.thioparans(similarity98.91%[21]),Bacillussubter- raneus(similarity98.51%[12]),B.jeotgali(similarity98.44%[56]), Bacillusboroniphilus(similarity98.31%[1]),andBacillusselenatarse- natis(similarity98.30% [54])afteranalyzingthe16SrRNAgene sequence of Bacillus strainBoGlc83 using the EzTaxon Identify tool [13]. In addition, the 16S rRNA gene sequence of Bacillus strain BoGlc83 wasaligned withthe 16S rRNA gene sequence of the taxonomically undescribed Bacillus sp.PeC11 [10] using the BLAST bl2seq tool and the similarity was 98.1%. The phy- logenetic distancetreeof BacillusstrainBoGlc83and itsclosely relatedstrainsbasedonthe16SrRNAgenesequenceisshownin Fig.1.Basedonthethresholdvalueof98.7%fordifferentiatingtwo bacterialspeciesbytheir16SrRNAgenesequence[28,39,55]Bacil- lussp.BoGlc83 andB.thioparansseemedtorepresentthesame species.Therefore, DNA–DNAhybridizationof thesetwo strains wasperformedandtheDNA–DNAsimilaritywasdeterminedto be23.8%and25.5%induplicatemeasurements.Consideringthat theDNA–DNAsimilarityoftwostrainsmustbesmallerthan70%

forclassifyingthemasdifferentspecies[49],westatethatBacillus sp.BoGlc83andB.thioparanshavetobegroupedintwodistinct species.

StrainBoGlc83wasoxidasepositivebutwascatalasenegative when tested after aerobic or anaerobic growth. The G+C con- tentwasdeterminedto42.8mol%(Table4).Respiratoryquinones were menaquinone-7 (MK-7, 97%) and menaquinone-6 (MK-6, 3%). Thestrain containsthepolarlipidsdiphosphatidylglycerol, phosphatidylglycerolandphosphatidylethanolamineasjudgedby thin-layerchromatographycarriedoutbytheDSMZidentification service.Analysisofthefattyacidcompositionclassifiesitasamem- beroftheBacilluspumilussubgroupB(DSMZanalysis).Themajor fattyacidwasiso-C15:0with48.8%ofthetotalfattyacidcontent.

Similarresultswereshownearlierforthecloselyrelatedstrains B.thioparans(77.3%iso-C15:0,[21])andB.jeotgali(49.3%iso-C15:0

[56]).Detailedresultsofthefattyacidanalysisaresummarizedin Table1.

(4)

Fig.1. PhylogenetictreeshowingthepositionofBacillussp.strainBoGlc83andcloselyrelatedstrainsbasedona1488bplongfragmentofthe16SrRNAgene.Thetreewas createdusing1358unambiguouslyalignednucleotidepositionsandthemaximum-likelihoodmethodRAxMLasimplementedinARB(http://www.arb-home.de,[15,41]).

Fornodeswithbootstrapvalueshigherthan70%,therespectivepercentagesareshown.Barequals5%estimatedsequencedivergence.

Table1

AnalysisoffattyacidcompositionofBacillussp.strainBoGlc83.

BacillusstrainBoGlc83–compositionoffattyacids%

Fattyacid Percentage

C10:0 0.03

i-C13:0 0.26

ai-C13:0 0.05

i-C14:0 1.32

C14:0 0.84

iF-C15:1 2.06

ai-C15:1 0.05

i-C15:0 48.81

ai-C15:0 10.93

C15:0 0.08

C16:1␻7calcohol 0.99

i-C16:0 1.33

C16:1␻11c 1.42

C16:0 4.52

i-C17:1␻10c 7.32

ai-C17:1␻9c 0.18

i-C17:0 12.78

ai-C17:0 3.73

C18:1␻9c 0.12

C18:1␻7c 0.07

C18:0 0.19

i-C19:0 0.11

Summedfeature1 0.06

Summedfeature3 0.47

Summedfeature4 2.29

AnalysiswasdonebytheDSMZidentificationservice.Chromatographicpeaksthat couldnotbeseparatedcontained:Summedfeature1:i-C15:1H/i-C15:1I/C13:03OH;

Summedfeature3:C16:1␻7c/i-C15:02OH;Summedfeature4:i-C17:1I/ai-C17:1B.

AerobicgrowthofstrainBoGlc83

If strain BoGlc83 was cultivated aerobically in freshwater medium with sulfate as sulfur source, growthwas not always reproducibleaftertransferring stationarycells tofreshmedium andwasfoundpreferentiallywithcomplexgrowthmediacontain- ingyeastextractorotherundefinedconstituents.Aerobicgrowth wasobservedalwaysforonly3–4generations,i.e.,onetransfer afteranaerobiccultivation;furtheraerobiccultivationyieldedno furthergrowth.Aerobiccultivationovermorethan3–4cellgenera- tionswaspossibleinthepresenceofyeastextract(0.05%w/v).This growth-stimulatingeffectwasfurtherelucidatedusingfreshwater mediumwithsingleaminoacidsorcombinationsofaminoacids.

Sulfur-containingaminoacidscausedsubstantiallyhighergrowth stimulation(OD578=0.44±0.11with1mMl-methionine+4mM

Fig.2.AerobicgrowthofstrainBoGlc83withdifferentsulfursources.Inoculawere obtainedbycentrifugationof500␮lofanaerobiccoculturewithMethanospirillum hungatei.Pelletswerewashedthreetimesinoxicminimalmediumwithoutsul- fursource(filleddiamonds)orinsulfide-reducedanoxicmedium(filledsquares).

Afterthelastwash,inoculaweretransferredtooxicminimalmediumwithout sulfursource.Anon-washedcontrolwasruninparallel(emptycircles).Intwo additionalexperiments,sulfur-freewashedinoculaweretransferredtomediacon- tainingeither1.8mMthiosulfate(opensquares)or0.1%w/velementalsulfur(filled triangles).Shownaremeanvaluesofn=3ofOD578±standarddeviation.

glucose)thanotheraminoacidsdid(l-glutamine,OD578=0.25;

glycine, leucine, alanine, asparagine OD578=0.15–0.19). Also glutathionestimulatedgrowthsubstantially(OD578=0.51with 2mM glutathione). Obviously, the cells depended on a partly reducedsulfursourcebeyondthesodiumsulfatethatwaspresent in the standard medium. As documented in Fig. 2, also partly reduced inorganicsulfurcompounds such asthiosulfate orsul- furflowerstimulatedgrowthwithsucroseinasimilarmanneras methioninedid.AsalsoshowninFig.2,smallcarry-oversofsul- fidefromreducedanaerobicpreculturescouldstimulategrowthof aerobiccultures.

(5)

Fig.3. AerobicgrowthofstrainBoGlc83with5mMglucoseplus10mMthiosul- fate.Shownareopticaldensitiesat578nm(filledsquares),glucoseconcentrations (emptydiamonds),acetateconcentrations(emptytriangles),andthiosulfatecon- centrations(emptysquares).N=3,±standarddeviation.

Growthstimulationbythiosulfatewithglucoseasmainenergy sourcerequiredatleast2mMthiosulfatetoyieldsignificantyield increases.Inthepresenceof4mMglucose,thethiosulfate-specific growthstimulationwashigher thanwith2mMglucose;higher thiosulfate additions (4mM,10mM)didnotstimulate glucose- dependentgrowthanyfurther.Additionofthiosulfatestimulated glucose consumption alsoin densesuspensions of resting cells (resultsnotshown).

Thiosulfatewasconsumedtogetherwithglucoseinaerobiccell suspensionsatabouta1:1stoichiometry.Thesecellsuspensions werecontinuouslyspargedwithairandtheemittedgaswaspassed throughavesselcontainingcupricchloridesolution.Formationof abrownprecipitateinthisvesselindicatedtheformationofhydro- gensulfide.Sulfateorsulfitecouldnotbedetected.

Ingrowingbatchcultures,thiosulfate wasconsumedincom- pletely during theexponential growthphase (Fig.3).From an averageof11.3mMthiosulfateaddedtotriplicatecultures,9.4mM wasstillpresentattheendofgrowth(Fig.3).Elementalsulfurcould bedetectedintheculturesatanaverageconcentrationof4.9mM.

Assumingthat1molofthiosulfatecouldbeconvertedto2molof elementalsulfur,thissulfurconcentrationapproximatelyaccounts forthe1.9mMthiosulfateconsumed.

AerobicgrowthwaspossiblebetweenpH6.5and8.5,withan optimumatpH7.0–7.5.NogrowthwasfoundatpH5.5and9.5 (Table4).UnderoptimalconditionsatpH7.2,growthwascompa- rablyslowwith=0.16–0.19h−1(td3.7–4h).Theglucose-specific growthyieldincreasedlinearlyintherangeof0–1.5mMglucose;

at higher glucoseconcentrations, the increase wasnot propor- tionaltotheavailablesubstrate(Fig.4).Themolargrowthyield was57.8±1.3gdrycellmasspermolglucosedissimilated.Sev- eralothersugars(fructose,galactose,mannose,lactose,maltose, sucrose)wereutilizedwithsimilargrowthefficiencies.Besidessug- ars,alsoacetate,citrate,fumarate,gluconate,lactate,pyruvate,or succinatewereusedassubstratesforaerobicgrowth.Therewas nogrowthwithsingleamino acidsor combinationsofdifferent aminoacidsnorwithmonovalentalcohols.Alistofsubstratesuti- lizedornotutilizedisfoundinthespeciesdescriptionattheendof thispaper.SeveralcharacteristicsofstrainBoGlc83anditsclosest relativesaresummarizedinTable4.

Fig.4.Influenceofglucoseconcentrationonmaximalopticaldensitiesreached byculturesofstrainBoGlc83growninoxicminimalmedium.Averagemaximal changesofOD578ofthreeindependentcultures±standarddeviationarepresented.

Someerrorbarsaresmallerthansymbolsize.

Fig.5. Highestmaximalchangesofopticaldensitiesat578nmreachedbycultures ofstrainBoGlc83duringanaerobicgrowthinnon-reducingmediumwithdifferent combinationsofglucose,nitrate,casaminoacids(CA),andyeastextract(YE).Mean valuesofthreeindependentcultures±standarddeviationafter5daysofincubation.

Anaerobicgrowthinnon-reducingmedium

Inanoxic,non-reducedmedium,strainBoGlc83grewwithglu- coseplusnitrateinthepresenceof0.05%casaminoacidsand0.05%

yeastextractassupplements(Fig.5).Growthwaspossiblealsowith casaminoacids,yeastextract,andtryptoneassolesourcesofcarbon andenergyrespectivelyandwithnitrateasanelectronacceptor.

However,growthonglucoseplusnitratewaspoorifnocomplex supplementswerepresent(Fig.5).Therefore,growthwastested bothinthepresenceandabsenceofglucose.AsshowninFig.5,glu- coseinadditiontocasaminoacids,yeastextract,andnitrateyielded muchhigheropticaldensitiesthancontrolswithoutglucoseaddi- tion.Thus,strainBoGlc83canoxidizeglucoseanaerobicallywith nitrateaselectronacceptorinthepresenceofcomplexmedium additions.Forfurthercharacterizationofnitratereductionbystrain BoGlc83,sulfate(2mM)wasaddedasasulfursource.Of20mM nitrateinitiallyaddedtothemedium,anaverageof10.2mMnitrite wasproduced,and3.9mMnitrateand3.9mMglucosewerestill presentattheendofgrowth.Oxidationofglucosewasincomplete eventhoughnitratewasstillpresent,indicatingthattheaccumu- latednitriteinhibitedfurthergrowth.Acetate(5.9mM)andlactate (2.8mM)wereformedasfurtherproducts. Similarresultswere

(6)

Fig.6.Highestmaximalchangesofopticaldensitiesat578nmreachedbycultures ofstrainBoGlc83duringanaerobicgrowthinnon-reducingmediumwithdifferent combinationsofthiosulfate,nitrate,casaminoacids(CA),andyeastextract(YE).

Meanvaluesofthreeindependentcultures±standarddeviationafter22daysof incubation.

obtainedincultureswith2mMthiosulfateassulfursource(not shown).However,asmentionedabove,undertheseconditionssul- furwasmostlikelyassimilatedfromorganicsourcesinthecomplex supplements.Inacontrolexperiment, glucosewasomitted and 1%casaminoacidsascarbonandenergysourcewereaddedinthe presenceof20mMnitrateand2mMsulfateassulfursource.After growthendedinthreeindependentcultures,cultureswithsulfate assulfursourcecontained9.4mMnitrite,while17.2mMnitrite wasstillpresent incultureswith2mM thiosulfate.Nitratewas completelyconsumedinbothcases.

We also tested for possible use of thiosulfate as an energy source. Strain BoGlc83 was cultivated with 50mM thiosulfate, 50mMnitrate,0.05%casaminoacids,and0.05%yeastextract(Fig.6) Controlcultures contained either nocomplex supplements,no thiosulfate,ornonitrate(Fig.6).Cultureswithoutcasaminoacids andyeastextract didnot grow,whereas allculturescontaining thesecomplexsupplements andnitrategrew wellandreached stationaryphaseafter76h(averagemaxOD578=0.31,Fig.6).Opti- caldensitiesincultureswiththiosulfateinadditiontocasamino acids,yeastextract,andnitrateincreasedfurther,andthecultures reachedstationaryphaseafter22days(averagemaxOD578=0.59, Fig.6).Formation ofa white precipitatewasobserved inthese cultures suggestive ofproduction of elemental sulfur. Thecon- centration of elemental sulfur in these cultures was 10.1mM (±2.4mM),while4.1mMthiosulfatewasconsumedasjudgedby colorimetricassays.

Anaerobicgrowthinreducingmedium

StrainBoGlc83didnotgrowinreducingmediuminpurecul- ture(OD578below0.1),neitherwithglucosenorwithpyruvate addedseparatelytothemedium.However,culturesweremetabol- icallyactiveundertheseconditions,asglucoseorpyruvatewas slowlyconvertedtolactateandacetate(Table2).Ifbothglucose andpyruvateweresuppliedinthepresenceof0.05%casaminoacids and0.05%yeastextract,culturesgrewtoanaveragemaxOD578

of0.19 (Fig.7).Weakgrowthwasfoundalsointheabsenceof casamino acids and yeast extract, yet to a much lower extent thanincultureswiththesesupplements(datanotshown).Fer- mentationproductswerelactate,succinate,acetate,andformate (Tables2and3).EthanolwasneverproducedbystrainBoGlc83.

However,thecloselyrelatedB.jeotgaliandBacillussp.PeC11pro-

ducedsignificantamounts ofethanolduringgrowthonglucose Table2 FermentationbalancesofstrainBoGlc83andotherBacillusstrainstestedforanaerobicgrowthinreducingmediumwith5mMglucose.Shownareaveragevalues±standarddeviationofn=3. Glucose consumed (mM) Glucose assimilated (mM)a

Glucose dissimilated (mM) Fermentationproducts(mM)Electronrecovery SuccinateLactateAcetateFormateEthanolFromtotal glucose consumptionb

Fromglucose dissimilatedb Bacillussp.BoGlc830.08±0.240.01±0.020.07±0.020.07±0.010.53±0.120.28±0.090.24±0.040±0NANA Bacillusjeotgali5.05±0.010.58±0.024.47±0.020.57±0.025.09±0.241.98±0.163.72±0.512.24±0.3695.5±3.4%108±4.5% Bacillussp.PeC115.17±0.180.64±0.004.53±0.000.12±0.021.08±0.064.02±0.167.97±0.364.11±0.1890±5.5%102.5±3.8% aCalculatedassuminganOD/drymasscorrelationof263.5mg/lperOD578=1asin[18]fromthehighestobservedaverageofn=3correctedforinitialODvaluesatthebeginningoftheexperiment.Fromtheassimilation equation,acorrelationof6.877molglucoseper1mgcelldrymasswasderivedasdescribedin[18]. bElectronrecoverieswerecalculatedforbothtotalglucoseconsumptionanddissimilatedglucoseasthegrowthmediumcontained0.05%casaminoacidsplus0.05%yeastextractrequiredforgrowth.Thissupplementaddition ledtoanelectronrecoveryhigherthan100%,aspartofthecellmasswasproducedfromthesupplements.

(7)

Table3 FermentationbalancesofstrainBoGlc83andotherBacillusstrainsgrownanaerobicallyinreducingmediumwith5mMglucoseplus10mMpyruvate.Shownareaveragevalues±standarddeviationofn=3. Glucose consumed (mM) Glucose assimilated (mM)a

Glucose dissimilated (mM) Pyruvate consumed (mM)

Fermentation products(mM)Electronrecovery SuccinateLactateAcetateFormateEthanolFromtotal Glucoseand Pyruvate consumptionb

FromGlucose dissimilatedb Bacillussp.BoGlc835.47±0.240.34±0.025.13±0.022.5±1.030.16±0.0310.15±1.092.93±0.681.54±0.680±096.6±13.2%101±10.7% Bacillusjeotgali3.7±1.210.36±0.133.34±0.131.4±0.770.53±0.104.53±1.312.51±0.682.61±0.751.2±0.2099.1±18.8%104±23.9% Bacillussp.PeC115.16±0.200.33±0.044.83±0.041.7±0.320.22±0.081.54±0.145.9±0.189.19±0.584.21±0.1397±6.7%103±5.11% acalculatedassuminganOD/drymasscorrelationof263.5mg/lperOD578=1asin[18]fromthehighestobservedaverageofn=3correctedforinitialODvaluesatthebeginningoftheexperiment.Fromtheassimilation equation,acorrelationof6.877molglucoseper1mgcelldrymasswasderivedasdescribedin[18]. bElectronrecoverieswerecalculatedforbothtotalglucoseconsumptionanddissimilatedglucoseasthegrowthmediumcontained0.05%casaminoacidsplus0.05%yeastextractrequiredforgrowth.Thissupplementaddition ledtoanelectronrecoveryhigherthan100%,aspartofthecellmasswasproducedfromthesupplements. Table4 CharacteristicsofstrainBoGlc83andcloselyrelatedstrains. CharacteristicBacillusstrain BoGlc83Bacillus thioparans CECT7196

Bacillusjeotgali DSM18226Bacillusstrain PeC11Bacillus subterra-neusBacillus boroni-philusBacillusselenat- arsenatis Cellsize(m)5–10×0.5–0.81–1.7×0.5–0.7a4–6×0.8–1.1cND2–25×0.5–0.8d1.8–5.5×0.5–0.9e3–6×1f pHoptimum7.0–7.57.0a7.0–8.0cND7.0–9.0d7.5–8.5e8.0f pHrange6.5–8.5ND5.0–8.0cND6.0–9.5d6.5–9.0e7.5–9.0f Temperatureoptimum30C30C–35Ca30C–35CcND37C–40Cd30Ce40Cf Temperaturerange20C–40Cb30C–45Ca10C–45CcND25C–45Cd16C–37Ce25C–40Cf Catalase+a+cND+d+e+f Oxidase+acNDd+ef GCcontent42.8%43.8%a41%cND43%d42.2%e42.8%f Sporeformation+++NDd+e+f Nitratereduction++a+cND+de+f Axenic,fermentativegrowthwithglucose+++dNDND Axenic,fermentativegrowthwithglucoseandpyruvate+ND++NDNDND Syntrophic,fermentativegrowthwithglucose++NANANDNDND Autotrophicgrowthwiththiosulfate+aaNDNDNDND EthanolproductionduringfermentativegrowthwithglucoseND++NDNDND ND=notdetermined. aDataextractedfrom[21]. bDataextractedfrom[18]. cDataextractedfrom[56]. dDataextractedfrom[12]. eDataextractedfrom[1]. fDataextractedfrom[54].

(8)

Fig.7.AnaerobicgrowthofstrainBoGlc83,Bacillusjeotgali,andBacillussp.PeC11 inreducingmedium.Mediacontainedboth0.05%casaminoacidsand0.05%yeast extractandeither5mMglucoseplus10mMpyruvate,5mMglucose,or10mM pyruvate.Shownaremeanvaluesofthehighestchangesofopticaldensitiesat 578nmofthreeindependentcultures±standarddeviationafter135hofincubation.

(Tables2–4),andwerealsoabletogrowwithoutaddedpyruvate (Fig.7).Thepatternoffermentationproductsduringgrowthwith glucosepluspyruvatedifferedgreatlybetweenthethreestrains (Table3).ThemajorfermentationproductofstrainBoGlc83was lactate,withminoramountsofacetateandformate.AlsoB.jeotgali producedmainlylactate,butalsoformate,acetate,ethanol, and succinate(Table3).Incontrast,Bacillussp.strainPeC11produced mainlyformate,acetate,andethanol,togetherwithminoramounts oflactateandsuccinate(Table3).Noneofthesestrainstestedgrew with10mMpyruvatealone.

Syntrophicgrowth

Anaerobicgrowthunderreducingconditionswithglucoseinthe presenceofM.hungateiwasshownearlierforBacillussp.BoGlc83 [18].WealsotestedothercloselyrelatedBacillusstrainsforsyn- trophicgrowth.OfthetestedB.megaterium,B.thioparans,B.jeotgali, andBacillussp.Pec11,onlyB.thioparanswasabletogrowinthis mediumwithglucoseinthepresenceofM.hungateiafteranincu- bationtimeofapproximately1month,whileaxenicgrowthofB.

thioparanswithglucosewasnotpossible(Table4).B.megaterium didnotgrowatallundertheseconditionsandB.jeotgaliandBacillus sp.PeC11reachedstationaryphasealreadyafter7daysasbothare abletogrowwithglucosewithoutamethanogenicpartner.There wasnoindicationofafermentationproductshiftbythepresence ofthemethanogenicpartner.

Discussion

Thebacterialstraindescribedinthisstudy,strainBoGlc83,was originallyisolated asanumerically predominantutilizerofglu- coseandothersugarsinthesedimentofLakeConstance,Germany.

Anaerobicgrowthwaspossibleonlyinthepresenceofformate- orhydrogen-utilizingmethanogenicpartners.Later,itturnedout thatthisbacteriumgroupedwiththegenusBacillusonthebasis of16SrRNAgenesequencedata,andthatitwasalsoabletogrow aerobically.However,asdocumentedinthepresentstudy,aerobic growthwasnoteasytoreproduceonstandardmediabutrequired partlyreducedsulfurcompounds,eitherorganicorinorganicones, forreproducibleaerobicgrowth.Sulfur,thiosulfate,orsulfitecould serve assulfur sourceunder theseconditions. Nonetheless,the requirementforsuchpartlyreducedsulfurcompoundswascom- parablyhigh,intherangeof2mM,farmorethantheamountof

sulfurrequiredforassimilationonly(whichwouldbeintherange of20–50␮MSwiththecelldensitiesreached,assumingasulfur contentofcelldrymatterofabout1%).Inaerobiccultures,thio- sulfate wasconverted toelementalsulfur especially duringthe exponentialgrowthphase,indicatingthatthiosulfatecanserveas anadditionalelectronacceptorwhenoxygenbecomeslimitingdue totheincreasingcelldensity.Indensecellsuspensionsofaerobi- callygrowncellsofstrainBoGlc83,consumptionofthiosulfatewas evenmorepronounced,thussupportingthehypothesisthatthe cellsbecomeoxygen-limitedwithincreasingcelldensity,evenif thecellsuspensionsarevigorouslyspargedwithair.Unfortunately, elementalsulfurwasnotmeasuredincellsuspensionexperiments.

Itisknownfromotherthiosulfate-metabolizingbacteriathatele- mentalsulfurandsulfiteareproductsofthiosulfatecleavage[3].In strainBoGlc83,itappearsthat1molofthiosulfateisconvertedto 2molofelementalsulfuraccordingtothemeasuredstoichiometry.

Moreover,sulfiteorsulfatecouldneverbedetected,neitherafter aerobicnorafteranaerobicgrowth.

StrainBoGlc83grewoptimallyaerobicallywithdoublingtimes of3–4h.Instandardenrichmentcultureswithsugarsassubstrates, itwouldalwaysbeoutcompetedbyfasteraerobicbacteria.The sameapplies forcultivationunder anoxicconditions(td>24h):

classicalsugar-fermentingbacteriasuchasClostridiumspp.would outcompeteitveryquicklyalthoughsuchbacteriawerefoundin oursedimentonlyatsubstantiallylowernumbers[18].Isolation ofthisnovelbacteriumwaspossibleonlyindirectdilutionseries inthepresenceofabackgroundlawnofmethanogenicpartners.

Nonetheless,thefactthatthisbacteriumappearstobeadominant sugarutilizer inthelakesedimentstudiedindicates thatunder theconditionsprevailingtherethistypeoforganismhasaclear advantageoverothers,e.g.,byoptimalATPgenerationinsyntrophic cooperation[31].

Strain BoGlc83 can grow auxotrophically in anoxic, non- reducingmediumbynitraterespirationonglucose,withcasamino acids, yeast extract, tryptone, or thiosulfate present. However, nitratereduction wasincompleteinbatchcultures andmostof thenitratepresentintheculturesaccumulatedasnitrite.Nitrate reductionisrathercommoninBacillusstrains,however,oxidation ofthiosulfate asanelectronsourcefornitratereductionwithin thegenusBacillushassofarbeendescribedonlyforB.thioparans [21,35].Yet,thetypeof metabolismis alreadyknownforother bacteria like Thiobacillus denitrificans [11]. In ourhands, strain BoGlc83didnotgrowlithoautotrophicallywiththiosulfateasthis wasshownearlierforB.thioparans[21].Yet,duringauxotrophic growthinthepresenceofyeastextractandcasaminoacids,opti- caldensitiesincreasedandelementalsulfurwasdetectedinthe cultureswhilepartofthethiosulfatewasconsumed.Formation ofawhiteprecipitatewasobservedinthesecultureswhichcould beinsoluble elementalsulfurandtherefore makesit difficultto judgewhethertheobservedincreaseinturbidityisgrowthrelated.

However,cellsareobviouslymetabolicallyactiveunderthesecon- ditions.Therefore,itislikelythatstrainBoGlc83usesthiosulfate asan electronacceptor,e.g. ifnitrite concentrationsin anaero- bic cultures are too highto allowfurther nitratereduction. In cultures withthiosulfate, casamino acids and yeast extract no growthwasobserved whichshows thatnitrateisessential and thiosulfateadditionalonecannotsupportgrowth.Butthefactthat duringbothaerobicandanaerobicgrowth1molofthiosulfateis convertedto2molofelementalsulfurindicatesthat thiosulfate servesaselectronacceptorratherthanaselectrondonorforstrain BoGlc83.ThiosulfateoxidationasinB.thioparansorThiobacillus intermediuswouldyieldsulfiteandsulfateasintermediatesorend products[3,21],whichcouldneverbedetectedinculturesofstrain BoGlc83.

If grown anaerobically under reducing conditions, strain BoGlc83 was unable to grow on glucose without a syntrophic

(9)

partneratfirst,eventhoughaccumulationoffermentationprod- uctscouldbeobservedinthemedium.However,ifpyruvateand supplementswereaddedstrainBoGlc83grewbymixed-acidfer- mentation.Limitedgrowthwaspossiblealsoifnosupplementsbut onlyglucoseandpyruvatewereadded.AlsoBacillussubtiliscan growbyfermentationofglucoseinanoxic,non-reducedSpizizen’s mediumamendedwithaminoacidmixtures,however,additionof pyruvatetocultureswithglucoseaugmentedgrowthsignificantly [19].It wasconcludedthatpyruvatemightserve asastimulat- ing agent that triggers expressionof genes required for mixed acidfermentation,astheintracellularpyruvatepoolmightbetoo smallto initiateexpressionof genes requiredfor fermentation.

Also,pyruvatewasdiscussedasaprecursorofcertainaminoacids thatcannotbesynthesizedbyB.subtilis[19].Similarconclusions weredrawnbeforefromobservationsmadewiththemethanogenic archaeonMethanosarcinabarkeri[17].Here, amutantthat lacks ech-hydrogenasecouldnotgrowonmethanol.Uponadditionof pyruvatetothemedium,theabilitytogrowwasrestored,andit wasconcludedthattheech-hydrogenaseprovidesthecellswith reducedferredoxintosecurepyruvatesynthesisfromacetyl-CoA.

Pyruvateinturncouldthenserveasaprecursorforbiosynthesis [17].

InthecaseofstrainBoGlc83,noneofthelatterconclusionsof geneexpressiontriggeredbypyruvateordeficiencyinbiosynthe- sispathwayscanexplainthegrowth-supportingeffectofpyruvate.

First, fermentation pathways are expressedifstrain BoGlc83 is incubatedinpurecultureonglucose,asindicatedbytheproduction offermentationproducts;thestrainjustdoesnotgrowmeasurably.

Second,eveninthepresenceofcasaminoacidsandyeastextract, nogrowthisobservedonglucosealone,indicatingthataminoacid synthesisdeficienciesarenotasuitableexplanationfortheinabil- ity ofthestraintogrowundertheseconditions. Moreover,the straingrowswellinthepresenceofamethanogenicpartnerwith- outadditionofsupplements.Yet,itispossiblethatstrainBoGlc83 lacksuptakesystemsforcertainaminoacidsbutnotforpyruvate, meaningthattheseaminoacidscouldonlybesynthesizedifhigh amountsofpyruvateareavailable.Suchasituationcouldoccurdur- ingsyntrophicgrowth,i.e.ifpyruvatedoesnotneedtobereduced tolactateorsuccinatetoregenerateelectroncarriers.Instead,dur- ing syntrophic growth,a reversed electron transport systemin strain BoGlc83 was suspected earlier to beresponsible for the regenerationofNADHtoNADwithalow-potentialelectronaccep- tor,suchthatelectronsfinallycouldbetransferredtoprotonsorto protonspluscarbondioxide,toformhydrogenorformate[18].In thepreviouslypublishedarticle,wereportedspecificactivitiesfor formatedehydrogenasewithbenzylviologenaselectronacceptor thatwereabout7foldhigherthanthespecificactivityforhydro- genase.Itwasfurtherconcludedthatformatemightbethemajor electron carrier mediating interspecies hydrogentransfer, even thoughasmallpartofelectronsfromglucoseoxidationmightalso bereleasedashydrogen.Thiswassupportedbythefactthatstrain BoGlc83didnotgrowwellinthepresenceofthehydrogen-only consuming Methanobrevibacterarboriphilus[18].Furtherindica- tionsthatformateactsasanelectroncarriertoitsmethanogenic partnerarepresentedinthispaper.Whileinsyntrophiccocultures ofstrainBoGlc83andthehydrogenandformate-consumingM.

hungateionlytracesofformateweredetected[18],formatewas producedinsubstantialamounts(1.54mM)duringgrowthinpure cultureon5mMglucoseplus10mMpyruvate,indicatingthatthe pathwayofformateproductionisexpressedandcouldserveasa majorelectronsinkduringsyntrophicgrowth.Formateproduction inthetwootherBacillusstrainstestedinthepresentstudywas evenhigher,2.6mMforB.jeotgaliand9.2mMforBacillussp.strain PeC11,whichwasalsoshownearlierforstrainPeC11underanaer- obic,non-reducingconditions[10].Apparently,theBacillusstrains B.jeotgaliand Bacillussp.strainPeC11 donotneedpyruvateto

initiate fermentativegrowth onglucose. However,the fermen- tation patterns differ between the different Bacillus spp., and syntrophicgrowthofthosestrainscouldnotbeobservedyetas thestrainsoutgrowtheslow-growingM.hungateiwhenincubated inmediumwithglucose.Thefactthatallthreestrainscanproduce formateuptoseveralmillimolarconcentrationsalsosuggeststhat theinabilityofstrainBoGlc83togrowwithglucosealonecannot beexplainedbygrowthinhibitionthroughformate.

Duringgrowthonglucoseandpyruvate,lactateis themajor fermentationproductinstrainBoGlc83,incontrasttoB.jeotgali andBacillussp.PeC11whichgrowonglucosewithoutadditionof pyruvate.Thisindicatesthatthepathwayoflactateformationfrom pyruvateis stronglyexpressedinstrainBoGlc83, whichinturn couldimplythatpyruvateisrapidlyconsumedinsidethecellby lactatedehydrogenase.Consequently,thesizeoftheintracellular pyruvatepoolmightbeinsufficienttosynthesizeessentialamino acidswhichpossiblycannotbetakenupbythecellthoughpresent inthemedium.Externallyaddedpyruvatemighthelptocompen- satefortheintracellularpyruvatelossthroughlactateproduction, whichwouldexplain whystrainBoGlc83cangrowunderthese conditions.

According to the 16S rRNA gene sequence analysis, strain BoGlc83andsimilarstrainsisolatedwithit havetobeassigned tothegenusBacilluswhichcontainsmainlystrictlyaerobic,Gram- positivespore-formingbacteria.SeveralBacillusspeciescanalso grow anaerobically by a fermentative metabolism, e.g., B. sub- tilis[19],B.cereus,B.thuringiensis,B.licheniformis,B.coagulans,B.

polymyxa,B.macerans,B.alvei,B.laterosporus,B.larvae,B.popilliae, andB.lentimorbus[35].Nonetheless,syntrophiccooperationwith methanogenicpartnershasnotbeendescribedsofarforanyBacil- lusspecies.Theclosestrelativeaccordingtoourinitialsequence analysis[18],B.jeotgali,wasdescribedasa facultativelyaerobic bacteriumandwasisolatedfromfermentingseafood[56].Accord- ingtoadetailedanalysisof16SrRNAgenesequencesofmorethan 2600Bacillusstrains,ourisolatesfallintocluster9,togetherwith severalsofarnon-describedstrains[23].Mostofthesestrainswere foundasnumericallydominantrepresentativesofthecultivable communityinDutchgrasslandsoils[8],anoxicricepaddysoil[4], pasturesoil[34],farmsoil[47],orcontaminatedgelatineprepara- tions[5].Obviously,representativesofcluster9arewidespreadin natureandrathernumerousinvariousenvironments.

Analysis of the 16S rRNA gene sequence of strain BoGlc83 showedthatthestrainiscloselyrelatedtootherdescribedspecies.

Eventhough,athresholdvalueof97%sequencesimilarityhasbeen commonlyusedsince20yearsforthedescriptionofnewspecies,a lessconservativethresholdvalueof98.7%waspostulatedinrecent years[28,38,39,55].The16SrRNAgenesequencesimilarityofstrain BoGlc83andthesequenceofB.thioparansis98.91%,thesequences of allother closely related and taxonomically described strains havea similaritybelowthethresholdvalueof98.7%.Therefore, DNA–DNAhybridizationexperimentsweredoneonlywithstrain BoGlc83andB.thioparans.ThedeterminedDNA–DNAsimilarityof maximally25.5%taxonomicallydifferentiatesstrainBoGlc83and B.thioparansandthusestablishesBacillusstrainBoGlc83asnew species.

DescriptionofBacillusstamsiisp.nov.

Bacillusstamsiispec.nov.(stam’si.i.N.L.gen.n.,honoringAlfons J.M.Stams,aDutchmicrobiologistwhohascontributedessentially toourunderstandingofsyntrophicmicrobialassociations).

Facultativelyaerobic,Gram-positivespore-formingbacterium.

Catalase-negative,oxidasepositiveafteraerobicgrowth.Cellsrod- shaped, 0.5×5␮m in size, with subterminal to terminal oval spores. Motile. Aerobic growth requires partly reduced sulfur sourcesforassimilation(sulfurflower,thiosulfate,sulfide,sulfite,

Referenzen

ÄHNLICHE DOKUMENTE

In a study on the degradation of higher dicarboxylic acids, we isolated a strictly anaerobic bacterium, strain WoGl3 T , that grew only with gluta- rate, methylsuccinate or

First, only a moderate relationship between the pair (strain NorPut1 T \‘C. amino- butyricum ’) and the Eubacterium species is indicated by the results of the 16S rRNA based

Sulfoacetate- grown cells had equally high activities with sulfoacetate (1.3 mkat (kg protein) –1 ) and acetate and cell extracts con- tained significant sulfoacetaldehyde

As indicated by morphological and physiological characteristics described by Denger & Schink (1995) and repeated below in the species description, and corroborated by

concentration of ferrie iron did not exceed the amount of the uninoculated control (not shown). During growth on elemental sulfur or sulfidic ores, the new isolâtes formed

The toxicity of cholate and its degradation intermediates with a steroid structure indicates that strain Chol1 requires a strategy to minimize these toxic effects during growth

Strain LC 2 T was isolated from littoral sediment of Lake Constance after an initial enrichment in a gradient culture followed by transfer into a liquid dilution series and finally

Six strains of novel bacteria were isolated from profundal sediment of Lake Constance, a deep freshwater lake in Germany, by direct dilution of the sediment in mineral agar