• Keine Ergebnisse gefunden

Musterlösungfür den Teil Spektroskopie

N/A
N/A
Protected

Academic year: 2021

Aktie "Musterlösungfür den Teil Spektroskopie"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Dienstag, 28. September 2005

Schriftliche Prüfung 2. Vordiplom / BSc Herbst 2005

D – CHAB/BIOL

Musterlösung

für den Teil Spektroskopie

Vorname:... Name:...

♦ Jede Aufgabe wird separat bewertet. Die maximal erreichbare Punktzahl beträgt 36.

Die Maximalnote wird mit mindestens 30 Punkten erreicht.

♦ Zeit: 60 Minuten. Teilen Sie sich Ihre Zeit gut ein!

♦ Unleserliche Texte, unklare Formulierungen oder unsaubere Skizzen können nicht bewertet werden. Bitte bemühen Sie sich um eine saubere Darstellung.

♦ Beginnen Sie jede Aufgabe auf einem neuen Blatt und schreiben Sie jedes abzugebende Blatt einzeln mit Ihrem Namen an.

♦ Dieses Deckblatt ist ausgefüllt abzugeben.

♦ Wir bitten Sie um Fairness und wünschen Ihnen viel Erfolg!

(2)

Aufgabe 1 5 Punkte

Auf den folgenden Seiten finden Sie die IR-, Massen-, 1H-NMR- und 13C-NMR-Spektren der Verbindung R69. Sie weist folgende Konstitution auf:

O O

S

O

O R69

Die Verbindung hat die relative Molmasse Mr = 220.

Hinweise zum Massenspektrum:

Signale mit einer Intensität von weniger als 1 % sind nicht gezeichnet.

Einige Signale hoher Intensität sind mit den Regeln, die in der Vorlesung vermittelt wurden, nicht zu verstehen. Dies ist auch nicht nötig. Die drei intensivsten Peaks entsprechen folgenden Fragmenten:

S CH

m/z = 45 +

S

O C O

O

+

m/z = 160

O H H +

m/z = 61

a) Ordnen Sie die Signalgruppen im 1H-NMR-Spektrum den Protonen in der Struktur zu.

Dabei können die Signale bei 2.7 und 2.9 ppm auch vertauscht zugeordnet werden.

(2 Punkte) Siehe Spektrum.

b) Die beiden Signalgruppen bei 2.7 und 2.9 ppm erscheinen im 1H-NMR-Spektrum nicht als saubere Multiplette. Man erkennt Linienverbreiterungen und zusätzliche Aufspaltungen.

Woher stammt dieses Phänomen? Mit welcher Massnahme könnte man es verkleinern?

(2 Punkte)

Es handelt sich um Effekte höherer Ordnung. Der Abstand der beiden Signalgruppen ist relativ klein verglichen mit den Linienabständen. Dadurch treten zusätzliche Linien auf. Man kann das Phänomen verkleinern, indem man das Spektrum bei höherer Feldstärke aufnimmt. Dadurch verkleinert sich der Linienabstand in den Signalgruppen auf der ppm-Skala.

c) Im IR-Spektrum findet man zwischen 1300 und 1100 cm–1 viele verschmolzene Banden.

Kann man das verstehen? Wenn ja, geben Sie die Erklärung. Wenn nein, erklären Sie, warum nicht.(1 Punkt)

(3)

Im Fingerprint-Bereich ist es grundsätzlich schwierig, Banden einer Schwingung zuzuordnen, da die Schwingungen viele Kerne umfassen und daher molekülspezifisch sind. Man kann diese Banden nicht im Detail verstehen.

IR:

Perkin-Elmer Modell 125

R69

aufgenommen in CHCl3, Schichtdicke 0.1 mm

100

80

60

40

20

0 [%]

4000 3000 2000 1500 1000 [cm ]–1 500

MS:

EI, 70 eV

100

% 80

60

40

20

0

0 50 100 150 200 250 m/z

119

160

133

189

220 87

74 55

27 15

61 45

102

(4)

+

O O

S

O O – 60

OH

O C CH

220

S

O O S

O O O C

+

160

S CH +

O 45

H

H +

O O

O

O

SH

– 118

102

+

– 41

61

S

O O

+

O O

– 102

118

– 73 O

H C

2

O

189

+

O O

S

O C

O

– 31

+

– 134 O

55 C

(5)

1

H-NMR: R69

0 1

2 3

5 4

6 7

8 9

10 ppm

200 MHz, aufgenommen in CDCl3

2.9

4.1 2.7 1.7 1.6 1.0

TMS

Lösungsmittel

2 H 2 H

3 H 2 H

2 H 3 H

2 H

O O

S

O O

13

C-NMR: R69

172.0

67.0

51.7

10.3

TMS

ppm

33.8

Lösungsmittel C

C

CH2

CH3

CH3

170.3

CH2 34.3 CH2

22.0 CH2

27.7 CH2

50 MHz, protonen-breitbandentkoppelt aufgenommen in CDCl3

(6)

Aufgabe 2 8 Punkte

Für die Verbindung R69 werden die alternativen Konstitutionen 1-4 vorgeschlagen. Finden Sie für jede Alternative mindestens zwei spektroskopische Argumente, die gegen sie sprechen.

Zum MS: Argumentieren Sie mit den Fragmentierungsregeln, die in der Vorlesung vorgestellt wurden. Das Argument "Der Basispeak ist nicht zu erklären" wird nicht akzeptiert.

(maximal 2 Punkte pro Alternative)

R69 O

O

S

O O

133 119

O O

O

O

1 S

(Da das Kohlenstoffgerüst gegenüber R69 unverändert ist, bleiben die Aufspaltungsmuster im

1H-NMR-Spektrum gleich. Es ändern allenfalls die chemischen Verschiebungen.)

Das Singlett mit Integral 2 im 1H-NMR-Spektrum läge wegen der Nachbarschaft zu O weit oberhalb von 4 ppm.

Die beiden Signale bei 2.7 ppm und 2.9 ppm im 1H-NMR-Spektrum hätten wegen der

unterschiedlichen chemischen Umgebung sehr unterschiedliche chemische Verschiebungen. Sie würden kaum Effekte höherer Ordnung zeigen. Eines der Signale käme in die Gegend von 4 ppm zu liegen.

Die hohe chemische Verschiebung des Singletts mit Integral 3 im 1H-NMR-Spektrum ist nicht zu erklären. Sie wäre sicher nicht grösser als beim Singlett mit Integral 2.

Im 13C-NMR-Spektrum hätten drei CH2-Signale eine hohe chemische Verschiebung in der Gegend von 70 ppm.

Im 13C-NMR-Spektrum könnte keine CH3-Gruppe zu einem Signal oberhalb von 50 ppm führen.

Die Abspaltung von 31 (O–CH3) zu m/z 189 im MS ist nicht zu erklären.

Das Signal bei m/z 133 im MS ist nicht leicht zu erklären. Das Argument ist nicht sehr überzeugend, führt aber zu einem Punkt.

Carbonylgruppen von Thiocarbonsäuren und ihren Estern sind gegenüber den entsprechenden Sauerstoffverbindungen um etwa 20 ppm entschirmt. Die chemischen Verschiebungen der beiden Carbonylverbindungen lägen also wesentlich weiter auseinander. (Nur für wandelnde Tabellenwerke.)

(7)

O O O O

O

2 O

Die beiden Signale bei 2.7 ppm und 2.9 ppm im 1H-NMR-Spektrum mit Effekten höherer Ordnung hätten wegen der benachbarten O-Atome eine wesentlich höhere chemische Verschiebung oberhalb von 4 ppm.

Im 13C-NMR-Spektrum hätten vier CH2-Signale eine hohe chemische Verschiebung in der Gegend von 60–70 ppm.

Im 13C-NMR-Spektrum liegt die chemische Verschiebung der Carbonylgruppe eines Kohlensäureesters unterhalb von 160 ppm.

Das Signal bei m/z 133 im MS ist nicht leicht zu erklären. Das Argument ist nicht sehr überzeugend, führt aber zu einem Punkt.

O O

S

O

3 O

Im 1H-NMR-Spektrum würde kein Sextett erscheinen.

Im 1H-NMR-Spektrum würde kein Singlett mit Integral 3 und einer chemischen Verschiebung von über 3 ppm erscheinen.

Im 1H-NMR-Spektrum würde kein Triplett mit Integral 2 und einer chemischen Verschiebung von über 4 ppm erscheinen.

Im 1H-NMR-Spektrum würden zwei Triplette mit Integral 3 und sehr ähnlichen chemischen Verschiebungen (ca. 1 ppm) erscheinen.

Im 1H-NMR-Spektrum würden zwei Quartette mit Integral 2 und sehr ähnlichen chemischen Verschiebungen (ca. 4 ppm) erscheinen.

Im 13C-NMR-Spektrum hätten zwei CH2-Signale eine hohe chemische Verschiebung in der Gegend von 60–70 ppm.

Im 13C-NMR-Spektrum könnte kein CH3-Signal bei einer hohen chemischen Verschiebung von über 50 ppm erscheinen.

Eine Abspaltung von 60 im MS zum zweithöchsten Signal bei m/z 160 ist nicht leicht möglich.

Eine Abspaltung von 31 im MS zu m/z 189 ist nicht leicht möglich.

(8)

S O

O O O

4

Im 1H-NMR-Spektrum würde kein Signal oberhalb einer chemischen Verschiebung von 3 ppm erscheinen. Ergibt 2 Punkte.

Im 13C-NMR-Spektrum würde kein Signal eines aliphatischen C oberhalb einer chemischen Verschiebung von 40 ppm erscheinen. Ergibt 2 Punkte.

Im 13C-NMR-Spektrum würden die Signale der Carbonylgruppen in den Gegend von 200 ppm erscheinen, wie es für Ketone typisch ist.

Eine Abspaltung von 60 im MS zum zweithöchsten Signal bei m/z 160 ist nicht leicht möglich.

Eine Abspaltung von 31 im MS zu m/z 189 ist nicht leicht möglich.

Im MS ist ein Signal bei m/z 133 nicht leicht zu bewerkstelligen.

Im MS ist ein Signal bei m/z 119 nicht leicht zu bewerkstelligen. Dieses Argument ergibt einen Punkt, obwohl es falsch ist. Die SO2-Gruppe kann leicht zu O–S=O umlagern, wodurch ein Fragment mit Masse 119 erzeugt werden kann. Dieses Wissen wird natürlich nicht

vorausgesetzt.

(Das Argument, die SO2-Gruppe müsste im IR-Spektrum charakteristische Spuren hinterlassen, wird nicht akzeptiert. An den entsprechenden Stellen im Spektrum erscheinen tatsächlich

Banden, die ohne weiteres von der SO2-Gruppe stammen könnten.)

(9)

Aufgabe 3 5 Punkte

Unten finden Sie das Massenspektrum der Verbindung P115 mit der relativen Molmasse Mr = 226.

a) Für die Struktur stehen die vier unten stehenden Alternativen zur Diskussion. Finden Sie die richtige. Begründen Sie Ihre Wahl. (Keine Punkte ohne Erklärung.)

b) Wie sieht das UV-Spektrum der Verbindung P115 aus?

P115

EI, 70 eV

169

50

% 40

30

20

10

0

0 50 100 150 200 250 m/z

197

113

141 155

183 226

43 57

29

18

127 71

85 98

100 %

A B

C D

(10)

Gemäss Regel II fragmentieren Alkane bevorzugt bei Verzweigungen. Der Basispeak bei m/z 57, entsprechend dem Fragment C4H9+, lässt sich nur bei Verbindung C durch eine direkte Fragmentierung erzeugen. Bei den anderen Vorschlägen sind dazu Umlagerungen nötig. Das Fragment bei m/z 169 ist deutlich erhöht. Es entsteht durch Abspaltung von 57. Das ebenfalls erhöhte Signal bei m/z 197, das durch die Abspaltung von Ethyl entsteht, liesse sich auch durch die Kandidaten A und D verstehen.

(11)

Aufgabe 4 12 Punkte

Bienenwachs ist ein komplexes Gemisch organischer Verbindungen. Unter anderem besteht es aus einer grossen Anzahl langkettiger Alkane (Paraffine). Durch Derivatisierung werden zudem Bestandteile in langkettige Ether und Ester umgewandelt. In unten stehendem Chromatogramm (Figur 1) wurden diese Wachsbestandteile mit Gaschromatographie getrennt. Peaks, die mit A1- A3 beschriftet sind bezeichnen Alkane, E1-E3 sind Ether und S1-S4 sind Ester.

10 15 20 25 30 35 40

0 100

Retention time (min)

Relative intensity (%)

unidentified long- chain compounds S1

S2 S4 S3

E3 E2 E1

A3 A2 A1

Figur 1. Gaschromatogramm der Wachsbestandteile aufgenommen mit einer Kapillarsäule CP Sil 5 CB von Varian (15 m lang, 0.32 mm Innendurchmesser, 0.1 μm dicke, apolare stationäre Phase). GC-Methode: Ofentemperatur: 1 min bei 50° C, Temperaturrampe von 50° C–280° C mit 10° C min–1, 280° C bei 16 min. Als Trägergas wurde Helium mit einem Fluss von 1 ml min–1 verwendet.

a) Erklären Sie die Elutionsreihenfolge der drei Verbindungsklassen, wenn Verbindungen gleicher Kettenlänge verglichen werden.

b) Sie möchten dieselbe Probe analysieren, haben aber nur ein HPLC Gerät zur Verfügung.

Was für eine HPLC-Säule würden Sie verwenden?

Was für einen Detektor würden Sie verwenden?

Begründen Sie Ihre Antworten.

c) Für eine andere Analyse sind nur die Ester von Interesse (S1-S4, Figur 1). Da sehr viele Proben analysiert werden müssen, wird eine Verkürzung der Analysedauer gesucht.

Was würden Sie an der Methode verbessern, um die interessierenden Verbindungen effizienter zu analysieren?

d) Bestimmen sie die theoretische Bodenhöhe dieser GC-Säule zwischen 27 und 28 Minuten Retentionszeit (siehe Figur 2).

(12)

25 30

Figur 2. Detaildarstellung von obigem Gaschromatogramm der Peaks mit Retentionszeiten von 25-30 min

(13)

Aufgabe 5 6 Punkte

Grüntee enthält Polyphenole, die eine antioxidative Wirkung haben und deshalb in vielerlei medizinischen und kosmetischen Anwendungen gebraucht werden. Figur 3 zeigt ein Beispiel eines in Grüntee vorhandenen Polyphenols.

OH OH

OH O

O O

OH

OH

OH OH

OH

Figur 3. Epigallokatechingallat, ein in Grüntee vorkommendes Polyphenol

a) Schlagen Sie eine Methode vor, mir der Sie die frischen Grünteeblätter so aufbereiten, dass die Polyphenole anschliessend mit Kapillarelektrophorese getrennt werden können.

Figur 4 zeigt zwei Mizellar-Elektropherogramme von verschiedenen Polyphenolen. Bei beiden Experimenten wurde SDS (Natrium dodecylsulfat) als Mizellenbildner zugegeben. Das obere Elektropherogramm wurde bei einem pH von 7, das untere bei einem pH von 10 aufgenommen.

b) Erklären Sie, weshalb beim Experiment unter basischen Bedingungen eine schnellere Trennung erreicht wird und weshalb dabei auch eine bessere Auflösung erreicht wurde.

(14)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 minutes

pH = 10.0 pH = 7.0

7 6 5

4 3 12

8

9 10 11 12

1,2,3

5,6 7,8

9 11

12

Figur 4. Elektropherogramm der Polyphenole

Abbildung

Figur 1. Gaschromatogramm der Wachsbestandteile aufgenommen mit einer Kapillarsäule CP Sil 5 CB von Varian (15 m lang, 0.32 mm Innendurchmesser, 0.1 μm dicke, apolare stationäre Phase)
Figur 2. Detaildarstellung von obigem Gaschromatogramm der Peaks mit Retentionszeiten von 25-30 min
Figur 3. Epigallokatechingallat, ein in Grüntee vorkommendes Polyphenol
Figur 4. Elektropherogramm der Polyphenole

Referenzen

ÄHNLICHE DOKUMENTE

[r]

Ein Ethoxybenzaldehyd zeigt das folgende 1 H-NMR-Spektrum.. b) Interpretieren Sie das 1 H-NMR-Spektrum und geben Sie für jedes der 5 Signale die chemische Verschiebung,

„humboldtianisch“ konzipierte Stu- die auf eindringliche Weise die Frage, welche Strukturbedingungen erfüllt sein müssen, um der universi- tären Leitidee der „Freiheit“, wie

Bosbach: Ja, unsere Graduate School ist so konzipiert, dass sie durchaus Modellcharakter für eine Neugestaltung der Graduiertenaus- bildung an der Universität Bayreuth haben kann..

Wenn dies auch zur Folge hat, dass das LFGB (wie auch in anderen Be- reichen) nahezu nur parallel zur Basisverordnung gelesen und ver- standen werden kann, weist der Gesetzgeber –

Nun kann man nicht bestreiten, dass es Gesichter gibt, mit denen man, wie die Franzosen sagen, Kinder zu Bett jagen kann, aber 0b hinter solchen Fratzen ein böser Geist wohnt, ist

James „A community of eccentrics is impossible“ eine Zuspitzung, (falsch ist hoffentlich auch der Satz: „Je genia- ler, desto asozialer“), aber es kann nicht ver- schwiegen

Müller—Christ: Es sind etwa 20 Absolven- ten, die sich spontan angemeldet haben, was aber auch sicherlich daran liegen kann, daß wir die meisten an dem Tag nicht direkt erreicht