• Keine Ergebnisse gefunden

Efficient Nonlocal Regularization for Optical Flow (ECCV 2012)

N/A
N/A
Protected

Academic year: 2021

Aktie "Efficient Nonlocal Regularization for Optical Flow (ECCV 2012)"

Copied!
25
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Efficient Nonlocal Regularization for Optical Flow (ECCV 2012)

P. Kr¨ahenb¨uhl, V. Koltun (Stanford University)

Lilli Kaufhold, December 18th

(2)

Optical Flow

Given: images I1,I2 ∈RN

Wanted: displacement vectoru ∈R2N such that pixelI1(x) corresponds toI2(x+u)

Different Constancy Assumptions:

Grey Value: I2(x+u)−I1(x) = 0 Gradient: ∇I2(x+u)− ∇I1(x) = 0 Hessian: H2I2(x+u)− H2I1(x) = 0 Laplacian: ∆I2(x+u)−∆I1(x) = 0

(3)

Optical Flow

Minimise an energy functional of the form E(u) =EData(u) +λLEL(u)

data term: EData(u) =X

i

kI2(xi +ui)−I1(xi)k2

smoothness term: EL(u) =X

i

X

j∈Ni

Ψ (ui −uj)2 wij

Ψ(·): penaliser function Ψ(x2) = (x2+2)0.45

wi,j: weighting function determining the influence pixelj has on pixeli

(4)

Content

1 Nonlocal Method

2 Minimisation Linearisation

Efficient computation

3 Influence of Parameters

4 Results

(5)

Nonlocal Regularisation

Energy Functional:

E(u) =EData(u) +λLEL(u) +λNEN(u)

nonlocal regulariser: EN(u) =X

i

X

j6=i

Ψ (ui−uj)2 wij

Ψ(·):penaliser function Ψ(x2) = (x2+2)0.45

wi,j: weighting function determining the influence pixelj has on pixeli

(6)

Nonlocal Regularisation

Visualisation of nonlocal weights:

wi,j = exp (−kpi −pjk2

2x −kci−cjk2c2 )

Figure: Higher intensity corresponds to higher weight.

(7)

Minimisation

E(u) = X

i

kI2(xi+ui)−I1(xi)k2L

X

i

X

j∈Ni

Ψ (ui−uj)2 wij

N

X

i

X

j6=i

Ψ (ui−uj)2 wij

Minimisation Strategy:

Compute ∇E(u) Solve ∇E(u) = 0

Difficulties:

energy functional is not convex nor linear

normal minimisation techniques are too slow for the nonlocal term Edata andEL easier to handle→ only focus on EN

(8)

Linearisation

Nonlocal regulariser

EN(u) =X

i

X

j6=i

Ψ (ui−uj)2 wij

Computation of∇EN(u):

∂ui

EN(u) = 2X

j6=i

wijΨ0 (ui−uj)2

(ui−uj)

Linearisation:

∂ui

EN(ul+1) = 2X

j6=i

wijΨ0

(uil−ujl)2

(ul+1i −ulj+1)

(9)

Linear System

Resulting Linear Equation: (A+B)ul+1=wB with Aul+1 = ∇EN(u)

Bul+1−wB = ∇Edata(u) +∇EL(u)

The entries ofAare given by:

Aij = −wijΨ0

(uil −ujl)2

for i 6=j Aii = X

j6=i

wijΨ0

(uil−ujl)2

Jacobi-Method:

uil+1,k+1= (Aii+Bii)−1·

wB i −X

j6=i

(Aij +Bij)ujl+1,k

 for all i

(10)

Computational Problems

Problem: Each iteration is very expensive due to the following terms:

Aii = X

j6=i

wijΨ0

(uli −ulj)2

= X

j6=i

exp (−kpi−p2jk2

xkci−c2jk2

c0

(uli −ulj)2

X

j6=i

Aijul+1,kj = X

j6=i

−wijΨ0

(uil −ujl)2

ujl+1,k

= X

j6=i

−exp (−kpi−p2jk2

xkci−c2jk2

c0

(uil−ujl)2

ujl+1,k

Idea: Approximate Ψ with Gaussian kernels and perform an efficient Gaussian convolution.

(11)

Reduction to Gaussian Convolution

Approximation with exponential mixtures

Ψ(x2)≈µω,σ(x2) :=T −

K

X

n=1

ωnexp(− x22n)

⇒Ψ0(x2)≈

K

X

n=1

ωn

n2 exp(− x2n2)

Minimise

Z

−∞

µω,σ(x2)−Ψ(x˜ 2)2

dx with truncated penalty function ˜Ψ

in order to optimise the parametersω andσ.

(12)

Influence of Parameters: K

Figure: Penalty function Ψ(x2) = (x2+2)0.45 and its Approximation

(13)

Influence of Parameters: σ

c

, σ

x

and λ

N

EN(u) =λNX

i

X

j6=i

Ψ (ui −uj)2

exp (−kpi−pjk2

2xkci−cjk2

2c )

Figure: top row: endpoint and angular errors for varyingσc andλN bottom row: endpoint and angular errors for varyingσx andλN

(14)

Results

Figure: top left: first image frametop right: ground truth flowbottom left: result without nonlocal regularisation bottom right: result with nonlocal regularisation

(15)

Results

Figure: Screenshot of the current Middlebury benchmark ranking [http://vision.middlebury.edu/flow/eval/results/results-a1.php]

(16)

Summary

Use a nonlocal smoothness term in addition to the commonly used local one

Approximate the penalty function with Gaussian kernels and use a fast Gaussian convolution method

Can be computed very efficiently

Nonlocality improves the results of this optical flow method Can maybe even improve the best method there currently is?

(17)

References

Philipp Kr¨ahenb¨uhl and Vladlen Koltun: Efficient Nonlocal Regularization for Optical Flow. European Conference on Computer Vision, 2012.

N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert:

Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision, 2006.

A. Adams, J. Baek, and M. A. Davis: Fast high-dimensional filtering using the permutohedral lattice. Computer Graphics Forum, 2010.

(18)

Approximation of Charbonnier penalizer for K = 3

(19)

Average endpoint and angular error

(20)

endpoint and angular errors for σ

c

and λ

N

(21)

endpoint and angular errors for σ

x

and λ

N

(22)

first image frame

(23)

ground truth flow

(24)

result without nonlocal regularisation

(25)

result with nonlocal regularisation

Referenzen

ÄHNLICHE DOKUMENTE

For example, see [AL20, Che18, CC20, FBSS19] for the study of nonlocal semilinear problems with homogeneous Neumann complement condition, [LMP + 18] for the study of the

Furthermore, we prove local boundedness results and deduce Harnack inequalities for weak solutions of the above elliptic equation provided that the kernel k satisfies an integral

We present the results of a controlled pilot experiment comparing the effects of four flow directions (left-to-right, right-to-left, top-to-bottom, bottom-to-top) on process

E integer Bercidanung string Ereignisse Wii folgori

We propose a universal method of relating the Calogero model to a set of decoupled particles on the real line, which can be uniformly applied to both the conformal and

First, we use certain test func- tions that involve discrete fractional derivatives in order to obtain higher Hölder regularity for homogeneous equations driven by a locally

Gibt man einen 0 oder IGNORE ein, bleibt der Text für immer bis man einen F364 Flipeffekt Trigger gesetzt hat, um den Text zu entfernen.. Die kleinste Zeitangabe, die man machen

Figure 5.1 Gel-sol (top left) and sol-gel transition temperature (top right), dissolution enthalpy (bottom left) of oleogels and oil viscosity and oleogel firmness (bottom right)