• Keine Ergebnisse gefunden

The Selective Oxidation of Cyclohexane via in-situ H2

N/A
N/A
Protected

Academic year: 2022

Aktie "The Selective Oxidation of Cyclohexane via in-situ H2"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The Selective Oxidation of Cyclohexane via in-situ H

2

O

2

production Over Supported Pd-based Catalysts.

Caitlin M. Crombie

aᵻ

, Richard J. Lewis

aᵻ

, Dávid Kovačič

a

, David J. Morgan

a,b

, Thomas J. A. Slater

c

, Thomas E. Davies

a

, Jennifer. K. Edwards

a

, Martin Skov Skjøth- Rasmussen

d

, and Graham J. Hutchings

a

*

a

School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

b

HarwellXPS, Research Complex at Harwell (RCaH), Didcot, OX11 OFA, United Kingdom.

c

Electron Physical Sciences Imaging Centre, Diamond Light Source Ltd. Oxfordshire, OX11 0DE, United Kingdom.

d

Haldor Topsøe A/S, Haldor Topsøes Allé 1, DK-2800 Kongens Lyngby, Denmark

These authors contributed equally to this work.

* Hutch@cardiff.ac.uk

Supplementary Information.

(2)

Table S.1. Requisite precursor amounts in the preparation of TiO2 supported Pd based catalysts for the selective oxidation of cyclohexane via in-situ H2O2 synthesis.

Catalyst Pd precursor Volume / mL (concentration /

6.0 mgmL-1)

X precursor Mass / g or Volume / mL (concentration /

mgmL-1)

Pd PdCl2 3.333 - -

V - - VCl3 6.176 mL (3.24)

VPd PdCl2 1.667 VCl3 3.088 mL (3.24)

MnPd PdCl2 1.667 MnCl2.4H2O 0.0360 g

FePd PdCl2 1.667 FeCl3.6H2O 0.0484 g

CoPd PdCl2 1.667 CoCl2.6H2O 0.0404 g

NiPd PdCl2 1.667 NiCl2.6H2O 1.667 mL (6.00)

CuPd PdCl2 1.667 CuCl2 0.0212 g

AuPd PdCl2 1.667 HAuCl4.3H2O 0.816 mL (12.25)

CePd PdCl2 1.667 CeCl3.7H2O 0.0266 g

Note: all catalysts exposed to a reductive heat treatment prior to use (5%H2/Ar, 500 °C, 4 h, 10 °C min–1).

Table S.2. Surface area of as-prepared TiO2 supported catalysts.

Catalyst Surface area */ m2g-

1

TiO2** 59

1%Pd/TiO2 49

0.5%Pd-0.5%Au/TiO2 47

0.5%Pd-0.5%V/TiO2 51

* Surface area determined from nitrogen adsorption measurements using the BET equation.

**support material used as received, with no modification prior to metal immobilisation.

Figure S.1. Catalytic activity of mono-metallic supported catalysts towards the direct synthesis (Black bars) and degradation of H2O2 (Blue bars). H2O2 direct synthesis reaction conditions: Catalyst (0.01 g), H2O (2.9 g), MeOH (5.6 g), 5% H2/CO2 (420 psi), 25% O2/CO2 (160 psi), 0.5 h, 20° C, 1200 rpm. H2O2 degradation reaction conditions: Catalyst (0.01 g), H2O2 (50 wt.% 0.68 g) H2O (2.22 g), MeOH (5.6 g), 5% H2/CO2 (420 psi), 0.5 h, 20°C, 1200 rpm.

Table S.3. Elemental surface composition of as-prepared Pd-based bi-metallic catalysts as determined by XPS analysis.

(3)

Catalyst Pd⁰: Pd²⁺ Pd: X

1%Pd/TiO2 0.92 -

1 % VPd/TiO2 3.3 0.19

1 % MnPd/ TiO2 3 0.48

1 % FePd/ TiO2 5.7 0.36

1 % CoPd/ TiO2 13 0.23

1 % NiPd/TiO2 8.2 0.35

1 % CuPd/ TiO2 22 0.27

1 % AuPd/ TiO2 All Pd0 2.43

1 % CePd/ TiO2 All Pd0 0.10

Note: all catalysts exposed to a reductive heat treatment prior to use (5%H2/Ar, 500 °C, 4 h, 10 °C min–1)

Table S.4. H2 conversion and product yield as a function of reaction time during selective oxidation of cyclohexane.

Catalyst Cyclohexanol

/ µmol Cyclohexanone

/ µmol CHHP

/ µmol H2

Conversion / %

Cyclohexane Conversion /

%

Selectivity to all C6*

products based on H2 / %

1%Pd/TiO2 1.8 0 1.8 96 0.014 0.15

1%VPd/TiO2 22.6 18.3 14.7 98 0.271 2.77

1%MnPd/TiO2 2.6 0 3.9 87 0.026 0.30

1%FePd/TiO2 6.6 6.1 2.1 88 0.058 0.67

1%CoPd/TiO2 5.6 9.2 5.9 95 0.082 0.87

1%NiPd/TiO2 7.0 7.9 2.7 91 0.069 0.76

1%CuPd/TiO2 3.3 5.7 8.4 98 0.068 0.70

1%AuPd/TiO2 12.5 6.3 5.3 95 0.095 1.01

1%CePd/TiO2 4.4 5.6 8.7 90 0.074 0.83

(4)

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 80 OC 1200 rpm. * C6 products; cyclohexanol, cyclohexanone and CHHP.

Table S.5. Comparison of 0.5%Au-0.5%Pd/TiO2 catalyst synthesis activity towards H2O2 synthesis and degradation as a function of catalyst synthesis procedure.

Catalyst preparation method Productivity / molH₂O₂kgcat-1h-1 Degradation / molH₂O₂kgcat-1h-1

Conventional wet impregnation 55 240

Modified impregnation 68 710

H2O2 direct synthesis reaction conditions: Catalyst (0.01 g), H2O (2.9 g), MeOH (5.6 g), 5% H2/CO2

(420 psi), 25% O2/CO2 (160 psi), 0.5 h, 20° C, 1200 rpm. H2O2 degradation reaction conditions:

Catalyst (0.01 g), H2O2 (50 wt.% 0.68 g) H2O (2.22 g), MeOH (5.6 g), 5% H2/CO2 (420 psi), 0.5 h, 20°C, 1200 rpm.

Figure S.2. The choice of oxidant on the catalytic activity of 0.5%Au-0.5%Pd/TiO2 towards the oxidation of cyclohexane. Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t- butanol (6.37 g), 5% H2 / N2 (420 psi), 25% O2 / N2 (160 psi), 17 h, 80 OC 1200 rpm. Note:

Concentration of H2O2 (2.5 mmol) used is comparable to that produced if all H2 in a standard reaction is converted to H2O2. N2 in parentheses is indicative of gaseous atmosphere (580 psi).

Table S.6. Apparent reaction rate for supported bi-metallic, Pd-based catalysts.

Apparent reaction rate / Cyclohexane Selectivity to all

(5)

Catalyst µmolC6productsmmolmetal-1h-1 Conversion / % C6* products based on H2 /

%

1%Pd/TiO2 4.50 x 101 0.014 0.15

1%VPd/TiO2 4.5 x 102 0.271 2.77

1%MnPd/TiO2 5.6 x 101 0.026 0.30

1%FePd/TiO2 1.3 x 102 0.058 0.67

1%CoPd/TiO2 1.8 x 102 0.082 0.87

1%NiPd/TiO2 1.6 x 102 0.069 0.76

1%CuPd/TiO2 1.6 x 102 0.068 0.70

1%AuPd/TiO2 3.9 x 102 0.095 1.01

1%CePd/TiO2 2.7 x 102 0.074 0.83

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 80 OC 1200 rpm. * C6 products; cyclohexanol, cyclohexanone and CHHP.

Table S.7. H2 conversion and product yield during selective oxidation of cyclohexane for monometallic, bimetallic and physical mixtures V-Pd supported catalysts.

Catalyst Cyclohexanol

/ µmol Cyclohexanone

/ µmol CHHP

/ µmol H2

Conversion / %

Cyclohexane Conversion /

%

Selectivity to all C6*

products based on H2 / %

1%Pd/TiO2 1.8 0 1.8 96 0.014 0.15

V/TiO2 5.2 7.8 1.1 - 0.055 -

V/TiO2 + Pd/TiO2

15.8 9.3 4.0 86 0.115 1.34

VPd/TiO2 22.6 18.3 14.7 98 0.271 2.77

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 80 OC 1200 rpm. * C6 products; cyclohexanol, cyclohexanone and CHHP.

Table S.8. H2 conversion and product yield during selective oxidation of cyclohexane for 1% VPd/TiO2

and vanadium oxide catalysts.

Catalyst Cyclohexanol

/ µmol Cyclohexanone

/ µmol CHHP

/ µmol H2

Conversion / %

Cyclohexane Conversion /

%

Selectivity to all C6*

products based on H2 / %

1%Pd/TiO2 1.8 0 1.8 96 0.014 0.15

1%VPd/TiO2 22.6 18.3 14.7 98 0.271 2.77

V2O5 3.2 3.4 0.8 - 0.029 -

1% Pd/TiO2

+ V2O5

36.2 15.0 7.2 99 0.231 2.36

V2O4

4.8 3.1 0 - 0.031 -

1% Pd/TiO2

+ V2O4

36.5 13.0 2.3 99 0.204 2.08

(6)

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 80 OC 1200 rpm. * C6 products; cyclohexanol, cyclohexanone and CHHP.

Table S.9. H2 conversion and total product yield during selective oxidation of cyclohexane achieved over 1%VPd/TiO2 catalysts as a function of V: Pd ratio.

Pd content /

%

Cyclohexanol / µmol

Cyclohexanone / µmol

CHHP / µmol

H2

Conversion / %

Cyclohexane Conversion /

%

Selectivity to all C6*

products based on H2 / %

0 5.2 7.8 1.0 - 0.055 -

25 25.7 17.7 8.8 98 0.206 2.12

50 22.6 18.3 14.7 98 0.271 2.77

75 17.0 5.6 4.5 98 0.108 1.10

100 1.8 0 1.8 96 0.014 0.15

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 80 OC 1200 rpm. * C6 products; cyclohexanol, cyclohexanone and CHHP.

Table S.10. Apparent reaction rate for 1%VPd/TiO2 catalysts as a function of V: Pd ratio.

Pd content /

%

Apparent reaction rate /

µmolC6productsmmolmetal-1h-1 Cyclohexane

Conversion / % Selectivity to all C6*

products based on H2 / %

0 8.4 x 101 0.055 -

25 3.6 x 102 0.206 2.12

50 4.5 x 102 0.271 2.77

75 2.7 x 102 0.108 1.10

100 4.5 x 101 0.014 0.15

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 80 OC 1200 rpm. * C6 products; cyclohexanol, cyclohexanone and CHHP.

Table S.11. ICP-MS analysis of post reaction solutions of the oxidation of cyclohexane utilising 1%

VPd/TiO2 over successive uses.

Reaction number % Pd leached (ppb) % V leached (ppb)

1st use 0.29 (63) 21 (4533)

(7)

2nd use 0.33 (73) 14 (3090)

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 17 h, 80 OC 1200 rpm.

Figure S.3. Comparison of catalytic performance of V-Pd catalysts towards the oxidation of cyclohexane via the in-situ production of H2O2. Cyclohexanol; blue, cyclohexanone; red, CHHP;

purple. Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2 (420 psi), 25% O2 / N2 (160 psi), 17 h, 80 OC 1200 rpm. Note: In all cases total moles of Pd and V are identical.

Table S.12. H2 conversion and total product yield during selective oxidation of cyclohexane achieved over 1%VPd/TiO2 catalysts as a function of V: Pd ratio.

Catalyst Cyclohexanol

/ µmol Cyclohexanone

/ µmol CHHP

/ µmol H2

Conversion / %

Cyclohexane Conversion /

%

Selectivity to all C6*

products based on H2 / %

1%VPd/TiO2 22.6 18.3 14.7 98 0.271 2.77

1%Pd/TiO2 + VCl3

16.8 10 6.2 93 0.132 1.42

VCl3 11.7 0 0 - -

1%Pd/TiO2 1.8 0 1.8 96 0.014 0.15

(8)

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 80 OC 1200 rpm. * C6 products; cyclohexanol, cyclohexanone and CHHP.

Table S.13. H2 conversion and total product yield during selective oxidation of cyclohexane achieved over 1%VPd/TiO2 catalysts upon first and second use.

Reaction number

Cyclohexanol / µmol

Cyclohexanone / µmol

CHHP / µmol

H2

Conversion / %

Cyclohexane Conversion /

%

Selectivity to all C6*

products based on

H2 / %

1st use 22.6 18.3 14.7 98 0.271 2.77

2nd use 32.6 18.1 40.2 91 0.361 3.98

Figure S.4. XPS spectra of Pd(3d) and V(2p) regions for fresh and used supported 0.5%V- 0.5%Pd/TiO2 catalysts.

Table S.14. Summary of the XPS derived surface atomic concentrations of the fresh and used supported 0.5%V-0.5%Pd/TiO2 catalysts.

(9)

Catalyst Pd0: Pd2+ Pd: V V5+: V4+

As prepared 3.3 0.20 1.6

1st Use 1.8 0.33 0.7

Reaction conditions: Catalyst (0.05 g), cyclohexane (2.13 g, 25 mmol), t-butanol (6.37 g), 5% H2 / N2

(420 psi), 25% O2 / N2 (160 psi), 17 h, 80 OC 1200 rpm.

(10)

Figure S.5. Energy dispersive X-ray analysis of (A) as-prepared 0.5%V-0.5%Pd/TiO2 and (B) after use in the in-situ cyclohexane oxidation reaction. Ti (Green), Pd (Red), V (blue).

(11)

Referenzen

ÄHNLICHE DOKUMENTE

a: The trajectory of the calculated average current density in the observed cell area (blue line) and the setup value (black line - scan rate of 28 A/3600 s); b: The related

These ligands form dinuclear copper complexes and activate dioxygen as µ-η 2 :η 2 -peroxido complex (Figure 1.13 for the DAPA

However, it is possible that the limited degradation activity observed can be related to a combination of two factors (i) the choice of reaction con- ditions used to evaluate H 2 O

In continuation of our efforts to develop new synthetic methods for impor- tant organic compounds [36, 37], we now report a novel, efficient and environmentally benign method for

Since this oxidation method using n-butyronitrile as solvent, PIPO as catalyst and sodium hypochlorite pentahydrate as an oxidation agent is very simple and as the reaction progress

They have validated their work against the species concentration profiles from JSR [22, 23] and plug flow reactor (PFR) experiments [44], rapid compression machine (RCM)

The influence of redox-inactive metal ions on the electronic structure of metal oxo and peroxo intermediates is receiving great attention because it may play a key role in natural

With this background, it appeared interesting to us to investigate into the selectivities attainable using dioxiranes for the oxyfunc- tionalization of centropolyindans 2-5,