• Keine Ergebnisse gefunden

Studies of semiconducting pyrite and marcasite compounds using many-body perturbation theory in the GW approximation

N/A
N/A
Protected

Academic year: 2022

Aktie "Studies of semiconducting pyrite and marcasite compounds using many-body perturbation theory in the GW approximation"

Copied!
28
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mitglied der Helmholtz-Gemeinschaft

Studies of semiconducting pyrite and marcasite compounds using

many-body perturbation theory in the GW approximation

2nd April 2014, DPG Spring-meeting 2014 in Dresden

Timo Schena, Gustav Bihlmayer, Christoph Friedrich and Stefan Blügel

Peter Grünberg Institut & Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Germany

1

(2)

Mitglied der Helmholtz-Gemeinschaft

Motivation

2

FeS2 pyrite: a promising photovoltaic material ?

large optical absorption

I. J. Ferrer et al. Solid State Communications 74 (1990)

abundance well-suited band gap

FeS2: 0.95eV [1]

Shockley-Queisser-Limit

Source: Wikipedia

[1]: A. Ennaoui et al. (1993)

(3)

Mitglied der Helmholtz-Gemeinschaft

Motivation

2

FeS2 pyrite: a promising photovoltaic material ?

large optical absorption

I. J. Ferrer et al. Solid State Communications 74 (1990)

abundance well-suited band gap

Shockley-Queisser-Limit

•  size of fundamental band gap

•  defects, surfaces, device geometry open-circuit voltage

 200mV too small!

Source: Wikipedia FeS2: 0.95eV [1]

[1]: A. Ennaoui et al. (1993)

(4)

Mitglied der Helmholtz-Gemeinschaft

Motivation

2

large optical absorption

I. J. Ferrer et al. Solid State Communications 74 (1990)

abundance well-suited band gap ??

Shockley-Queisser-Limit

•  size of fundamental band gap

•  defects, surfaces, device geometry open-circuit voltage

 200mV too small!

Source: Wikipedia

FeS2 pyrite: a promising photovoltaic material ?

FeS2: 0.95eV [1]

[1]: A. Ennaoui et al. (1993)

(5)

Mitglied der Helmholtz-Gemeinschaft

3

Methods

DFT, G0W0 and QSGW

DFT:

whole zoo of xc-functionals GW approximation:

⌃ = GW non-local and energy-dependent

✓ ~

2mr2 + vext + vH

· i(r) + Z

dr0⌃(r,r0,"QPi ) · i(r0) = "QPi i(r)

✓ ~

2mr2 + vext +vH + vxc

· i(r) = "i i(r)

mean field G0W0 ⌃(r,r0,"QPi )

“Hermitianize”

QSGW selfconsistent cycle:

•  fast

•  unreliable band gap prediction

•  slow

•  (usually) systematically improved band gaps

•  in many cases a too large band gap as compared to experiment

•  start-point independent Kotani et al. Phys. Rev. B 76, 165106 (2007)

(6)

Mitglied der Helmholtz-Gemeinschaft

FeS

2

Pyrite

Lattice Structure

4

Fe S

a

dS S = p

3a · (1 2u)

•  simple cubic containing 12 atoms

•  S-S dimer distance has crucial influence on electronic structure

•  almost octahedral coordination of S around Fe (t2g- and eg-states split)

•  24 symmetries, inversion included

(7)

Mitglied der Helmholtz-Gemeinschaft

FeS

2

Pyrite

Electronic Structure within PBE and G0W0

5

: S 3p : Fe 3d

: PBE : G0W0

•  fundamental band gap: Fe 3d – S 3p transition

•  G0W0 reduces band gap size (convergence not simple) more details: Schena et al. Phys. Rev. B 88, 235203 (2013)

PBE

(8)

Mitglied der Helmholtz-Gemeinschaft

FeS

2

Pyrite

Optical Absorption

more details: Schena et al. Phys. Rev. B 88, 235203 (2013) 6

•  optical absorption dominated by “Fe 3d – Fe 3d” transitions

(9)

Mitglied der Helmholtz-Gemeinschaft

: PBE

: G0W0 4x4x4 Optical Absorption

more details: Schena et al. Phys. Rev. B 88, 235203 (2013)

FeS

2

Pyrite

6

•  G0W0 : minor differences regarding the optical band gap

(10)

Mitglied der Helmholtz-Gemeinschaft

Similarities Differences

•  octahedral symmetries

•  S-dimers (crucial for electronic structure)

•  orthorhombic (6 atoms in unit cell)

•  edge-shared octahedrons a=4.44Å b=5.42Å c=3.39Å

u=0.200 v=0.378

7

FeS

2

Marcasite

Lattice Structure

(11)

Mitglied der Helmholtz-Gemeinschaft

: S 3p : Fe 3d

: PBE : G0W0

FeS

2

Marcasite

8

Electronic Structure within PBE and G0W0

more details: Schena et al. Phys. Rev. B 88, 235203 (2013)

•  more promising band gap as compared to FeS2 pyrite PBE

(12)

Mitglied der Helmholtz-Gemeinschaft

Pyrites/Marcasites

Choice of Compounds

9 webelements.com

Pyrites

Marcasites

Pyrite   FeS2   RuS2   OsS2   ZnS2   V[in  Å3]   159.0   176.6   207.5   211.1  

u   0.385   0.382   0.392   0.401  

Marc.   FeS2   FeSe2   FeTe2   V[in  Å3]   81.6   99.6   127.8   u   0.200   0.213   0.224   v   0.378   0.369   0.362  

Structural parameters from ICSD database

(13)

Mitglied der Helmholtz-Gemeinschaft

FeS2 RuS2 OsS2 ZnS2 FeS2 FeSe2 FeTe2 0.0

0.5 1.0 1.5 2.0 2.5

Egap(eV)

exp PBE G0W0

Pyrites [1-4] Marcasites [5,6]

Pyrites/Marcasites

Band Gaps: PBE, G0W0 and experiment

10

•  different orbital character at the

band edges defining the fundamental band gap

•  large screening effects

Agreement suffers in case of …

Ref. for exp. band gaps:

[1]: Ennaoui et al. (1993) [2]: Huang et al. (1988)

[3]: Jaegermann et al. (1988) [4]: Bullet (1982)

[5]: Jagadeesh et al. (1980) [6]: Harada (1998)

(14)

Mitglied der Helmholtz-Gemeinschaft

•  GW-correction mainly consists of two parts:

influence on gap : ì î

Pyrites/Marcasites

The role of the screening

11 11

GW = ⌃ex + ⌃corr

Pyrite   FeS2   RuS2   OsS2  

Egap  (DFT)   0.62   0.12   0.67  

Egap  (GW)   0.25   0.14   0.63  

: S 3p : M 3d

(15)

Mitglied der Helmholtz-Gemeinschaft

Si C MgO NaCl Ar GaAs InSb -100

-50 0 50 100

(E

th gap

Eexp gap

)/E

exp gap

(in%)

PBE G0W0 QSGW

~280%

metallic

12

What is about QSGW?

Simple Compounds:

Pyrites:

Ref. for exp. band gaps:

Si : 1.25 eV , Ortega et al. (1993) C : 7.3 eV , Hellwege et al. (1982) MgO : 7.7 eV , Adachi et al. (1999) NaCl : 8.5 eV , Poole et al. (1975) GaAs: 1.52 eV , Hellwege et al. (1982) InSb : 0.24 eV , Ortega et al. (1993)

PBE   G0W0   QSGW  

FeS2  (P)   0.62   0.25   ~0.9  

ZnS2   1.89   2.94   ~3.7  

transition !

(16)

Mitglied der Helmholtz-Gemeinschaft

13

Take-Home Messages

•  new band gap measurements needed for the pyrite and marcasite compounds (be aware of low-intensity conduction states)

•  G0W0@PBE calculations for systems with large screening can cause a reduction of the band gap size

•  QSGW calculations usually lead to overestimated gap sizes,

however they might be important for pyrite and marcasite compounds

•  in general: more investigations on transition metal compounds exhibiting a peculiar p-d transition should be conducted

(17)

Mitglied der Helmholtz-Gemeinschaft

13

Take-Home Messages

Acknowledgements

•  new band gap measurements needed for the pyrite and marcasite compounds (be aware of low-intensity conduction states)

•  G0W0@PBE calculations for systems with large screening can cause a reduction of the band gap size

•  QSGW calculations usually lead to overestimated gap sizes,

however they might be important for pyrite and marcasite compounds

•  in general: more investigations on transition metal compounds exhibiting a peculiar p-d transition should be conducted

•  Martin Schlipf, Markus Betzinger, Irene Aguilera, and Gregor Michalicek for fruitful discussions

•  Support by BMBF under project number 03SF0402A (NADNuM) and the Jülich Supercomputing Center (JSC) for computation time

(18)

Mitglied der Helmholtz-Gemeinschaft

Backup-Slides

(19)

Mitglied der Helmholtz-Gemeinschaft

Pyrites: FeS2 Overview

Backup-Slides

•  crystal field splitting in Fe 3d t2g- and eg-states

•  bonding and anti-bonding ssσ-, ppσ- and ppπ-states from S-S dimers

•  significant hybridization between Fe 3d- and S 3p-orbitals ssσ

ssσ*

ppσ, ppπ, ppπ*

ppσ*

t2g eg

(20)

Mitglied der Helmholtz-Gemeinschaft

Pyrites: RuS2

: S 3p : Ru 3d

0.12 eV

Backup-Slides

(21)

Mitglied der Helmholtz-Gemeinschaft

: S 3p : Os 3d

0.75 eV

Pyrites: OsS2

Backup-Slides

(22)

Mitglied der Helmholtz-Gemeinschaft

Pyrites: ZnS2

: S 3p : Zn 3d

1.40 eV

Backup-Slides

(23)

Mitglied der Helmholtz-Gemeinschaft

Marcasites: FeSe2

: Se 3p : Fe 3d

0.28 eV

Backup-Slides

(24)

Mitglied der Helmholtz-Gemeinschaft

Marcasites: FeTe2

: Te 3p : Fe 3d

Backup-Slides

(25)

Mitglied der Helmholtz-Gemeinschaft

Structural dependence

•  position of p-band with respect to d-states

delicately depending on Wyckoff parameter u

•  Structural relaxation has a strong influence on band gap size

u #

Egap #

splitting ppσ, ppσ* #

dS S "

I I I

dS S = p

3a·(1 2u)

Backup-Slides

(26)

Mitglied der Helmholtz-Gemeinschaft

Orbital-dependent optical absorption:

electrical dipole

matrixelement orbital contributions µ, ν of states i, f

Orbital-

decomposed contributions multiplied by factors to obtain full optical

absorption

solving a system of linear

equations.

Optical Absorption

A

µ!

(!) = ⇡!

0

ncV

X

k

X

i,f

|h f | d ˆ | i i|

2

· (! ("

f

"

i

)) · ⇢

f

· ⇢

µi

Backup-Slides

(27)

Mitglied der Helmholtz-Gemeinschaft

The role of the screening – Effect on HSE06 calculations

12

Backup-Slides

(28)

Mitglied der Helmholtz-Gemeinschaft

The role of the screening – Effect on HSE06 calculations

12

G0W0   HSE   FeS2  (P)   0.25   2.23   RuS2   0.40   1.33   OsS2   0.63   1.96   ZnS2   2.94   2.99   FeS2  (M)   1.44   2.69   FeSe2   1.18   2.52   FeTe2   1.17   1.60  

! transition (in eV):

•  25% HF-exchange too much, 1/ε better

Backup-Slides

Referenzen

ÄHNLICHE DOKUMENTE

The transition-metal catalyzed XHI reaction of stabilized diazo compounds is used later in chapter 2 and the alkylation reaction of unstabilized diazo compounds with Br Ø nsted

These refinements revealed only a small degree of gold on the zinc site of CaAu 1.02 Zn 0.98 , while both sites showed mixed occupancy in SrAu 1.03 Zn 0.97.. In the final cycles

Although several syntheses of borazine derivatives using borazine as starting material are reported, bor- azine is not a suitable starting material for further syntheses due to

Recent phytochemical studies on the ethanolic extract of Artocarpus nobilis, collected from Sri Lanka, have resulted in the isolation of two new cycloartane-type

AuSn 2 can be consid- ered as an intergrowth structure of slightly orthorhom- bically distorted pyrite and marcasite related slabs.. Within the pyrite slabs the distorted AuSn 6

Hexane was removed in vacuum and toluene (5 mL) was added to the reaction mixture and the solution was concentrated and stored at room temperature for two days to yield

spondingly, the intensity of the 0-0 band (427 nm) in the phosphorescence spectrum of triphenylene is very low (Fig. External heavy-atom perturbers, e.g. As

Scheme 3: Synthesised diolate bridged trisilanes bearing an acyl moiety at the central silicon