• Keine Ergebnisse gefunden

Paradifferential Operators and Conormal Distributions

N/A
N/A
Protected

Academic year: 2022

Aktie "Paradifferential Operators and Conormal Distributions"

Copied!
72
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Paradifferential Operators and Conormal Distributions

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

"Doctor rerum naturalium"

der Georg-August-Universität Göttingen

im Promotionsprogramm Mathematical Science der Georg-August University School of Science (GAUSS)

vorgelegt von Robin Spratte

aus Korbach.

Göttingen, 2019

(2)

Betreuungsausschuss

Professor Dr. Ingo Witt, Mathematisches Institut,

Georg-August-Universität Göttingen Professor Dr. Dorothea Bahns, Mathematisches Institut,

Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission

Referent: Professor Dr. Ingo Frank Witt Korreferent: Professor Dr. Dorothea Bahns

Weitere Mitglieder der Prüfungskommission

Professor Dr. Jörg Brüdern, Mathematisches Institut,

Georg-August-Universität Göttingen Professor Dr. Chengchang Zhu, Mathematisches Institut,

Georg-August-Universität Göttingen Professor Dr. Dominik Schuhmacher, Institut für Mathematische Stochastik, Georg-August-Universität Göttingen

Jun.-Professor Dr. Christoph Lehrenfeld,

Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 28.10.2019

(3)

Für Elias.

(4)
(5)

Danksagungen

Mein erster Dank gilt Ingo Witt, der mein Verständnis von PDE’s und Pseudifferen- tialoperatoren im Speziellen, aber auch der Mathematik im Allgemeinen in zahlre- ichen Gesprächen ganz wesentlich geprägt hat. Ich bin dankbar dafür, während fast der gesamten Zeit meines Studiums in ihm einen Lehrer und Ratgeber gefunden zu haben, der auf meine teils sprunghaften Gedankengänge eingehen konnte und mir dabei immer wieder neue Aspekte aufzeigte. Zu eigentlich jeder Frage konnte er bereits nach kurzem Stöbern ein bis zwei weitere Bücher auftun, wenn mein Wis- senshunger noch nicht gestillt war.

Mein besonderer Dank gilt auch Dorothea Bahns, die sich über die Förderung meines Interesses an der mathematischen Physik hinaus als Sprecherin des GRK 1493 für meine finanzielle Förderung einsetzte und eine Verlängerung des Stipendiums in El- ternschaft trotz einiger Widrigkeiten problemfrei organisierte. Bei allen möglichen Fragen fand ich bei ihr ein offenes Ohr und bin für ihre Förderung und Unterstützung sehr dankbar.

Danken möchte ich auch meinen Kommilitonen und Freunden Malte Heuer, Thorsten Groth und Matthias Krüger. Auch wenn Malte und Thorsten meine Vorliebe für die Analysis nicht gänzlich teilten, waren sie mir doch Zuhörer und Frustrations- fänger, wenn ich mich mal wieder in einer Sackgasse sah. Dankbar bin ich auch für die sprachlichen und TEX-nischen Hilfestellungen der beiden für diese Arbeit. Mit Matthias verbindet mich neben der gemeinsamen Zeit auf Konferenzen, in Vorlesun- gen, Seminaren und Veranstaltungen des GRKs auch eine Leidensgemeinschaft der anfänglichen Verständnisschwierigkeiten von Operatoren und Symbolen vom Typ (1,1), die sich zum Glück schnell auflösten.

In meinem Promotionsstudium wurde ich im Rahmen des Graduiertenkollegs 1493 über ein Stipendium der Deutschen Forschungsgemeinschaft finanziert. Ich bin allen PI’s des GRK und der DFG dankbar, sowohl für die Organisation des Kollegs und seiner Veranstaltungen als auch für die finanzielle Förderung, die mir gleichzeitig ein fokussiertes Studium und fachliche Breite ermöglichten.

Meine Kinder sind mir eine stetige Quelle der Freude. Ihr Lachen und ihre Unbeschw- ertheit haben mir auch schwere Tage erleichtert und lassen mich stets nach vorne schauen. Nicht zuletzt wäre diese Arbeit niemals entstanden ohne die beständige Liebe und Unterstützung meiner Frau. Ich bin unendlich dankbar, mein Leben in Allem mit ihr teilen zu dürfen und möchte keinen Tag mit ihr missen.

(6)
(7)

Have you not known? Have you not heard? The Lord is the everlasting God, the Creator of the ends of the earth. He does not faint or grow weary; his understanding is unsearchable.

Isiah 40:28,English Standard Version

(8)
(9)

Contents

Chapter 1. Introduction 11

1. Propagation of singularities 11

Chapter 2. Conormal Distributions of type (1,1) 15

1. Symbol Spaces 15

2. Pseudodifferential operators of type (1,1) 23

3. Products, Paraproducts and the Taylor formula 26

4. Non-linear superposition 36

Chapter 3. The Linear Cauchy Problem 51

1. Transport equation 51

2. First order equation 53

3. The reduced problem 55

Chapter 4. Nonlinear Propagation of Conormality 61

Chapter 5. Outlook 63

Appendices 65

Chapter A. Littlewood Paley decomposition and Besov spaces 67

1. Hölder-Zygmund estimates 69

Bibliography 71

9

(10)
(11)

CHAPTER 1

Introduction

In this thesis we develop a generalization of Hörmander’s symbol calculus of conor- mal distributions [Hö07, Chapter 18.2] and provide techniques for applications to nonlinear hyperbolic Partial Differential Equations. In particular we will provide explicit expansion formulas for symbols of conormal distributions under multiplica- tion (Theorem 2.17 and Theorem 2.19) and nonlinear superposition with Hölder- Zygmund continuous functions (Theorem 2.40).

We also define the class of diffeomorphisms of conormal type and establish their structure as a group (Theorems 2.29 and 2.42), again giving explicit expansion for- mulas for their symbols. This enables us to define conormal distributions with respect to non smooth hypersurfaces endowed with the established symbol calculus.

The definitions we give and the methods we develop are applicable to nonlinear Partial Differential Equations. In Chapter 3 we explicitly construct approximate symbolic solutions to a Cauchy problem with coefficients and datum given as conor- mal distributions. We obtain solvability of the reduced problem within a sufficiently smooth remainder space. In Chapter 4 we provide propagation of conormality for the developed symbolic calculus under hyperbolic quasilinear equations of first order.

Therefore the main result of this thesis is the ’correct’ construction of this general- ization of conormal distributions with respect to non smooth hypersurfaces and the provided methods. Further the computational results of the symbol calculus, espe- cially the symbol expansion formulas for multiplication, composition and nonlinear superposition can be directly applied to Hörmander’s symbol calculus of conormal distributions.

1. Propagation of singularities

Linear Theory. Studying propagation of singularities, the question is, given the location and type of singularities of the solution at an initial Cauchy surface or in the past, can we determine the location and type of singularities in the future. Take for example the Klein-Gordon equation

(+µ2)u=t2u

n

X

j=1

x2ju+µ2u= 0

– a simple prototype for linear strictly hyperbolic Partial Differential Equations of second order. It is well known, that this equation has finite propagation speed.

Meaning, if the Cauchy data att= 0 are supported in the pointx= 0, the solution will be supported inside the closed forward light cone

V¯+={(t, x)∈R≥0×Rn;t≥ |x|},

11

(12)

which by linearity of the equation yields the full picture of the spread of support and in general can’t be improved. The singular support on the other hand does only propagate along the boundary of the light cone

∂V+={(t, x)∈R≥0×Rn;t=|x|},

which means singularities somehow keep track of their ’direction’. And the singular support is insufficient to describe the propagation of singularities.

The information of ’direction’ is best included by thewave front set WF(u)⊆TRn+1\{0},

which carries additional information to the singular support. Geometrically it is a closed conical subset of the cotangent bundle with the zero section removed. It can be defined as ’directions’, in which the Fourier transform of local smooth cutoffs does not rapidly decrease. It carries more information, because the singular support can be obtained from the wave front set, simply by projecting to the spacial variable.

To study the propagation of singularities in a general situation one further needs theprincipal symbol

P = X

|α|≤m

aα(x)∂xα σm(P) (x, ξ) = X

|α|=m

aα(x)(iξ)α

of the operator. Then the theorem of propagation of singularities of Hörmander [DH72] implies that the wave front set of a solution

P u= 0

propagates along thenull bi-characteristiclines in the cotangent bundle. This means, that first the wave front set is a subset of thecharacteristic set ofP

Char(P) ={(x, ξ)∈TRn+1\{0};σm(P)(x, ξ) = 0}.

And second the wave front set is invariant under the bi-characteristic flow, induced by the Hamiltonian vector field Hσm(P) on the symplectic manifold TRn+1\{0}.

There are also quantitative versions of this theorem that the singularities do not get worse in some sense.

Nonlinear theory. In the late 1970’s the propagation of singularities for semilin- ear equations, especially wave equations

u=f(u,∇u)

was studied by Bony, Rauch, Reed, Beals and others. Early results by Reed [Ree78]

showed that in the case of one space dimension the semilinear wave equation still reflects the linear case and singularities only propagate on the boundary of the light cone. Reed used elementary methods relying on the special structure of the wave operator with one space dimension.

Rauch showed in [Rau79] that in higher space dimension additional singularities would appear if two singularities on different rays would cross, emitting new singu- larities of higher regularity onto the entire boundary of the light cone from the point of crossing. This type of phenomenon was coined interaction.

In a joint paper [RR80] Rauch and Reed again analyzed the case of one spacial di- mension. They concluded that the propagation of singularities result for the linear

(13)

1. PROPAGATION OF SINGULARITIES 13

case was insufficient for this application. They consider the example of an inho- mogenous Cauchy problem,

(u=g

u(0, x) =u1(x), tu(0, x) =u2(x)

given Cauchy data (u1, u2) supported in [−1,1] of some regularity and inhomogeniety gC. The solution u then satisfies on the half stript+ 1≥xt−1, fort >2 that

(∂t+x)juC ∀j >0.

This implies the previous result of the linear theory stated in terms of the wave front set, but indeed is (much) stronger, even if we were to replaceC by sayHlocs . Especially by chain and product rule the class of such functions (s >1) is invariant under nonlinear superposition f(u), given fC, and multiplication. This is unlike the space of functions with restrictions on their wave front set.

They gave a rigorous definition of this concept, where (∂t+x) is replaced by a characteristic vector field γ – which means a non vanishing vector field, normal to one of the characteristics of the operator. They also replaced C by B, any fixed suitable Banach space.

Bγ` ={u∈B;γjuB, ∀0≤j`}

They proved that singularities of this type do propagate for linear second order hyperbolic operators in one spacial dimension. Using this they proved the earlier result of Reed for general semilinear second order hyperbolic equations. They also disproved it for higher order equations, constructing an interaction, where a new singularity was emitted onto a third characteristic. They were able to show, that apart from such interaction terms, no new singularities do occur in one spacial di- mension.

Bony expanded on their ideas and gave the following definition of conormal distribu- tions in [Bon80]. He defined the spaceHs,`(Σ) for closed sets Σ⊆Rn+1 – typically a union of characteristic surfaces – to be

uHs,`(Σ)⇔X1· · ·XjuHs (1)

for 0≤j` andX1, . . . , Xj vector fields parallel to Σ.

This proved to be a very applicable space for the study of semilinear hyperbolic equa- tions, since as Bγ` it is invariant under nonlinear superposition and multiplication, but unlikeBγ` not restricted to the case of one spacial dimension.1

In subsequent papers of Melrose and Ritter [MR85], Bony [Bon86] and other au- thors it was established that in general dimension and for general order of the equa- tion conormal singularities do propagate in some sense. Namely, it was shown that only new singularities from interaction with controlled regularity will occur. This was found to be false for general singularities. Beals showed in [Bea83], that in space dimensions n > 1 unless the initial data is a conormal distribution the sin- gular support of a solution will in general fill the entire forward light cone of the singular support of the initial data and not only its boundary. This phenomenon

1Only in one spacial dimension will the characteristic set have discrete directions and only in a two dimensional space will a covector correspond to a tangent vector by conormality.

(14)

was coined self-spreading and further showed that conormality as defined in (1) is a strong restriction.

Symbolic approach in linear theory. Hörmander pointed out, that slightly alter- ing the definition in (1) – namely Hs needs to be replaced by Bs2,∞ – allows for a different characterization in the special case ` = ∞ and Σ a hypersurface of codi- mension k. Then there is a representation of u locally near Σ as an oscillatory integral. That means away from Σu would be smooth and for suitable coordinates x= (x00, x0) we have in a neighborhood of Σ

u(x) = Z

eix0ξ0a(x, ξ0)đξ0

with aS1,0−s−k/2 a symbol of type (1,0). See for example [Hö07, Lemma 18.2.4].

Hörmander’s notation for this space is Iµ(Ω,Σ) with µ = −s−k/2 +n/4. This very precise symbolic representation uncovers a much richer structure of conormal distributions, especially one obtains the principal symbol map

0→Iµ−1(Ω,Σ)→Iµ(Ω,Σ)→S1,0−s−k/2(Rn,Rk)/S1,0−s−k/2−1(Rn,Rk)→0.

This principal symbol map coincides with the principal symbol for pseudodifferential operators, as the kernel of a pseudodifferential operator is a conormal distribution with respect to the diagonal. The parameter shift of Hörmander is constructed such that the kernel of an operator in Ψm(Ω) lies inIm(Ω×Ω,∆), with ∆ ={(x, x)|x∈ Ω}.

With principal symbols we also have a symbol expansion for pseudodifferential opera- tors acting on conormal distributions similar to the composition of pseudodifferential operators.

p(x, D)u= Z

eix0ξ0b(x00, ξ0)đξ0

bX(iDx00, Dξ00iDx0, Dξ0)jp(x, ξ)a(x00, ξ0)/j!|ξ00=x0=0

Thus especially the resulting principal symbol is the product of the operator symbol and the symbol of the conormal distribution, restricted to the respective cotangent bundle. In the case of a hyperbolic operator, we obtain a vanishing first order term on any characteristic cotangent bundle. Here the principal symbol is given by the Poisson bracket of the initial symbols, yielding the transport equation for the principal symbol.

Using the transport equation and suitable initial conditions one can explicitly solve the equation on a symbolic level up to an arbitrarily smooth remainder term.

(15)

CHAPTER 2

Conormal Distributions of type (1,1)

In this chapter we will introduce a type of distributions governed by type (1,1) sym- bols. We will learn that these distributions naturally lie in certain Besov spaces.

We will enhance the structure by an improved smoothness, which will yield the principal behavior of the distributions. We will obtain a symbol expansion for mul- tiplication, non-linear superposition and operator actions in such principal terms up to a remainder space of Besov spaces.

Based on these computations we will give a structure of such distributions with respect to non-smooth hypersurfaces. This will be a preparation for our applications to linearized Cauchy problems and quasilinear equations.

1. Symbol Spaces

First we are going to give a preliminary definition of the symbols in use to ease the understanding of the underlying structures. They will already fully describe the spaces of distributions that we are interested in. We will later amend the definition of symbols by an anisotropic structure, which will become handy for computations.

1.1. Basic Definitions. In the following we will use the notationx= (x00, x0)∈ Rn−k×Rk, wherekwill be called the codimension. We are going to define the symbol space S1,1m,ρ, the remainder space Gm−ρ,` and the space of conormal distributions I1,1;`m,ρ as a combination of a symbolic part defined by an oscillatory integral and a remainder function.

Definition 2.1 (Smooth Symbol classes of type (1,1)). LetaC(Rn×Rk), then aSm,ρ1,1 (Rn×Rk) withm∈R and ρ >0, if

|∂xαηβ0a(x, ξ0)|.η0m+(|α|−ρ)+−|β| ∀|α| 6=ρ,∀β k∂ηβ0a(·, η0)kCρ

.η0m−|β|.

Here Cs is the Hölder-Zygmund space as defined in Chapter A. a will be called a symbol of orderm with improved regularitymρ. Ifa however only fulfills

|∂xαβη0a(x, ξ0)|.η0m+|α|−|β| ∀α, β.

then aS1,1m(Rn×Rk). In an abuse of notation for ρ ≤0 we will denote S1,1m,ρ = S1,1m−ρ.

Definition 2.2. Let m∈R and `∈N, then define the remainder space Gµ,` with respect to codimensionk as

Gm,0 = \

1<p≤∞

unifB−m−k(1−1/p)

p,∞ (Rn)

Gm,` ={u∈Gm,0; (x0)α0uGm−|α0|,∀0<0| ≤`}.

15

(16)

HereunifBp,∞s (Rn) is the uniform Besov space as defined in Chapter A. We will write Gm forGm,0 and Gm,∞ for∩`∈NGm,`.

The distributions that we consider will be defined using symbols of type (1,1) with improved regularity.

Definition 2.3. We call a distribution u∈ S0(Rn) a conormal distribution of type (1,1) and order (m, ρ) with localization `∈N0, write uI1,1;`m,ρ(Rn,Rn−k), for mρ+k <0 if there is a decompositionu=uC+uG and a symbolaS1,1m,ρ(Rn−k×Rk) such thatuGGm−ρ,` and

uC(x) = Z

eihx00ia(x00, η0)đη0. (1)

Then ais called afull symbol of uand it is called a total symbol of u ifuG = 0. If u is given by a total symbol, we callu fully symbolic. We will denote I1,1;0m,ρ asI1,1m,ρ. For more consistency of notation we will sometimes denoteGm asI1,1m.

First we state an immediate consequence of the symbol definition Proposition 2.4. For all|α| 6=ρ we have

xαS1,1m,ρSm,ρ−|α| ∀|α| 6=ρ I1,1m−δ,ρ−δI1,1m,ρ ∀δ≥0

Proof. The assertions follow from the fact thatxα maps Bp,∞ρ toBp,∞ρ−|α|. Remark2.5. AsuC is defined as the partial anti Fourier transform of a symbol, the integral in (1) is always well defined, independent of the conditionmρ+k <0.

But we want our definition to be stable if one also considersx0-dependent symbols.

To understand why mρ+k < 0 is then necessary, consider the following ’stan- dard’ pathological example of a symbol inS1,10 , given by Hörmander in [Hö03b] and closely related to counterexamples due to Ching [Chi72] and Bourdaud [Bou88].

LetACc(B1/2(1)), then

a(x0, η0) =X

ν≥0

e−i2νx0A(2−νη0)∈S01,1.

If we were to formally defineuC via (1), then we would obtain as Fourier transform uˆC0) =

Z

ˆa(ξ0η0, η0)đη0 =X

ν

Z

δ(ξ0η0+ 2ν)A(2−νη0)đη0

=X

ν

A(1 + 2−νξ0) (2)

yielding a sum not converging inS0(R) if A(1)6= 0.

These effects are parallel to the problematic twisted diagonal in Hörmander’s ap- proach to paradifferential operators and their kernels. For operators this leads to noncontinuity on Hs for s≤ 0, for this model of conormal distributions this leads to complete ill-definedness of (1).

(17)

1. SYMBOL SPACES 17

1.2. Besov space embeddings. In order to simplify notation, especially to avoid case separations when taking spacial derivatives, we introduce the following notation for some >0

(s)+ =

s s

s≥0

(s+)+ s <0.

We also introduce

(s) = (s)+ss= (s)+ −(s) (s) = (− |s|)+ ⇒ (s)+ =s++ (s) .

Estimates involving such terms are to be understood as being uniform with con- stants only depending on >0.

For the technical analysis of our distribution spaces, we need to introduce a slightly weaker version of our symbol spaces.

Definition 2.6. LetaCr(Rn×Rk), thenaCrS1,1m iff

|∂ηβ0a(x, η0)|.η0m−|β|

k∂ηβ0a(·, η0)kCs .η0m−|β|+s ∀0≤sr and aCrS1,1m,ρ, rρ >0 iff

|∂xαηβ0a(x, η0)|.η0m−|β| ∀|α|< ρ k∂ηβ0a(·, η0)kCs .η0m−|β|+(s−ρ)+

∀s≤r

Ifρ≤0 and r >0 we denote in an abuse of notationCrS1,1m,ρ =CrS1,1m−ρin analoge toS1,1m,ρ=S1,1m−ρ.

At first we observe that it is sufficient to study S1,1m,ρ and CrS1,1m−ρ. Proposition 2.7. A symbol aCrS1,1m,ρ can be split into

a=a1+a2

witha1S1,1m,ρ and a2CrS1,1m−ρ with the additional estimates

|∂xαηβ0a2(x, η0)|.η0m−ρ+|α|−|β|

|α|< ρ

If the symbol a further satisfies the exotic behavior ξβ0aCr+|β|Sm−|β|,ρ for all

|β| ≤N, then ξβ0a2Cr+|β|S1,1m−ρ−|β| for all |β| ≤N.

Proof. We can define the smoothing operator χ(Dx, ξ) =X

i≤j

ψi(Dxj0) =X

j

ϕj+1(Dxj0)

with the principal support properties of χ illustrated in figure 1. Acting on the symbol, we obtain the decompositiona=a1+a2 with

a1(x, η0) =χ(Dx, η0)a(x, η0) a2(x, η0) = (1−χ(Dx, η0))a(x, η0)

We check the definition of S1,1m,ρ fora1 and obtain for the partial derivatives

(18)

Dx

η0

Figure 1. χ(Dx, η0)≡1 within the inner, and supported within the outer hyperbolæ

|∂αxηβ0a1(x, η0)|.X

i≤j

2i(|α|−ρ)+j(m−|β|)ψj0).η0m−|β|+(|α|−ρ)+

. And for theCρ norm, we immediately obtain

µ(Dx)∂ηβ0a1(x, η0)|. X

i≤j

|µ−i|≤1

2−iρ+j(m−|β|)ψj0).2−µρη0m−|β|. Now considering a2, we obtain for|α|< ρ

|∂xαηβ0a2(x, η0)|.X

i>j

2i(|α|−ρ)+j(m−|β|)

ψj0).η0m−ρ−|β|+|α|

And for theCs norms, we immediately obtain for all ρsr

µ(Dx)∂ηβ0a2(x, η0)|. X

i>j

|µ−i|≤1

2−is+j(m−ρ−|β|+s)ψj0).2−µsη0m−ρ−|β|+s

which yields the initial claim. If further ξβ0aCr+|β|Sm−|β|,ρ for all |β| ≤N, then

µ(Dx)∂ηβ0a2(x, η0)|. X

|µ−i|≤1

i(Dx)∂ηβ0ϕi0)a(x, η0)|

. X

|µ−i|≤1 β1+β2=β

2−i|β1|i(Dx)∂ηβ02a(x, η0)|.2−µ(r+|β|)η0m−ρ+r

which concludes the second claim.

To analyze the distributions arising from these symbols, we need to give a decompo- sition in terms of shrinking cones around theξ00-axis with respect toξ0. Unlike the projection of symbols of type (1,0) to these regions, we will not have rapid decay in any cone away from theξ0-axis. We will only have decay in thehξim bounds as the angle of the cone around theξ00-axis goes to 0. So choose a smooth function ˜Ψ with

Ψ(tξ˜ 00, tξ0) = ˜Ψ(ξ00, ξ0)∀|ξ00| ≥2, t≥1 supp ˜Ψ⊆ {|ξ00| ≥max(1,|ξ0|)}

Ψ(ξ˜ 00, ξ0)≡1 ∀|ξ00| ≥2 max(1,|ξ0|).

(19)

1. SYMBOL SPACES 19

Then define a partition of unity via Ψs00, ξ0) :=

(1−Ψ(ξ˜ 00, ξ0) s=−1 Ψ(2˜ −sξ00, ξ0)−Ψ(2˜ −s−1ξ00, ξ0) s≥0 supp Ψs

({|ξ00|/2≤max(1,|ξ0|)} s=−1 {|ξ00|/4≤2smax(1,|ξ0|)≤ |ξ00|} s≥0.

With this and the Littlewood Paley decomposition 1 =Pψν, as described in A we

ξ00 ξ0

Figure 2. Support properties of Ψs00, ξ0) fors= 1 ands= 2 with overlap of their support

can give the natural Besov space embeddings of the distributions associated with these symbols.

Proposition 2.8. Let m <0, r >0 and 1< p≤ ∞with m+r+k(11p)>0 and aCrS1,1m(Rn×Rk). Then we have

u(x) = Z

eix0η0a(x, η0)đη0unifB−m−k(1−1/p)

p,∞ (Rn)

(1)

aCrS1,1m(Rn−k×Rk),∀r >0⇒sing supp(u)⊆Rn−k× {0}

(2)

Proof. Without loss of generality leta have compact support inx00. First we need to subdivide the symbol into regions of different behavior in the Fourier image.

ˆa(ξ00, ζ0, η0) =

X

s,µ=−1

Ψs00, ζ0+η0µ0a(ξ00, ζ0, η0)

The components behave differently ifs=−1 or not giving us two cases. Aiming at Besov norms we are interested ifξ = (ξ00, ζ0+η0) is in the support of ψν(ξ), i.e. a given annulus 2ν−1 ≤ |ξ| ≤2ν+1 for some ν ≥0 or |ξ| ≤1 for ν=−1. If s=−1 we have in the support of Ψs that

2 max(1,|ξ0|)≥ |ξ00| ⇒ hξi ≤2ξ0 ⇒ hξi ∼ξ0 Vice versa if s≥0 we have in the support of Ψs that

00| ≥2smax(1,|ξ0|) ⇒ hξi ≤2ξ00 ⇒ hξi ∼ξ00

Here we further have |ξ00| ≤ 2s+2max(1,|ξ0|) implying hξ00i ∼ 2s0i, also observe thatsν+ 1.

(20)

Note that in generalhξ0i ∼2ν−s. We summarize these cutoffs in a partition function Γν,s,µ=ψν(ξ)Ψs(ξ)ψµ0)

To compute the Besov norm,νis fixed and we sum overs, µ≥ −1 with the restriction sν + 1. Using integration by parts for these cutoff functions, we obtain the following estimate on the Fourier inverse

|∂αξ00ξβ0ηγ0Γν,s,N,µ|.2−ν|α|−(ν−s)|β|−µ|γ|

|∂ηγ0Γˇν,s,N,µ(y, η0)|.2νn−sk−µ|γ|2νy00−M2ν−sy0−M

Note that 2νn−sk is an estimate for the volume of the support inξ. Now we investi- gate the corresponding function to the cutoff, first observing its Fourier transform

ˆhν,s,µ(ξ) = Z

ˆa(ξ00, ξ0η0, η0ν,s,µ(ξ, η0)đη0 Now we probe the two casesµν−3 and µ > ν−3 separately.

1. Let µν−3 and define ζ = (ξ00, ξ0η0). Then for (ξ, η0) ∈ supp Γν,s,µ using

0| ≤2ν−2we have

|ζ| ≤ |ξ|+|η0| ≤2ν+1+ 2ν−2≤2ν+2

|ζ| ≥ |ξ| − |η0| ≥2ν−1−2ν−2≥2ν−2

on the support of Γν,s,µ. We have P3`=−3ψν+`(ζ) = 1 on the support of Γν,s,µ and we obtain

ˆhν,s,µ(ξ) = Z 3

X

`=−3

ψν+`00, ξ0η0a(ξ00, ξ0η0, η0ν,s,µ(ξ, η0)đη0 hν,s,µ(x) =

Z

e0(x0−y0)

3

X

`=−3

ψν+`(Dx)a(x−y, η0)ˇΓν,s,N,µ(y, η0)dyđη0.

Using the symbol property k∂ηβ0a(·, η0)kCr . hη0im−|β|+r we utilize proposition A.7 withd=d(x00) = dist(x00,suppa(·, x0, η0)+B) and we obtain as an estimate through integration by parts with respect toη0

|hν,s,µ(x)|.

2νn−sk−νr+µ(m+r+k)h2νdi−M Z

2νy00−M2ν−sy0−M2µ(x0y0)−Mdy 2. Ifν−3< µ we instead obtain

hν,s,µ(x) = Z

e0(x0−y0)a(xy, η0)ˇΓν,s,µ(y, η0)dyđη0

|hν,s,µ(x)|.2νn−sk+µ(m+k)Z

|y00|≥d

2νy00−M2ν−sy0−M2µ(x0y0)−Mdy We obtain asLp estimates from scaling and convolution estimates

khν,s,µkLp .

2−νr+µ(m+r+k/q) µνs

2(ν−s)k/q−νr+µ(m+r) νs < µν−3 2(ν−s)k/q+µm ν−3< µ.

(21)

1. SYMBOL SPACES 21

Now we can estimate the Besov norm by estimating

ν+1

X

s=−1

X

µ=−1

khν,s,µkLp =

ν+1

X

s=−1 ν−s

X

µ=−1

+

ν+1

X

s=−1 ν−3

X

µ=ν−s+1

+

ν+1

X

s=−1

X

µ=ν−2

khν,s,µkLp

ν+1

X

s=−1 ν−s

X

µ=−1

khν,s,µkLp .

ν+1

X

s=−1 ν−s

X

µ=−1

2−νr+µ(m+r+k/q)

.

ν+1

X

s=−1

2ν(m+k/q)−s(m+r+k/q)

.2ν(m+k/q)

ν+1

X

s=−1 ν−3

X

µ=ν−s+1

khν,s,µkLp .

ν+1

X

s=−1 ν−3

X

µ=ν−s+1

2(ν−s)k/q−νr+µ(m+r)

.

ν+1

X

s=−1 ν

X

µ=ν−s+1

2(ν−s)k/q−νr+ν(m+r)+s(m+r)

.

ν+1

X

s=−1

s2ν(m+k/q)+s((m+r)−k/q)

.2ν(m+k/q)

ν+1

X

s=−1

X

µ=ν−2

khν,s,µkLp .

ν+1

X

s=−1

X

µ=ν−2

2(ν−s)k/q+µm

.

ν+1

X

s=−1

2ν(m+k/q)−sk/q

.2ν(m+k/q).

The second assertion is obvious, as multiplication byx0is equivalent to differentiation with respect to η0, corresponding to a regularity improvement, hence u is smooth

away fromx0= 0.

Remark 2.9. Combining the Propositions 2.7 and 2.8, we can always reduce a full symbolato having spectral support around a unit cone around theη0-axis or plane.

Then givenN ∈N0 and 1< p≤ ∞, we can define the seminorm k · kN,p for such a decomposition u=uC+uGI1,1;`m,ρ

k(uC, uG)kN,p= X

|β|≤N

sup

η0

k∂ηβ0a(·, η0)kCρ

0im−|β| + X

0|≤min(N,`)

k(x0)α0uGk

unifB−m+ρ−k(1−1/p)

p,∞ .

And then we can define onI1,1;`m,ρ the seminorms kukN,p= inf

u=uC+uG

{k(uC, uG)kN,p+k(uC, uG)kN,∞}.

1.3. Symbol Reduction and Improved Smoothness. The shortcoming of Proposition 2.8 become clear if compared to the corresponding result for conormal distributions of type (1,0) type. Here (1) is still optimal but (2) can be improved to

uI1,0m(Rn,Rn−k)⇒WF(u)⊆NRn−k.

So Proposition 2.8 alone tells us almost nothing about the microlocal structure of conormal distributions of type (1,1). Thus improved regularity needs to be used to learn about the microlocal properties of our distributions. In fact, we can immedi- ately obtain the following result.

Corollary 2.10. For alluI1,1m,ρ(Rn,Rn−k) we have

uGm−ρ(x, ξ) ∀(x, ξ)∈TRn\NRn−k.

(22)

Proof. For alld∈N define the generalization of χ(D) form Proposition 2.7 χd(D) = X

i≤j−d

ψi(Dx00j(Dx0) =X

j

ϕj+1(Dx00j−d(Dx0).

By Proposition 2.7 and 2.8, we have

(1−χd(D))u∈Gm−ρ

which yields the claim, asuGm−ρ(x00, x0) for allx0 6= 0 by Proposition 2.8.

In most computations we can more or less disregard the symbolic structure of a distribution without improved regularity. This is the precise reason for introducing Gm,`as a remainder space. However, in the following technical construction, we will learn that this is only true for directional derivatives inx00-coordinates. To see this effect, we need to introduce a generalization of the already defined symbols. These do appear in computations.

Definition2.11. A symbol is called a symbol with unidirectional improved smooth- ness ρ00>0, if it suffices

µ(Dx00)∂xα00ηβ0a(x, η0)|.2−µρ00η0m−|β|+|α0|

|∂xα00αx0000ηβ0a(x, η0)|.η0m−|β|+|α

0|+(|α00|−ρ00)+

∀|α00| 6=ρ00

write aS1,1m,ρ00,0(Rn ×Rk). For ρ00, ρ0 > 0 a symbol is called a symbol with anisotropic improved smoothness (ρ0, ρ00) if

xα00aSm+(|α

0|−ρ0)+00+(ρ0−|α0|)+,0

1,1 ∀|α0| 6=ρ0

xα00aS1,1m+,ρ00+,0 ∀|α0|=ρ0, >0 write aS1,1m,ρ000. We defineS1,1m,0,ρ0 to be S1,1m,ρ0.

Proposition 2.12. For a symbol a with anisotropic improved smoothness0, ρ00) and order m with mρ0+k <0, there is a symbol b1S1,1m,ρ000(Rn−k×Rk) and a remainder function b2Gm−ρ00−ρ0,∞ such that

Z

eix0η0a(x, η0)đη0 = Z

eix0η0b1(x00, η0)đη0+b2(x)∈I1,1;∞m,ρ . And furthermore we have the expansion

b1(x00, η0)− X

0|<N

xα0(i∂η0)αa(x00,0, η0)/α!∈S1,1m−max(N,ρ0),ρ00+(ρ0−N)+ ∀N 6=ρ0 b1(x00, η0)− X

0|<N

xα0(i∂η0)αa(x00,0, η0)/α!∈S1,1m+,ρ00+ N =ρ0,∀ >0.

Proof. We need to find a symbol representing the remainder Z

eix0ξ0r(x00, ξ0)đξ0= Z

eix0ξ0

a(x, ξ0)− X

|α|<N

xα0(i∂ξ0)αa(x, ξ0)|

x0=0/α!

đξ and obtain sufficient estimates on it. We can restrict to the caseN > ρ0, as the esti- mates on the approximation terms imply the other cases. Therefore we decompose our symbol into

ai,j(x, η0) =ψi(Dx00j0)a(x, η0).

Referenzen

ÄHNLICHE DOKUMENTE

By emphasizing the symmetry of certain set theoretic conditions, shown to be associ- ated with Arrow's Impossibility Theorem, a characterization of &#34;kinds of

Zeigen Sie: Wenn jeder arme Mann einen reichen Vater hat, dann gibt es einen reichen Mann mit einem reichen

In dieser Übung soll eine rekursive Datenstruktur für Binärbäume erstellt werden. Außerdem sollen Funktionen über Binärbäume definiert und Aussagen darüber

In contrast to [OFCD02], both the restriction to atoms on the molecular surface and the random sampling of S means a loss in characteristics of shape distribution for the

The numerical illustrations suggest that reasonable amount of misspecification in the prior distribution belonging to the class of ML-II ε-contaminated does not

We show that the bijection restricted on isomorphism class of clean Belyi pairs gives a bijection between abstract clean dessins and isomorphism class of clean Belyi pairs.. Let I

This thesis provides an explicit, general trace formula for the Hecke and Casimir eigenvalues of GL(2)-automorphic representations over a global field.. In special cases, we

The list of equivalent theorems include Kotzig’s result on graphs with unique 1-factors, a lemma by Seymour and Giles, theorems on alternating cycles in edge-colored graphs, and