• Keine Ergebnisse gefunden

Distributions - Part I

N/A
N/A
Protected

Academic year: 2021

Aktie "Distributions - Part I"

Copied!
27
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Distributions - Part I

Wolfgang Stefani

LMU München

Hütte am 12.-15.12.2013

(2)

Motivation

We would like

δ(

x

) : δ(

x

) =

0 forx ,0

R

Rd

δ(

x

)

dx

=

1.

This allowsR

Rd

δ(

x

)ϕ(

x

)

dx

= ϕ(

0

)

, for

ϕ ∈

C0

(

Rd

)

. Consider now:

Z 1

−1

|

x

0

(

x

)

dx

= −

Z 1

−1

sign

(

x

)ϕ(

x

)

dx

,

Z 1

−1

sign

(

x

0

(

x

)

dx

=

Z 0

−1

−ϕ

0

(

x

)

dx

+

Z 1

0

ϕ

0

(

x

)

dx

= −

2

ϕ(

0

).

(3)

Test functions - D(Ω)

Let

Ω ⊂

Rd andC0

(Ω) = {ϕ ∈

C

(Ω)|

supp

(ϕ) ⊂⊂ Ω}

. Whereby supp

(ϕ) = {

x

∈ Ω|ϕ(

x

)

,0

}

.

With the usual pointwise addition and skalar multiplication this is a vector space (overC).

We further define the following convergence:

lim

j→∞

ϕ

j

= ϕ

inC0

(Ω),

if

K

⊂⊂ Ω ∀

j

:

supp

j

) ⊂

K,

∀α ∈

Nd

:

Dα

ϕ

j

Dα

ϕ

uniformly, i. e.

limj→∞supx∈K

|

Dα

ϕ

j

(

x

) −

Dα

ϕ(

x

)| =

0.

(4)

Distributions - D

0

(Ω)

The mapT

: D(Ω) →

Cis a distribution, if and only if it is a sequentially continuous linear form, i.e.

j

→ ϕ ⇒

T

j

) →

T

(ϕ)) ∧

T

(ϕ + λψ) =

T

(ϕ) + λ

T

(ψ).

Equivalently:

K

⊂⊂ Ω ∃

c

,

Nconstant, such that:

∀ϕ ∈ D(

K

) : |

T

(ϕ)| ≤

c

kϕk

N,∞;K

=

cP

|α|≤Nsupx∈K

|∂

α

ϕ(

x

)|

.

If in the above a certainNsuffices for all compactK, then the smallest of those is called the order ofT.

(5)

Regular Distributions

Let

,

Ω ⊂

Rdopen,

(

Rd

, λ

d

)

the Lebesgue measure space and f

Lloc1

(Ω)

, then following is a Distribution of order 0:

Tf

:

C0

(Ω) →

C

, ϕ 7→

Z

f

· ϕ

d

λ

d

.

= (

f

, ϕ)

If we additionally let

α ∈

Nd, then

(

DαTf

)(ϕ) := (−

1

)

|α|Tf

(

Dα

ϕ) = (−

1

)

|α|

Z

f

·

Dα

ϕ

d

λ

d is a Distribution, since for

ϕ

j

→ ϕ

:

|(

DαTf

)(ϕ

j

− ϕ)| = |

Z

K

f

·

Dα

j

− ϕ)

d

λ

d

| ≤ k

Dα

j

− ϕ)k

∞;K

k

f

k

1;K

0

.

(6)

Properties D

0

(Ω)

By definition,

D

0permits aCvectorspace structure. Denoting T

(ϕ) = (

T

, ϕ)

, we get a bilinear form on

D

0.

Let nowa

C

(Ω)

and

α, β ∈

Nd. With the following definitions we get:

(

aT

, ϕ) := (

T

,

a

ϕ) ⇒

aT

∈ D

0,

(

DαT

, ϕ) := (−

1

)

|α|

(

T

,

Dα

ϕ) ⇒

DαT

∈ D

0. And further:

Di

(

aT

) =

Di

(

a

)

T

+

aDi

(

T

)

, Dα+βT

=

Dα

(

DβT

) =

Dβ

(

DαT

)

.

(7)

Localization

ForT

∈ D

0

(Ω)

we define its restriction on

0

⊂ Ω

, by T

0

(ϕ) =

T

(ϕ) ∀ϕ ∈ D(Ω

0

).

Using this we define the support ofT

∈ D

0

(Ω)

: supp

(

T

) = {

x

∈ Ω| ∀δ >

0 :T

Ω∩Bδ(x),0

}.

For regular distributions, we have: supp

(

Tf

) =

supp

(

f

)

. We also have the general implication forT

∈ D

0 and

ϕ ∈ D

:

supp

(

T

) ∩

supp

(ϕ) = ∅ ⇒ (

T

, ϕ) ≡

0

.

(8)

Convolution with functions

ForT

∈ D

0

(Ω)

and

ψ ∈ D(Ω)

we define their convolution atx

∈ Ω

, by

(

T

∗ ψ)(

x

) :=

T

(ψ(

x

− ·)) = (

T

, ψ(

x

− ·)).

For a regular distributionTf we have:

(

Tf

∗ ψ)(

x

) =

R

f

(

y

)ψ(

x

y

)

dy.

This convolution has the following properties:

• T

∗ ϕ ∈

C

(

Rd

)

,

• supp

(

T

∗ ϕ) ⊂

supp

(

T

) +

supp

(ϕ)

,

• Dα

(

T

∗ ϕ) = (

DαT

) ∗ ϕ =

T

∗ (

Dα

ϕ)

.

For

η ∈ D

as well we get further:

(

T

∗ η) ∗ ϕ =

T

∗ (η ∗ ϕ)

.

(9)

Convergence in D

0

We define the following convergence on

D

0: lim

k→∞Tk

=

T

:⇔ ∀ϕ ∈ D :

lim

k→∞

(

Tk

, ϕ) = (

T

, ϕ).

This convergence makes

D

0a complete space.

With the mollifierJε

(

x

) = ε

dJ

1x

) = ε

dcexp

(−

1−|ε1−1x|2

)

1{|ε−1x|<1}

we get the convergence:

T

Jε

T in

D

0

.

So the spaceCis dense in

D

0and analogously for the space with compact support.

(10)

Delta Distribution

Leta

∈ Ω

and define,

δ

0

∈ D

0

: δ

0

(ϕ) = ϕ(

0

) ∀ϕ ∈ D.

Z

f

(

x

)ϕ(

x

)

dx

Approximation via Dirac sequences

(

tk

)

k

L1

(

Rd

)

: 1.

x

Rd

k

N

:

tk

(

x

) ≥

0,

2.

k

N

:

R

Rdtk

(

x

)

dx

=

1, 3.

∀ε >

0

:

limk→∞R

Rd\Bε(0)tk

(

x

)

dx

=

0.

For example:

tk

(

x

) = √

1 2

π

k−1

exp

(−

x

2

2k−1

)

or tk

(

x

) =

Jε=1 k

(

x

)

(11)

Radon Measures

Let

(

X

, B, µ)

withX Hausdorff, such that

µ

is locally finite, i.e.

x

X

Uopen

: µ(

U

) < ∞

,

µ

is inner regular, i.e.

A

∈ B : µ(

A

) =

sup

{µ(

K

)|

K

A

:

K compact

}

. LetM

(Ω)

be the set of Radon Measures on

and

µ ∈

M

(Ω)

, then

(µ, ϕ) :=

Z

ϕ(

x

)

d

µ(

x

)

, for

ϕ ∈ D,

defines a Distribution.

In particular, the Dirac measure δ(A) =





1, 0∈A,

0, 0<A (A ⊂Rd) gives the

Delta Distribution:

0

, ϕ) =

Z

ϕ(

x

)

d

δ

0

(

x

) = ϕ(

0

) = δ

0

(ϕ)

for

ϕ ∈ D.

(12)

Distributions - Part II

Wolfgang Stefani

LMU München

Hütte am 12.-15.12.2013

(13)

Distributional Solution

LetT

∈ D

0,f

∈ C(

Rd

,

R

)

andP

(

D

) =

X

|α|≤k

aα

(

x

) ∂

α

xα. T is a distributional solution toP

(

D

)

u

=

f, if and only if

P

(

D

)

T

=

Tf

⇔ (

P

(

D

)

T

Tf

, ϕ) =

0

∀ϕ ∈ D.

For the Laplacian Operator

onT we have:

T

=

d

X

i=1

DiDiT

⇒ (∆

T

, ϕ) = (

T

, ∆ϕ),

for

ϕ ∈ D.

Ifg

C2

(

Rd

,

R

)

andT

=

Tg we have the classical Green fromula Z

(ϕ∆

g

g

∆ϕ)

dx

=

0

.

(14)

Fundamental Solution

ForP

(

D

) =

X

|α|≤k

aα

α

xα, the solution

γ

of

P

(

D

)

u

(

x

) =

0

,

i.e. P

(

D

)γ = δ

0 is called a fundamental solution.

The inhomogeneous solution to

P

(

D

)

u

(

x

) =

f

(

x

)

is u

(

x

) = (γ ∗

f

)(

x

) =

Z

γ(

x

y

)

f

(

y

)

dy

.

(15)

Reminder

We have seen:

Z 1

−1

|

x

0

(

x

)

dx

= −

Z 1

−1

sign

(

x

)ϕ(

x

)

dx

Z 1

−1

sign

(

x

0

(

x

)

dx

= −

2

ϕ(

0

) = −

Z 1

−1

2

δ

0

(

x

)ϕ(

x

)

dx

.

So:

(

sign0

, ϕ) = −(

sign

, ϕ

0

) = −(−

2

δ

0

, ϕ) ⇒

sign0

=

2

δ

0

=

Z

2

δ

0

·

dx

(16)

Example - I

For the Heaviside functionH

(

x

) =





1

,

x

0

0

,

x

<

0 we have:

(

H0

, ϕ) = −(

H

, ϕ

0

) = −

Z

0

1

ϕ

0

(

x

)

dx

= ϕ(

0

) = (δ

0

, ϕ) ⇒ ∂

xH

(

x

) = δ

0

(

x

)

So for the Laplacian

inR:

∆γ = ∂

2

∂ x

2

γ =

∂ x

∂ x γ

= δ

0

⇒ ∂

∂ x γ =

H

(

x

) +

c

⇒ γ =

xH

(

x

) +

cx

+

c0

c=12,c0=0

⇒ γ(

x

) =

1 2

|

x

|

(17)

Example - II

From classical theory inRd:

γ(

x

) =





1 ln

(|

x

|)

(d−2)ω1 d

|

x

|

2−d and Z

|x|≤c

|γ(

x

)| =











 Z c

0

|

ln

(

r

)|

r dr

,

d

=

2

,

1 (d−2)

Z c

0

r2−drd−1

,

d

2 Then withR sufficiently large,

(∆γ, ϕ) = (γ, ∆ϕ) =

Z

γ(

x

)∆ϕ(

x

)

dx

=

lim

ε&0

Z

ε<|x|<R

γ(

x

)∆ϕ(

x

)

dx

=

lim

x&0Jε

.

Using Green’s second identity:

Jε

=

Z

ε<|x|<R

ϕ∆γ

dx

+

Z

|x|=ε

γ ∂ϕ

∂ν − ϕ ∂γ

∂ν

d

σ.

(18)

Example - II cont.

Since

∆γ =

0 for

|

x

| > ε

and for

|

x

| = ε

we have

∂ν = ∂

r: Jε

=

Z

|x|=ε

γ ∂ϕ

∂ν − ϕ ∂γ

∂ν

d

σ =

Z

|x|=ε

γ(

x

) ∂ϕ

r

− ϕ(

x

)

1

(2−d)

ω

d

(

2

d

)|

x

|

1−d d

σ

=

1

ω

d

Z

|x|=ε

ε

2−d d

2

∂ϕ(

x

)

r

− ϕ(

x

1−d d

σ

Using the mean value theorem with

|

x0

| = |

x00

| = ε

:

Jε

=

1

ω

d

ε

2−d d

2

∂(

x0

)

r

− ε

1−d

ϕ(

x00

)

ω

d

ε

d−1

= ε

d

2

∂ϕ(

x0

)

r

+ ϕ(

x00

).

As the derivative is finite for

ε &

0 we get:

(∆γ, ϕ) =

lim

ε&0Jε

= ϕ(

0

) = (δ

0

, ϕ).

(19)

The Schwartz Space S

The vector space of all rapidly decreasing functions

S(

Rd

) := {φ ∈

C

(

Rd

) | ∀α, β ∈

Nd0

:

sup

x∈Rd

|

xαDβφ(x

)| < ∞}

is called Schwartz space. We have

D

(

S

. h

e.g. exp

(−|

x

|

2

)

i Topology and convergence are induced by the seminorms

kφk

N

=

sup

x∈Rd

|α|,|β|<Nmax

|

xαDβ

ϕ(

x

)| ⇔

pk,l

(

φ

) =

sup

x∈Rd

(|

x

|

k

+

1

)

X

|β|≤l

|

Dβφ

(

x

)|

and φk

φin

S :⇔ ∀

N

N0

: kφ

k

φkN

0

.

(20)

Fourier Transform F

For someφ

∈ S

its Fourier transform is defined as

F

φ

(ξ) = (

2

π)

d2

Z

Rd

e−ix·ξφ

(

x

)

dx

, ξ ∈

Rd

.

which maps as

F : S → S

and is bijective and bicontinuous with inverse

(F

−1φ)(x

) = (

2

π)

d2Z

Rd

eix·ξφ(ξ)d

ξ, ϕ ∈ S.

Forφ

∈ S

we also getxαφ

,

Dαφ

, F

φ

,

Dα

F

φ

, F (

Dαφ

) ∈ S

and Dα

F

φ

= (−

i

)

|α|

F (

xαφ),

ξ

α

F

φ

= (−

i

)

|α|

F (

Dαφ)

So, in particular

F (

Dαφ

) = (−

i

)

−|α|

ξ

α

F

φ

(21)

Tempered Distributions S

0

The space

S

0contains all linear forms

S →

C, which are sequentially continous, i. e.

φk

φin

S ⇒

T

k

) →

T

(φ).

Since φk

φin

D ⇒

φk

φin

S ⇒

T

k

) →

T

(φ),

we haveT

∈ S

0

T

∈ D

0. And by

F

T

(ϕ) :=

T

(F ϕ)

we define the Fourier transform ofT

∈ S

0.

(22)

Example - III

The regular distributionTe is not tempered. Let

ϕ ∈ D(

R

)

, then

ψ

k

(

x

) :=

e−k

ϕ(

x

k

) →

0 in

S(

R

),

with

ψ

k

∈ D(

R

)

, but

Te

k

) =

Z

R

ex

ψ

k

(

x

)

dx

=

Z

R

exe−k

ϕ(

x

k

)

dx

=

Z

R

ey

ϕ(

y

)

dy ,0

=

Te

(

0

).

(23)

Example - IV.1

Consider the heat equation for distributions:

∂u∂tu

(

t

,

x

) = ∆

xu

(

t

,

x

)

u

(

t

,

x

) =

f

(

t

,

x

)

i.e.

(

∂tT

, ϕ) = (∆

xT

, ϕ) (

0

, ∞) ×

Rd

(

T

, ϕ) = (

Tf

, ϕ) {

t

=

0

} ×

Rd Determine its Fourier transform forx:

F

x

(∆

xT

, ϕ) = F

x

(

T

, ∆

x

ϕ) = (

T

, F

x

(∆

x

ϕ)) = (

T

, (−

i

)

−2

ξ

(0,2)

F

x

ϕ)

Thus we get:

F

x

( ∂

tT

, ϕ) = F

x

(−

T

, ∂

t

ϕ) = (−

T

, ∂

t

F

x

ϕ) =

( ∂

tT

, F

x

ϕ) = ∂

t

(

T

, F

x

ϕ) = = (−|ξ|

! 2T

, F

x

ϕ)

(24)

Example - IV.2

We have now the ordinary differential equation in

F

x

(

T

)

:

∂t

F

x

(

T

, ϕ) = −|ξ|

2

F

x

(

T

, ϕ) F

x

(

T

, ϕ) = F

x

(

Tf

, ϕ)

i.e.

∂t

F

x

(

T

) = −|ξ|

2

F

x

(

T

) (

0

, ∞) ×

Rd

F

x

(

T

) = F (

Tf

) {

t

=

0

} ×

Rd Thus we get:

F

x

(

T

) =

et|ξ|2

F (

Tf

) ⇒ (

T

, F

x

ϕ) =

et|ξ|2

(

Tf

, F ϕ)

⇒ F

ξ−1

(

T

, F ϕ) = F

ξ−1

(

Tf

,

e−t|ξ|2

F ϕ) ⇒ (

T

, ϕ) =

Tf

, F

ξ−1

(

e−t|ξ|2

F ϕ)

(25)

Example - IV.3

The convolution theorem forT1

∈ S

0 andT2

∈ E

0:

F (

T1

T2

) = (

2

π)

d2

F (

T1

)F (

T2

)

With this we get:

F

ξ−1

(

e−t|ξ|2

F

x

ϕ) = (

2

π)

d2

F

ξ−1

(

e−t|ξ|2

) ∗ ϕ

Further

F

ξ−1

(

e−t|ξ|2

) = (

2

π)

d2 Z

eix·ξe−t|ξ|2 d

ξ =

Z

Rd

eix·ξ−t|ξ|2d

ξ

= (

2t

)

d2e|x|

2

4t

=

g

(

t

,

x

)

(26)

Example - IV.4

So finally:

(

Tf

,

g

∗ ϕ) =

Z

f

(

t

,

x

)(

2

π)

d2 Z

g

(

t

t0

,

x

x0

)ϕ(

t0

,

x0

)

d

(

t0

,

x0

)

d

(

t

,

x

) =

Z

ϕ(

t0

,

x0

)(

2

π)

d2 Z

f

(

t

,

x

)

g

(

t

t0

,

x

x0

)

d

(

t

,

x

)

d

(

t0

,

x0

) =

Z

(

2

π)

d2 Z

f

(

t

,

x

)

g

(

t

t0

,

x

x0

)

d

(

t

,

x

)

ϕ(

t0

,

x0

)

d

(

t0

,

x0

) =

Z

(

4

π(

t

t0

))

d2f

(

t

,

x

)

e

|x−x0|2 4(t−t0) d

(

t

,

x

)

ϕ(

t0

,

x0

)

d

(

t0

,

x0

) =

Z

(

4

π(−

t0

))

d2 Z

f

(

x

)

e

|x−x0|2 4(−t0) d

(

x

)

ϕ(

t0

,

x0

)

d

(

t0

,

x0

).

(27)

Example - IV.5

The solution is the regular distributionTh with:

h

(

t

,

x

) = (

4

π

t

)

d2 Z

f

(

x

)

e

|xx0|2 4t d

(

x

)

^ ¨

Referenzen

ÄHNLICHE DOKUMENTE

It is not uncommon for a single pyrometallurgical unit oper- ation to exhibit behavior related to simultaneous heat transfer and thermal radiation, multiphase and free surface

Part II describes the subprograms included in the PDP-9 FORTRAN IV Object Time System. The Object Time System is a group of subprograms that process compiled

Well the fact that in the existing 2017 real world economy banks create money when they lend (“loans create deposits” as the saying goes) does not mean that lending in a “CB

Having a fundamental solution one is able to construct a solution u of Lu = g, at least if g is a smooth function having compact support, as we shall see in 7.12..

Using topological arguments we see that all diagrams made from cups, caps and identity morphisms are spanned by so called crossingless

 Two-way interaction describes how a main-effect depends on the level of the other factor. More than

After you type the command line and a newlIne for interactive commands, you are at request level: the system expects either appropriate information (like

He also studied the properties of the loss-function for general measures {P n } introduced in Abaya and Wise (1984), and proved that the convergence of infimums of the loss-function