• Keine Ergebnisse gefunden

Redox cycle for sulfur From Brock, Fig. 19.30

N/A
N/A
Protected

Academic year: 2021

Aktie "Redox cycle for sulfur From Brock, Fig. 19.30"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Redox cycle for sulfur From Brock, Fig. 19.30

(2)

Important sulfur-containing compounds for synthesis and degradation

__________________________________________________________

•Cysteine, methionine, proteins, peptides (e.g. glutathione:

-Glu-Cys-Gly)

•Iron-sulfur clusters: 2Fe:2S, 3Fe:3S, 3Fe:4S, 4Fe:4S, P- cluster + FeMo-cluster in nitrogenase

•Thiouracil in certain tRNAs

•Cofactors: pantothenic acid in CoA and ACP, CoM + CoB (in methanogens), ThPP, lipoic acid, biotin, molybdopterin, SAM

•Secondary metabolites, e.g. taurine, penicillin

(3)

Release of hydrogen sulfide from organic compounds by desulfurylation R2 R2

R1-C-SH + H2O R1-C-OH + H2S R3 R3

(4)

Sulfate SO42–

Sulfite SO32–

Sulfide S2–, HS (H2S) thioredoxin

Bacterial sulfur assimilation

Step 1: Reduction of sulfate to sulfide

(5)

SH S2–

Cysteine

Bacterial sulfur assimilation

Step 2: Biosynthesis of cysteine

All other sulfur-

containing compounds

(6)

To atmosphere

Anaerobic respiration with sulfate as the terminal electron acceptor:

„Sulfate respiration“

„Dissimilatory sulfate reduction“

Desufovibrio Desulfobacter

(7)

Electron

transport and energy

conservation in sulfate-reducing bacteria

(8)

Anoxygenic photosynthesis is typical for anaerobic purple bacteria and green sulfur bacteria

(9)
(10)

Development of anoxic conditions in a temperate climate lake

(11)

Phototrophic purple bacteria

Chromatium okenii

Ectothiorhodospira mobilis

Phototrophic green bacteria

Chlorobium limicola

(12)

Oxidation of hydrogen sulfide to sulfur: H2S + ½ O2 S0 + H2O e.g. in Beggiatoa, Thiotrix, Thioplaca (sulfur granules deposited intracellularly)

(13)

Sulfur-rich hot spring, a habitat containing dense populations of Sulfolobus:

„Solfatare“ (Yellowstone National Park, USA)

Sulfolobus acidocaldarius, a sulfur-oxidizing chemolithotroph 2 S0 + 3 O2 + 2 H2O 2 H2SO4

(14)

Further oxidations of sulfur compounds

typical for Thiobacillus spp.

•acidophilic, pH 2-3

•obligate lithoautotroph

carboxysomes

(15)

Electron transport chain driven by oxidation of sulfur compounds

(16)

Energetics of iron oxidation by the acidophile Thiobacillus ferrooxidans

exploiting a natural pH gradient !

pyrite (FeS2)

(17)

Bingham copper mine near Salt Lake City, Utah

(18)

Leaching: Mining of sulfidic ores (Cu, Zn, Ni, Mo, U)

Step 1: Sulfide and sulfur oxidation (Thiobacillus thiooxidans) FeS2 + 3 ½ O2 + H2O FeSO4 + H2SO4

S0 + 1 ½ O2 + H2O H2SO4

Step 2: Iron oxidation (Thiobacillus ferrooxidans) 2 FeIISO4 + ½ O2 + H2SO4 Fe2III(SO4)3 + H2O

Step 3: Chemical oxidation („Leaching“)

2Fe3+ + MeS 2 Fe2+ + S0 + Me2+(soluble!)

Step 4: Chemical recovery of pure metal

Fe0 + Me2+ Fe2+ + Me0

Referenzen

ÄHNLICHE DOKUMENTE

Since microbial arsenate reduction is coupled to sulfide oxidation to elemental sulfur, different arsenic and sulfur species might have been possible reaction partners

  Thiothrix  bacteria  are  metabolically  very  versatile,  and  the  capability  of  chemoautotrophic,   chemoheterotrophic,  and  mixotrophic  growth  has

integrate these merely molecular data with quantitative activity measurements to study the ecological role of key microbes within complex microbial communities. I therefore developed

To determine the composition of the microbial community and to identify potential organic carbon consuming microorganisms in the 55°C diffuse fluid at Woody Crack, we performed

%DFWHULDR[LGL]LQJVXOILGHWRVXOIXUGLGQRWFRQVXPHVXOIXUDVFDQEHVHHQLQ)LJ6PDOO DPRXQWV RI WKLRVXOIDWH ZHUH SUHVHQW EXW QRW XVHG DV LQGLFDWHG E\

Sequencing single cells and filaments of large sulfur bacteria furthermore revealed that they represent the first group of bacteria, which commonly contain large and numerous

55 (For comparison, using the same carbon and climate model we estimate that industrial CO 2 emissions in the IS92a baseline scenario 56 of the Intergovernmental Panel on

This work demon strates nitrite as the highest potential electron donor for anoxygenic photo synthesis known so far and provides a modern example of an electron donor once implicated