• Keine Ergebnisse gefunden

Decision Utility Theory: Back to von Neumann, Morgenstern, and Markowitz

N/A
N/A
Protected

Academic year: 2022

Aktie "Decision Utility Theory: Back to von Neumann, Morgenstern, and Markowitz"

Copied!
27
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Munich Personal RePEc Archive

Decision Utility Theory: Back to von Neumann, Morgenstern, and Markowitz

Kontek, Krzysztof

Artal Investments

1 December 2010

Online at https://mpra.ub.uni-muenchen.de/27141/

MPRA Paper No. 27141, posted 01 Dec 2010 15:19 UTC

(2)

!

"#

! " # $ %

! $

&' ( ) % ( * $

decision + ) '

,, ! " # % $

% $

- $ !

$%& . $ "/0$ "1

2 # $ ) % ( 3 $ $ " # $

4 $ 5 2 $ 5 % 4 ) $ 4 6 !

'

7 1 '

& ! ! 7

! '

! & $ 7 $ )

& % ( 5 $

//, ! cardinal $ ! !

$ !

4 8 $ ! % 09 /*$ / ', , : $ $ ' .%% % ///; !

% % $ $ .

3 ) % ($ ( 7 $ < 5 % $ ( (% $ = & % '

> % $ & $ = 6 $ ) 7 !

(3)

$ ! $ $

ordinal ! $

! 5 0 $

+ ) Theory of Games and

Economic Behavior ,, ! ? '

u

% .

{ }

(

?

)

n

( )

i i

( )

i

v x p u x p E u x

=

=

=   !

x p ! @ +

) ! &

! A $

$ ! & $

%

% ! - A $ &

,1 ) % ( * $ '

! $ $

% $

B C 2

# ! ) - 4

! # - '

$ .

{ }

(

?

)

n

( ) ( )

i i i

v x p u x w p

=

=

!

+ '2

# ! < $ % $

% $ < $ ! $ '

!

" # $

(4)

0

!

! 7 $ $ + '

) $ < %

- !

%0! &'

( ) % ( * $ decision

+ ) ,, !

! ( )

@ + )

The Theory of Games and Economic Behavior ,,, . BConsider three events, C, A, B, for which the order of the individual’s preferences is the one stated. Let p be a real number between 0 and 1, such that A is exactly equally desirable with combined event consisting of a chance of probability 1 % p for B and the remaining chance of probability p for C. Then we sug%

gest the use of p as a numerical estimate for the ratio of the preference of A over B to that of C

over BC ! 1$ DαE DpE !

.

( ) ( ) ( ) ( )

u A u B

p u C u B

= −

− !

u ! ! ! 8

$ A B C? '

FB$ CG $ p! 7 $

$ $ ! " '

p H A !

A u B

( ) ( )

$ u C $ p '

/ ! @ + ) Butility is a number up to a

0 B C % < < $ $ < $ : %% $

& $ $ < $ $ //I ! " .“The weight that is assigned to the

desirability of an outcome in the context of a decision is called its decision utility. Decision utilities are inferred from choices and are used to explain choices”! < .“The Prospect Theory value function represents the decision utility of the gains and losses associated with possible outcomes”! $ $ ! 4 '

$ !

, *0!

(5)

,

linear transformationC ! * ! 8 ! u u1

J a uKb$ b a≠/! u B

( )

=/ u C

( )

= $

! .

( )

p=u A !

8 A !

L $ ! $ '

$ ! H

!

6 B$ A$ C x1$x2$

x3$ x <x <x0$ u’ x2!

A ! H

% ! 6 x4 x5

, * 0

x <x <x <x !0

& $ x2

, *

x <x <x !,

* !+ & ) , - . /+ 0 1 , - .

/ - +

u’’

u’! .

( )

,

( )

,

u'' x =u' x !*

( )

*

( )

*

u'' x =u' x !I

(6)

*

3 u’’ u’ A ! !

H u’ u’’

Fx4$x5G! H !

H ! +

$ (! $

! " - $ u’ u’’

Fx4$ x5G! 8

$ !

2 %3-

4

+ ) E %! M % %

< $ !

1 1 !

. N/$ */O$ N/$ //O$ N/$ //O$ N/$ ,//O$ N*/$ //O$ N*/$ */O$

N //$ //O! P ! %

< H ! " '

H $ (! '

! 8 $ $ '

!

A 0! ! '

$ !

! A $

% < ! 8 $

&' $ $ !

& $

! A $ F/$ */G P,/$

F/$ //G ! ) % '

P *! # F/$ //G$

F/$ //G F*/$ //G F/$ ,//G F*/$ */G! &

P *! # F/$ //G F*/$

(7)

I

*/G$ F/$ ,//G F //$ //G! 8 % % %

!

* 2+ # 4 5 66!7+ % - - )

- .8 98/ .8 88/ .8 !88/ .8 :88/ .98 88/ .98 98/ . 88 !88/+

* 2+! & 1 .8 98/ .8 88/ .98 88/ .98 98/ . 88 !88/

- .8 !88/+ 0 1 .8 !88/

- .8 :88/

(8)

( A 0! ! F/$

//G ! # F/$ */G$ F/$ //G$ F*/$ //G$ F*/$ */G$

F //$ //G ! @

$ ! : E $ F/$ //G

F/$ ,//G A 0! ' !

'

! '

! 8

! 8

! $ $ '

!

:

4 0$

! ! 8

$ H

F/$ G .

min $

max min

ce P

r P P

= −

− ,!

r ( $ ce H $ Pmax J

) x $ PminJMin x ! 4

r p

A ,! ! 4 &' $ '

*! 8 D .

( )

p=D r ,!

!

* 7 " $ %

F/$ G!

(9)

1

* :+ ; 5 7 4 5 66!7+ & 1

+ 0 1 + < - - # # - 5 )

7 +

" % +

) $ ! 8 '

%$

!

$ F/$ G ! 8 ,!

I! 3 $ $

H !

H .

( )

cer =D p ,!0

.

( )

min r max min

ce=P +ce PP ,!,

A Pmin =/$ ,!, .

( )

ce=PmaxD p ,!*

'

H ! 6

H B C 2 #

! $ '

I ! 8

$ ! 8

$ $ !

(10)

!

9 = 0 %

4 $ 5 2 ( < %

!

< #

4. ,$/// /!1/ 7. 0$/// !//

/ /! /

< # !

. ,$/// /! / ". 0$/// /! *

/ /!1/ / /! *

2 7

! 2 # $ $

4 7 " $ (

, !

A *! $ !

* 9+ = 0 % - - 3 %3- 5 7 3-

5 7+

A *! $ !

,!* !

F/$ ,///G 4 $

,$///! F/$ 0///G 7 "$

(11)

/

0$///! H

x' ! A $ 7 4$

$ "! '

! 8 $ H &' ! 4 $

A ! $ % !

> , -

-

A ,! ! A I! ! Q $

( ) % ( * ! 8 ) % ( '

!

! ) % (! '

'

) % (!

* >+ & ) ; 5 7 ? 0 ) -

- 5 69!7+

A I!

$ ! + $

!

$ $ % % $ %

! $ $

% % $ % !

$ % B % C$ '

(12)

! $ $

! ' $ $ $

' B C!

) % (E

! < % -

) % ( ! & $ $ '

) % ( $ ! ! !

5 2

4 !

@

6 r '

,! .

( ) ( )

(

max

) (

minmin

)

v ce v P

r v P v P

= −

− !

v ! v

- ! 8

,! 4 %

$ $ $

! !

& ! ,! .

( ) ( )

(

max

) (

minmin

)

v ce v P

p D

v P v P

 − 

=  −  !

.

( ) ( ) ( )

(

max

) (

minmin

)

v ce v P

D p

v P v P

= − !0

4 !0 .

( ) (

min

) ( ) (

max

) ( )

v ce =v P  −D p +v P D p !,

6 v D '

(13)

w! !, H H '

$ ! 8

" # !

( ! 2 '

# ' .

p=r !*

+ ') !

! ! " # .

( )

p=D r !I

D ! . p

D r r$ + ) $

2 # " # !

!0 .

( )

w p =r !

w ! % % !I

! ! -

!

6 $

- ! A 7 , $

( )

5= = 3 φ  !1

( )

5== Ψ 5 Ψ$

( )

3 φ

Ψ = Ψ

φ! ! !1 $

p 5$ D =$ '

v 3$

φ! !

! . u A( ) (= p u B) ( )+ p u C( )

! !

(14)

0

B C B C$ + '

') u v '

! $ $

!1 ! ! ,!

' % !

A B C

" #

$

!I ! ! ! !0 !,

% $ ! '

'

! 8 H $ ! '

'

!

6 P // /!*!

. !

.

( ) ( ) (

/!* //

)

/!,

(

//

)

u y =w vv 1!

6 P // % */ P //

/!/ ! // . */

*/ $ ! &

$ .

( )

*/

(

/!/

) (

//

)

*/ /!/*

(

//

)

!*

(

//

)

u y = w v ≈ ⋅ vv 1!

P // */

I $ !*

P //! & $

$ !

. $ ! % '

!

(15)

,

) : $ , ! 4

$

% $ ! ! '

! ?

1! ! '

' 6 '

! $

Q $ 1 ! 5 %'

" 2 # $ $ H $ $

$ % ! '

(

$ ?!!!? n$ n

)

X = p x p x $ '

!!! n

x < <x $ .

( )

n

( ) (

i i$

)

i

RDU X u x w p X

=

=

1!0

(

i$

) (

i !!! n

) (

i !!! n

)

w p X =w p + + pw p+ + +p 1!,

A : , . BThe first expression in (8.4) is the sum

over probabilities of all outcomes that are at least as great as xi; the second expression is the sum over the probabilities of all outcomes that are greater than xi. The dependence on the rank of xi comes about because different probability values enter into the two summations, depending on the rank of xi. As the result the probability weight w(pi, X) given to probability pi depends criti%

cally on the rank of the associated outcome xiC!

5 %'" 2 # '

!

$ '

$ B '

C $ ! $

' ! '

! '

!

(16)

*

6 %3-

" %

!I ! ' '

! 8 ' H

/ ! 2 ri '

/ piR =D r

( )

i ! -

H

R n

eq i i

i

p p p

=

=

!

pi ri ' ! .

n

( )

eq i i

i

p D r p

=

=

!

H peq

' ! '

! 2 # ! $

$

! ' $ !

eq $

p = p p !

6 ri pi! 8 '

! .

( )

eq i$ i i

p =D r p !0

6 k

pi 9k! ! .

( ) ( ) ( ) ( ) ( )

R

$ !!!!

k k

i i i

eq i i i i i i i i

j j

p p p

p D r D r D r D r p D r p

k k = k = k

= + + =

=

= !,

!0 ! 8

H peq! " # $ $

! 4 $

S S

2 # ! 4 $ '

(17)

I

$ %

!

8 + = < -

" #

' ! H

! '

$ ! H

$ $ !

% $

! $ $ ! 8

H %

' % $ < $ ! 4 '

- ! 2

% 1!

8 $ %

! 4 ! 6

. P/ P //$ /!* !

H P0I % $ < $ ! 6

. P/$ P0I P //$

P0I H !

'p 9 $p$ 'p 9 ! 6 '

H P0I$

p! ! 4 p /$

$ H P0I! 4 p $ '

P0I! A p F/$ G $

H P0I! $

1 ' L ( : $

I . BIn addition to the two outcome gambles, 36 three%outcome gambles were included. Data from these gambles will

be presented elsewhereC! : $

' $ !

(18)

$ H P0I!

! 6

! .

( )

/ 0I /

eq //

p p p

p =D − +D p+D − = + p+ − =

  /!

$ ,!* $ H P0I

p! 6 !

.

( ) ( ( ) ) ( ) ( ) ( ( ) ) ( ( ) )

( ) ( ) ( ( ) )

@ // 9 / 0I 9 9

/ 9

y w p w w p p w p

w w p p

   

=  − − +  − + − − 

 

+  − − + 

/!

H H v ce! 4

$ $ '

H ce.

( ) ( ( ) ) ( ( ) )

( )

( ) ( ( ) )

// 0I 9 0I 9

9 9

p p

ce

p p

γ γ α

α α α

γ γ γ

 

− − + +

 

=  

 

 − + + 

 

 

/!0

α γ ! '

H /!0 A /!

p F/$ G ! H '

P0I$ !

* 8+ = D ) - # #

E2> + E2>+ =<

# +

(19)

1 p α γ! 8

B C '

!

H !

" < 3

M ' $ 4

! 8 < %

!

< # 2

4. $*// /!00 7. $,// !//

$,// /!II

/ /!/

< # :

. $*// /!00 ". $,// /!0,

/ /!I / /!II

2 7 0

,$ 2 # !

! H 4 7 '

! ,!* .

*// ,//

*// /!00 /!II

*// *//

ceA = D  D + D  !

( )

B ,//

ce = D !

& H ceA <ceB .

( )

,// /!00

/! I /!

*// /!0,

D  > D >

  !0

4 /! /! I$ %

H $ 0 ! 4 .

( )

*// /!00

ceC = D !,

(20)

( )

,// /!0,

ceD = D !*

H ceC >ceD$ ! !.

(

/!00

)

/! I

(

/!0,

)

D > D !I

! 7

,! ) &'

4 5 2 !

! = ,

" #

% ! 4 ( '

$ $

!

+ ') ! &

! - '

$ " # , !

( $ ,!, ! 6 '

H !

' $ $ '

$

! ) ( $

! & .

? ! M $ % $ '

% $

% ! 4 % '

( / $ ( B C !

7 T ! //I $

% '

! .

? $

? 0 $

(21)

/

! 4 ( $ 7 T ! '

'

! @ $

! 8 $ '

!

' " #

% ! " '

' %

!

2 0 " 1

" 2 #

%! 8 $

! 3 % 4 ! 3 $

$ % ?

pJr$ 2 @ 6 2@6 !

8 Nr$ pO 2@6$ % $

H r A 0! !

* 2+ 0 B 0 " - %3- C & %C& " - )

& "& " - < # # "< & 0 " & 0 B +

8 2@6 % % H '

4 v !

(22)

! A $ 2@6 '

% H H ! 4

% $

! Q $ convex

2@6 %aversion !8 $

2@6 !

4 6 46 $

% % % % !

46! $ 46!

& $ 4 4 $

46$ ! 6 5 % 4

654 Np$ pO 2@6

Nr$ pO! 6 5 % & % 65&

!

L % ! 4

{

r pi$ i

}

/!*$

H .

n k k

RS r

n =

=

!

$ H $ % % !

%' % - !RS

/ % $ ! ! H

H $ % % $

! ! H H !RS

/!* % !

5 % 4 RA .

RA= −RS !

4 - % H

/!* % % H

/!*! 6

{

r pi$ i

}

! RS

.

(23)

( )

/ /

RS =

r dp=

D p dp !0

A 0! ! $

above !

* 2+! 0 " 0" # ? 0 B 0B

# + +

4 H $ % RA

.

( )

/

RA= −RS =

D r dr !,

8 $ RA

$ $ $ RS /!

: < # # F <

!

$ $

! % '

! $ $ - ! H < '

/ % 7 "

, ! 8 RA β

α β

=

+ RS α

α β

=

+ $ α β

!

8 ) % ( * !

(24)

0

% . BIt is important to distinguish , which refers to a prop%

erty of decision weights, from that is commonly found in the assessment of the probability of rare eventsC !

! 4 Bdoes not arise in the context, where the subject is as%

sumed to adopt the stated value of probabilityC$ '

! 3 $ !

" $ '

% % - '

%

- ? $

'

! " '

$ H $ $ .Why and how do

people overweight small probabilities and underweight high probabilities when the probabilities

are known?# H $ '

$

% !

! A $ B '

% C ! I

&' ! 4

0. % %

? % '

! & E

& $ 1 ! 7 T ! .

! $

- '

! $

% % ! 8 $

% - ! " # $ $

(25)

,

$ !

4 $ B C$ '

$ ! 3 $ %

$ % %

! $

! $

! '

" # !

4 $ !

$ $

people behave as if they were distorting probabilities %

% ! :

!

9 B

7 % % $

! '

! 4 '

% $ $ !

!

4 2 # '

!

! $ $

! 7 '

! 7

$ !

2 ! 4 H $

! H

% - ! : E $

B C % ) % ( !

(26)

*

$ '

! 7 $

!

4 $

$ ! ! ! M ! 8

' H ! & '

$ $ $ $

$ $ %

! 6 $

+ ) ! $

( ) % ( * $ - ! 8

$ " # $

! : $

$ irrationality illusion!

8 " #

! 4

- $

!

5 !

2 # pJr$ r ! ! $ '

$ $

$ !

w p J r$ w

! $

B ' C !

" # pJD r $ D '

) % (! + '

) !

8 $ $ - '

!

(27)

I 0

4 $ )!$ *0 !Le comportement de l’homme rationnel devant le risque: critique des postu%

lats etaxiomes de l’école Américaine! 2 $ */0'*,I!

7 $ )! 3!$ , !Using contextual effects to derive psychophysical scales. U

$ @ ! *$ + ! ! 1 ' I!

7 T $ 2!$ L ( $ L!$ 3 $ 5!$ //I ! The Priority Heuristic: Making Choices

Without Trade%Offs! 5 $ 0 $ ! ,/ ',0 !

L ( $ 5!$ : $ L!$ ! On the Shape of the Probability Weighting Function.

$ 01$ ' II!

< $ "!$ % $ 4!$ ! Prospect theory: An analysis of decisions under risk. 2 '

$ , $ 0 0'0 !

< $ "!$ : %% $ !$ & $ 5!$ ! Back to Bentham? Explorations of Experienced

Utility! Q = 2 $ ) $ 0 *',/*!

< $ "!$ !Objective Happiness! 8 < $ "!$ " $ 2!$ & ($ +!

Well%Being. The Foundation of Hedonic Psychology! 5 & A $ 0' *!

< $ "!$ $ 5!$ //I ! Anomalies: Utility Maximization and Experienced Utility!

= 2 $ /$ + ! $ ' 0,!

) % ( 3!$ * !The Utility of Wealth.= 2 $ @ ! I/$ ! * ' *1!

5 $ "!$ //, ! Utility theory from Jeremy Bentham to Daniel Kahneman! : %

6&2M5 /,'I,$ 6 & 2 & !

& $ 3!$ 1 ! Theories of bounded rationality. 8 3! & $ Models of bounded rationality. Behavioral economics and business organization! $ )4$ )8 ! @ !

$ ,/1', 0!

% 4!$ < "!$ ! Advances in Prospect Theory: Cumulative Representation of

Uncertainty! = 5 % # $ ! * , $ M $ '0 0!

@ $ 7! )! &!$ A - $ !$ ! The Measurement of Welfare and Well%Being: The Ley%

den Approach! 8 < $ "!$ " $ 2!$ & ( +! $Well%Being. The Foundation of Hedonic Psychology! 5 & A $ , 0',00!

@ + =!$ ) M!$ ,, !The Theory of Games and Economic Behavior$ '

# !

: $ 2!$ , !From Subjective Probabilities to Decision Weights: The Effect of Asymmetric Loss Functions on the Evaluation of Uncertain Outcomes and Events. 7 $

@ ! *$ + $ 1' , !

Referenzen

ÄHNLICHE DOKUMENTE

[59,60], for the explicit NLO and NNLO expressions of the ππ partial waves and the pion decay constant as well as the details of the lattice data, fit strategy, error

A special component of the tensor product is the so-called Cartan component V λ+µ which is the component with the maximal highest weight.. The following question arises in

It is clear that, as soon as the logical channel, i.e., the virtual call, is established between the stations, there is no need for the full address in the subsequent packets of

Complementing the State Textile and Industry Museum Augsburg (tim), which is located on the site of the former Augsburger Kammgarnspinnerei (Augsburg worsted spinning mill), you

Em conclusão final nesta aplicação do VAL pode-se destacar que (com as devidas ressalvas), para a grande maioria das situações abordadas, o valor do VAL

Table 6 also shows that the coefficients on  m *associate degree,  m * bachelor’s degree, and  m *graduate degree are positive and statistically significant, which suggests

Figure 6 depicts a situation where all three units increase their knowledge, but in reality time can stand still, this is the largest risk for any investor, that time will

Given the redistributive impact of inflation and, more broadly, of monetary policy, the choice of a degree of independence for a society's central bank has to be politically backed