• Keine Ergebnisse gefunden

Promoting diverse communities of wild bees and hoverflies requires a landscape approach to managing meadows

N/A
N/A
Protected

Academic year: 2022

Aktie "Promoting diverse communities of wild bees and hoverflies requires a landscape approach to managing meadows"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Promoting diverse communities of wild bees and hover fl ies requires a landscape approach to managing meadows

Sandro Meyer

a,1

, Debora Unternährer

b,1

, Raphaël Arlettaz

b,c

, Jean-Yves Humbert

b

, Myles H.M. Menz

a,d,

*

aDivisionofCommunityEcology,InstituteofEcologyandEvolution,UniversityofBern,Baltzerstrasse6,3012Bern,Switzerland

bDivisionofConservationBiology,InstituteofEcologyandEvolution,UniversityofBern,Baltzerstrasse6,3012Bern,Switzerland

cSwissOrnithologicalInstitute,ValaisFieldStation,RueduRhône11,1950Sion,Switzerland

dSchoolofPlantBiology,TheUniversityofWesternAustralia,Crawley,WA6009,Australia

Keywords:

Agri-environmentschemes Biodiversity

Ecosystemservices Life-historytraits Mowing Pollinators

Semi-naturalgrassland

ABSTRACT

Thereisongoingconcernregardingtheobserveddeclineinpollinatorpopulations.Managingagricultural landscapes through agri-environment schemes (AES) supports biodiversity and could counteract pollinatorpopulationdeclines.WeinvestigatedwhetheralterationstocurrentAESgrasslandmowing regimeswouldincreasetheabundanceandspeciesrichnessofwildbeesandhoverflies.Furthermore,we investigatedtheresponseofdifferentnestingandfeedingguildsofwildbeesandhoverflies,respectively, totheseregimes.Thethreeexperimentalmowingregimeswere:(i)firstcutnotbefore15June,beforethe beginningofsummer(SwissAESmanagement,controlmeadows);(ii)firstcutdelayeduntil15July (delayedmeadows);(iii)asforcontrolmeadowsbutleaving10–20%uncutasarefuge(refugemeadows).

Therationalebehindthedelayedandrefugemowingregimeswasextendingtheavailabilityoffloral resourcesforpollinators,whilealsoprovidingrefugiaforspeciesthatmaybedirectlyimpactedby mowing.Hoverfliesandwildbeeswerecollectedin2014and2015,respectively,usingpan-trappingand sweep-netting,oncebeforeandonceafterthefirstcut.Thetwocollectingmethodsshowedcontrasting results.Whiletherewasnodifferenceintheabundanceorrichnessofwildbeesbetweenthemeadows whenusingpantraps,followingthefirstcut,sweep-nettingresultedinahigherabundanceandrichness ofwildbeesindelayedandrefugemeadowscomparedtocontrolmeadows.Pan-trappingdetecteda higher abundance of hoverflies in delayed compared torefuge meadows, whereas sweep-netting detectedahigherabundanceindelayedandrefugecomparedtocontrolmeadows,afterthefirstcut.

Saprophagoushoverfliesweremoreabundantinthecontrolanddelayedthanrefugemeadowsfollowing thefirstcut,whensampledwithpantraps.Predatoryhoverfliesweremoreabundantandspeciesrichin delayedandrefugecomparedtocontrolmeadowsfollowingthefirstcut,whensampledbysweep- netting.OurstudydemonstratesthatsimplealterationstoacommonAESgrasslandmowingregimecan enhancepopulationsofpollinatorsandnaturalenemiesofcroppests.Furthermore,thecontrasting responseofthelife-historyguildsindicatesthatpromotingheterogeneousmanagementpracticeswithin thelandscapeisimportantforsupportingdiversecommunities,andmaintainingkeyecosystemservices suchaspollinationandbiocontrol.

1.Introduction

Themajorityoffloweringplantspecies,includingwildspecies and agricultural crops, are reliant on animal pollination for

reproduction(Kleinetal.,2007; Ollerton etal., 2011).A recent globalanalysishasshownthatmanagedpollinators(honeybees) arenotanadequatesubstituteforwildpollinators(Garibaldietal., 2013).Consequently, thereporteddecline in pollinator popula- tions in many regions presents a worrying trend for the preservationofplantcommunities(Biesmeijeretal.,2006;Potts etal.,2010;Winfree,2010).Thedeclineofpollinatorpopulationsis oftenassociatedwithanthropogenicchangestothelandscape,in particularhabitatlossandalterationthroughprocesses suchas agriculturalintensification(e.g.Kremenetal.,2002;Pottsetal.,

*Correspondingauthorat:DivisionofCommunityEcology,InstituteofEcology andEvolution,UniversityofBern,Baltzerstrasse6,3012Bern,Switzerland.

E-mailaddress:myles.menz@iee.unibe.ch(M.H.M.Menz).

1Theseauthorscontributedequallytothestudy.

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-krej6eeetq7k0 Erschienen in: Agriculture, Ecosystems & Environment ; 239 (2017). - S. 376-384

https://dx.doi.org/10.1016/j.agee.2017.01.037

(2)

2010).Agriculturalintensificationleadstolandscapehomogenisa- tion,alongwithadditionalpressuresonbiodiversity,suchasthe increaseduseofinsecticides,herbicidesandfertilisers(Tscharntke etal.,2005).

Agri-environmentschemes(AES)wereintroducedinEuropein the early 1990s to counteract the decline in biodiversity by promoting semi-natural habitats that can maintain essential ecosystem functions (Kleijn and Sutherland, 2003; Albrecht etal.,2007;Scheperetal.,2013).Severalstudieshaveestablished that AES are more efficient at preserving biodiversity when comparedtoconventional,intensivelymanagedmeadows(Knop etal.,2006;Albrechtetal.,2007;Kohleretal.,2007;Scheperetal., 2013).However,theeffectivenessofAEShasoftenbeendebated, becausetheimpactsoninvertebrates,includingpollinatorsarenot aspositiveasexpected(KleijnandSutherland2003;Kleijnetal., 2006;Scheperetal.,2013).Morerecently,studieshavetried to determinethecausesofthismoderatesuccess(e.g.Batáryetal., 2011; Concepciónet al., 2012).Onecausemight bethe lackof landscapeheterogeneity,sinceagreatproportionofAESmeadows are mown within a short time, depriving wild pollinators of resourcesinearlysummer.Bentonetal.(2003)andmorerecently Garibaldietal.(2014)highlightedtheimportanceofspatialand temporal variation within AES to enhance wild pollinator populationsandtheecosystemfunctionstheyprovide.

Relativelysimplealterationstomeadowmanagementregimes, suchasthetimeofmowing,canincreaselandscapeheterogeneity and have positive effects on the abundance and diversity of invertebrates(Cizeketal.,2012;Burietal.,2013,2014,2016).For example,delayingthefirstmowingdatecouldextendthetemporal availabilityof resources,such asnectar, pollen,oviposition and nestingsites(Valtonenetal.,2006).Alternatively,leavinganuncut grassrefugeonaportionof themeadowalsoservestoprovide continuousresourcesandshelter(Weibulletal.,2000;Valtonen etal.,2006;Humbertetal.,2012),andhasbeendemonstratedto increase the abundance of wild bees (Buri et al., 2014) and butterflies(Kühne et al.,2015; Lebeau et al.,2015; Bruppacher et al., 2016). Given that extensively managedgrasslands are a widespreadAESmeasure andamongthemostbiodiversity-rich ecosystems in Europe (Veen et al., 2009), alteration to their managementcouldhavefar-reachingimpactsforimprovingtheir valueforsupportingdiversepollinatorcommunities(Orfordetal., 2016).

Inourstudy,weinvestigatedtheeffectofadelayedmowing dateandthepresenceofanuncutgrassrefugeonwildbeeand hoverflycommunitiesinextensivelymanagedlowlandgrasslands.

Although often overlooked and dismissed as less effective pollinators in comparison to bees (Jauker et al., 2012; Orford etal.,2015),flies(Diptera)andhoverflies(Diptera:Syrphidae)in particularareimportantpollinatorsfornumerouswildplantsand agriculturalcrops(e.g.Raderetal.,2009,2016;Jaukeretal.,2012).

Furthermore,hoverflies showa diverse range of larval feeding modes, including predatory, saprophagous and phytophagous species(RotherayandGilbert,1999).Thepredatorylarvaeofsome speciescanprovideeffectivebiocontrolagainstcroppests,suchas aphids (Tenhumberg and Poehling,1995). While hoverfly pop- ulations can be supported by some AES measures such as wildflowerstrips(Haenkeetal.,2009; Jönssonetal.,2015),we currentlyknowverylittleabouttheeffectsofmowingonhoverfly populations.Itislikelythathoverflieswillresponddifferentlyto grasslandmanagementmeasuresthanwildbees.Previousstudies have demonstrated that bee and hoverfly communities exhibit contrastingresponsestolandscapeelementsandstructure(Jauker etal.,2009;Jönssonetal.,2015).Furthermore,beesandhoverflies stronglydifferintheirforagingstrategy,withbeesbeingcentral- placeforagers,whereashoverfliesarenotconstrainedbytheneed

(GathmannandTscharntke,2002;Greenleafetal.,2007;Jauker et al., 2009). Furthermore,within pollinator taxonomic groups species may respond differently to habitat management or disturbance, due to variation in life-history traits (Williams etal.,2010).Forexample,above-groundnestingbeesweremore negativelyaffectedbyisolationfromremnantnativehabitatand intensiveagriculturethanground-nestingspecies(Williamsetal., 2010).

We investigated whether i) leaving an uncut refuge when mowing,ordelayingthefirstmowingdatebyonemonthwould increase the abundance and species richness of wildbees and hoverflies,andii)iflife-historyguildswouldresponddifferentlyto thesealteredmowingregimes.Therationalebehindthedelayed treatment was toextend the availabilityof floral resourcesfor pollinators,whichmayinturnleadtoanincreaseintheabundance and diversity of pollinating insects. The refuge treatment is envisagedtoprovidesomeprolongationofresources,whilealso providing refugia for species thatmay bedirectlyimpacted by mowing(Humbertetal.,2012).Wepredictedthati)duetoalonger durationofavailableresources,delayingthefirstmowingdatewill positivelyaffecttheabundanceandspeciesrichnessofwildbees andhoverfliesand;ii)thatuncutrefugesandadelayedmowing datewillfavourspeciesthatrequirelonger resourceavailability throughouttheseason,suchassocialbeeslikeBombus.Inaddition, we compared the pollinator community collected using two different sampling methods, pan traps and sweep-netting, to investigatethepotentialtaxonomicbiasthatcanresultwhenusing onlyonemethod(Hickmanetal.,2001;Popicetal.,2013;Spafford andLortie,2013).

2.Materialsandmethods 2.1.Studysites

The study was conducted on 36 extensively managed hay meadowsontheSwissPlateau,alowlandregionsituatedbetween the Jura Mountains and the Alps. A map of the study sites is presentedinAppendixAofBurietal.(2014).These36meadows wereselectedin2010whentheexperimentbegan,basedonthe followingcriteria:theyhadtoberegisteredintheSwissAESas biodiversitypromotingareassinceatleast2004,andthemeadows hadtobeatleast0.3hainsize(range:0.3–1.7ha;TableS1).The meadowswerelocatedbetween390and833ma.s.l.Themeadows were clustered into 12 study sites (geographic replicates), separatedbyatleast5km.Eachofthe12sitescontainedthree experimentalmeadows,separatedbyatleast400m,butwithina radiusof3.5km.Ameadowwaslostfromthedelayedtreatment (seeSection2.2)in2012.

2.2.Experimentaldesign

Experimentalmowingtreatmentswereappliedannuallytothe meadowssincetheinitiationoftheexperimentin2010.Within eachsite,threemeadowswererandomlyallocatedtooneofthree different mowing regimes: control (C-meadows), delayed (D- meadows), and refuge (R-meadows). The control regime is the conventional management of extensively managed meadows accordingtotheSwissAESregulations,wherethefirstcutcannot occurbefore15Juneandnofertiliserapplicationisallowed(Swiss FederalCouncil,1998).D-meadowshadadelayedfirstcutthatdid notoccurbefore15July.R-meadowshadthesamemanagementas C-meadows,but10–20%ofthemeadowwasleftuncutasarefuge eachtimethemeadowwasmown.Allmeadowswerecutbetween oneandthreetimesperyear(meanSE;2014,1.820.21;2015, 1.870.18).Themeannumberofcutsperyearforeachtreatment

(3)

2010,untilthesamplingtookplacein2014and2015(C-meadows, 1.880.04;R-meadows,2.10.04;D-meadows,1.50.06).

2.3.Samplingofwildbeesandhoverflies

Wild bees (Hymenoptera: Apoidea) and hoverflies were sampled using pan traps and sweep-netting. Sampling of hoverflies was conducted in 2014and wildbees in 2015,four and five years after theinitiation of the experimental mowing regimes. Each meadowwas sampled twice during the season, usingbothmethods,oncebeforeandonceafterthefirstcut(forC- andR-meadows).Thefirstsamplingsessionwasfrom23Mayto14 Junein2014and29Mayto9Junein2015,andthesecondsession wasfrom2to12Julyin2014and26Juneto14Julyin2015.The managed honeybee (Apis mellifera) was not included in the analysis.

Pan traps consisted of three coloured plastic bowls (white, yellowandblue,13cmdiameterand12cmdeep),filledwithsoapy waterandfixedonawoodenpolejustabovethevegetationlayer.

Each meadow was sampledusingthree setsof pan traps(nine trapspermeadow),forminganisoscelestriangle(14mbaseand 10msides;Fig.S1).Thesetoftrapswaspositionedrandomlyinthe meadow,butatleast10mfromthemeadowedgetoavoidedge effects(e.g.Knopetal.,2006).Pantrapswereopenedfrom08:00 to19:00hforonedaypersamplingsession.Specimensfromthe three sets of pan traps per sampling session were pooled for analysis.

Sweep-netting was conducted along two 30mtransects per meadow,positionedoneithersideoftheisoscelestriangleformed bythepan traps(Fig.S1).Eachtransectwassampledusingone

sweepper footstep (approximately45min to1h per meadow;

Spafford and Lortie, 2013).Sampling of the R-meadows in the secondsession(followingthefirstcut)was conductedwithone transectinthecutareaofthemeadowandoneintheuncutrefuge.

Wildbeesweresampledsimilarlyinthefirstsession,butwithtwo transectsineachpartoftheR-meadowsduringthesecondsession.

Specimens fromthe two sweep-nettingtransects per sampling sessionwerepooledforanalysis.

Wildbeesandhoverfliesweresampledondry,sunnydayswith ambienttemperatureabove15C,andlowwindspeed.Thethree meadowswithineachofthe12studysitesweresampledonthe samedayusingthesamesamplingmethod,butpan-trappingand sweep-nettingwereconductedondifferentdays(1–7daysapart) to avoid interference between the methods. Pan-trapping and sweep-nettingwasconductedat2–3sitesperday,dependingon weather.

Thespecimenswereidentifiedtospecieslevelwherepossible.

Individualsthatcouldnotbeidentifiedtospecieswereidentified tothelowestpossibletaxonomiclevel.Furthermore, allspecies were assigned to life-history guilds; larval feeding guilds for hoverflies(Speight,2014),andnestingguildsforwildbees(Amiet, 1996;Amietetal.,1999,2001,2004,2007).Themainlarvalfeeding guildsforhoverflieswerepredatory,saprophagousandphytopha- gous(RotherayandGilbert,1999; Speight,2014).Thepredatory guildprimarilycontainsspeciesthatpreyonaphids(Hemiptera:

Aphididae) and other insects, such as coccids (Hemiptera:

Coccidae;Rojoetal.,2003).Saprophagousspeciesinhabitdiverse micro-habitats,suchassapruns,treerotholes,manureandsilage (RotherayandGilbert,1999).Beeswereassignedtoeitherground nesting or above-ground nesting species. Bumblebees (Bombus

Abundance of wild bees

0 5 10 15 20 25 30

Session 1 a)

Sampling method Pan trap Sweep net

0 5 10 15 20 25 30

Session 2 b)

**

*

Control Delayed Refuge Mowing regime

Species richness of wild bees

0 2 4 6 8

c)

10

Control Delayed Refuge Mowing regime 0

2 4 6 8

d)

10

* *

Fig.1.Abundance(a,b)andspeciesrichness(c,d)ofwildbeesinresponsetothethreedifferentmowingregimes(control,delayedandrefuge),collectedbypan-trapping (whitebars)andsweep-netting(greybars).StarsrepresentsignificantdifferencesdeterminedbyGLMMs:*P<0.05,**P<0.01,***P<0.001.Resultspresentedare meansSE.

(4)

spp.andPsithyrusspp.)werealsotreatedseparatelyandincluded intherelevantnestingguild.

2.4.Statisticalanalysis

The two sampling sessions were analysed separately to investigate effects of theexperimental mowing regimes before andafterthemeadowswerefirstcut.Tostandardisethesweep- nettingeffortforwildbeesintheR-meadows(secondsampling sessiononly,seeSection2.3.above)totheothermowingregimes, wehalvedtheabundanceofwildbeescollected.Speciesrichness was calculated by randomly subsampling individuals (without replacement) from the species present within the sweep net samplesfromeach meadow,equaltothehalvedabundance for thatmeadow.Thisprocesswasrepeated1000times.Themeanwas usedasthevalueforspeciesrichness.Meanandabundancewere roundeduptothenearestwholenumberfortheanalysis.

We used generalised linear mixed models (GLMMs) with a Poissondistributiontotesttheeffectofthemowingregimesonthe abundanceand speciesrichnessof wildbeesandhoverflies.All modelswereperformedinR(RCoreTeam,2015)usingthepackage

‘lme4’(Batesetal.,2015).Allmodelsincludedmowingregimeasa fixedfactor,andsitewasincludedasarandomfactor.Followingthe analysisoftheoverallcommunities,wethenconductedseparate analyses for the abundance and species richness of each life- historyguild.Modelswereconstructedasforthegeneralanalysis.

All models were visually checked for normal distribution of residuals. The presence of overdispersion was investigated by includinganobservation-levelrandomfactorinthemodel.This wasthentestedagainstamodelwithoutthisfactor,usingANOVA

(ElmanandHill,2009).Ifthetestwassignificant,theobservation- levelrandomfactorwasretainedinthemodel.

3.Results

Werecordedatotal(twosamplingmethodspooled)of993wild bees (103 bumblebees and 890 solitary bees) belonging to 67 species (eight individuals could not be identified and were excluded from analysis of species richness;Table S2), and 505 hoverflies from 42 species (Table S3). Twenty-seven wild bee specieswerecaughtonlyinthepantraps,whereaseightspecies wereonlycaughtbysweep-netting(TableS2).Nineteenhoverfly specieswerecaughtexclusivelyinthepantraps,whereaseight specieswereonlycaughtbysweep-netting(TableS3).

3.1.Wildbeeabundanceandspeciesrichness

Therewerenosignificantdifferencesinoverallabundanceor speciesrichnessofwildbeesbetweenthemowingregimesinthe first sampling session (Fig.1a, c; Table S3). There was also no significantdifferenceintheabundanceorspeciesrichnessofwild beescaughtinpantrapsinthesecondsamplingsession(TableS4).

However,theabundance and species richness fromthesweep- nettingsamplesweresignificantlyhigherinR-(3.10.7individu- als,P=0.014;2.40.4species,P=0.023)andD-meadows(5.31.9 individuals,P=0.004;3.01.0species,P=0.012),comparedtoC- meadows (0.90.4 individuals, 0.90.4 species; Fig. 1b, d;

TableS4).

Abundance of ground−nesting bees

0 5 10 15 20 25 30

Session 1

a)

Sampling method

Pan trap Sweep net

0 5 10 15 20 25 30

Session 2 b)

**

*

Control Delayed Refuge Mowing regime Species richness of ground−nesting bees

0 2 4 6 8

c)

10

Control Delayed Refuge Mowing regime 0

2 4 6 8

d)

10

*

Fig.2.Abundance(a,b)andspeciesrichness(c,d)ofbelow-groundnestingbeesinresponsetothethreedifferentmowingregimes(control,delayedandrefuge),collectedby pan-trapping(whitebars)andsweep-netting(greybars).StarsrepresentsignificantdifferencesdeterminedbyGLMMs:*P<0.05,**P<0.01,***P<0.001.Resultspresented aremeansSE.

(5)

3.2.Wildbeenestingguilds

Themostabundantbeenestingguildwastheground-nesting species(52species,952individuals,95.9%ofthetotalcommunity, includingbumblebees),whileabove-groundnestingspecieswere far less abundant (15 species, 41 individuals, 4.1% of the total community; Table S2). Overall, we recorded a total of 103 bumblebees from 11 species (nine Bombus and two Psithyrus, TableS2).Onlytheground-nestingguildwasabundantenoughto performtheguild-levelanalysis(seeTableS2).

Inthefirstsamplingsession,therewasnosignificantdifference in the abundance or species richness of ground-nesting bees betweenthemowingregimes,foreithersamplingmethod(Fig.2a, c; Table S5). In the second sampling session, there was no significantdifferencebetweenthemowingregimesbasedonthe pan-trapping results, for either metric (Table S5). In contrast, sweep-nettingresultedinasignificantlyhigherabundanceinD- (5.01.9individuals,P=0.006)andR- (2.80.5individuals,P= 0.025) comparedtoC-meadows(1.00.4individuals,Figure2b TableS5),andhigherspeciesrichnessinD-(2.80.9species,P= 0.025)comparedtoC-meadows(1.00.4;Fig.2d,TableS5).

3.3.Abundanceandspeciesrichnessofhoverflies

There was no significant difference in the abundance of hoverfliescaughtinpantrapsin thefirstsamplingsession, but sweep-nettingresultedinahigherabundanceofhoverfliesinR- (1.80.4, P=0.045) compared toC-meadows(0.70.3;Fig.3a, Table S6). Species richness from pan traps was higher in D- (2.00.4 species, P=0.022) compared to R-meadows (0.80.2

species;Fig.3c,TableS6),whilebothexperimentaltreatmentsdid not differ from C-meadows. In comparison, there was no significant difference in species richness from the sweep-net samples(Fig.3c,TableS6).

In thesecondsamplingsession, theabundance ofhoverflies caught withpan traps was significantly higher in D- (7.62.1 individuals,P=0.038)comparedtoR-meadows(3.80.9individ- uals),while D-and R- didnotdiffer fromC-meadows(Fig. 3b, Table S6). For sweep-net samples, D- (5.30.8 individuals, P<0.001) and R- (4.21.3 individuals,P<0.001)had a signifi- cantly higher abundance compared to C- meadows (1.70.5 individuals;Fig.3b,TableS6).Therewasnosignificantdifference inspeciesrichnessofhoverfliescaughtbypantrapsbetweenthe mowing regimes, in the second session (Table S4). However, species richness was higher in D- (2.90.3 species, P=0.001) comparedtoC-meadows(0.90.3species;Fig.3d,TableS6).

3.4.Hoverflylarvalfeedingguilds

The most abundant hoverfly larval-feeding guild was the predatoryspecies(21species,324individuals,64.2%ofthetotal community), followed by the saprophagous (14 species, 146 individuals,28.9%)and thephytophagousspecies (7species,35 individuals,6.9%;TableS3).Thephytophagouslarvalguildwasnot analysedduetothelowtotalnumberofspecimens.

Inthefirstsamplingsession,therewasnosignificantdifference intheabundanceofsaprophagoushoverfliesbetweenthemowing regimes,withpantrapsorsweep-netting(Fig.4a;TableS7).Inthe secondsamplingsession,theabundanceofsaprophagoushover- flies caught with pan traps was significantly lower in the R-

Abundance of hoverflies

0 2 4 6 8 10 12

Session 1

a)

Sampling method

Pan trap Sweep net

*

0 2 4 6 8 10 12

Session 2 b)

***

*** *

Control Delayed Refuge Mowing regime

Species richness of hoverflies

0 1 2 3 4

c)

5

*

Control Delayed Refuge Mowing regime 0

1 2 3 4

d)

5

**

Fig.3.Abundance(a,b)andspeciesrichness(c,d)ofhoverfliesinresponsetothethreedifferentmowingregimes(control,delayedandrefuge),collectedbypan-trapping (whitebars)andsweep-netting(greybars).StarsrepresentsignificantdifferencesdeterminedbyGLMMs:*P<0.05,**P<0.01,***P<0.001.Resultspresentedare meansSE.

(6)

(0.80.3) than in the C- (2.21.1, P=0.007) and D-meadows (2.71.4,P=0.001;Fig.4b;TableS7),whilesweep-nettingshowed nosignificantdifferencebetweenthemowingregimes.Therewas no significant difference in species richness of saprophagous hoverflies between the mowing regimes for either method or session(Fig.4c,d;TableS7).

There was no difference in the abundance of predatory hoverflies caught by pan-trapping, in either sampling session.

Sweep-netting showed a significantly higher abundance of predatoryhoverfliesinR-(1.10.3)comparedtoC-meadows,in thefirstsamplingsession(0.30.2,P=0.041)(Fig.4e,TableS6).In the second sampling session, the abundance of predatory hoverflies caught by sweep-netting was significantly higher in D-(5.30.8 individuals,P<0.001) andR- (4.21.3individuals, P=0.002)comparedtoC-meadows(1.30.5individuals,Fig.4f, Table S8). There was no difference in the species richness of predatoryhoverfliesbetweenthemowingregimes,withpantraps (Fig. 4g, h, Table S8). Sweep-netting showed a higher species

richnessinD-(2.50.3species,P=0.002)andR-(1.80.5species, P=0.035) compared to C-meadows (0.80.2 species) in the secondsamplingsession(Fig.4h,TableS8).

4.Discussion

Tomaintainandimprovethebiodiversityofpollinators,agri- environmentschemesshouldincludemanagementmeasuresthat targetawiderangeoftaxa.Inagreementwithourpredictions,we showthatrelativelysimplealterationstocommonAESmowing regimes (delaying the first mowing date or leaving an uncut refuge) can have a positive effect on thelocal abundance and species richness of wild bees and hoverflies. Interestingly, we foundlittleevidencein supportofeithertherefuge ordelayed regimebeingsuperiorovertheother.Rather,differentlife-history guildsofwildbeesandhoverfliesshoweddifferingresponsesto the altered mowing regimes,demonstrating theimportance of maintaining heterogeneous grassland management regimes in Fig.4.Abundanceandspeciesrichnessofsaprophagous(a-d)andpredatoryhoverflies(e-h)inresponsetothethreedifferentmowingregimes(control,delayedandrefuge), collectedbypantrapping(whitebars)andsweep-netting(greybars).StarsrepresentsignificantdifferencesdeterminedbyGLMMs:*P<0.05,**P<0.01,***P<0.001.Results presentedaremeansSE.

(7)

space to supportdiverse pollinator populations. In contrast to previousstudies(Jaukeretal.,2009;Jönssonetal.,2015),andour prediction, wefounda similar responsetothealtered mowing regimes for both hoverflies and wild bees. Furthermore, con- clusionsdiffereddepending onthesamplingmethodemployed (pan-trapping or sweep-netting), confirmingthe importance of using multiple methods when sampling insect communities (Hickmanetal.,2001;Popicetal.,2013;SpaffordandLortie,2013).

Samplingmethodstronglyinfluencedtheinterpretationofthe effectsofthethreemowingregimes.Forexample,followingthe first cut of the C- and R-meadows (second sampling session), sweep-netting showed a higher abundance of wild bees and hoverfliesin D-and R-meadows,compared toC-meadows, and higherspeciesrichnessinD-comparedtoC-meadows.Incontrast, pan-traps showed no significant difference in abundance or species richnessbetweentheregimesfor wildbees,and onlya higherabundanceofhoverfliesinD-comparedtoR-meadows.The contrasting results are likely to be an artefact of the methods themselves.Pan-trappinghasthepotentialtoattractfood-foraging insectsfromthesurroundinglandscape,afactorthatislikelytobe particularly pronounced after the meadows have been mown, whereassweep-nettingismorelikelytosampleinsectsusingthe meadow(Hickmanetal.,2001; Popicetal.,2013;Spafford and Lortie,2013).Thismaybeparticularlypronouncedinlandscapes withvaryingamountsofsemi-naturalvegetationinthesurround- inglandscape.Forexample,Kennedyetal.(2013)demonstrated thattheamountofhigh-qualityhabitatsinthesurroundingswas the most important factor affecting wild bee communities in agroecosystems. Therefore, sweep-netting is more likely to representanaccurateestimateofthecommunityandpopulation responses to the mowing regimes, especially when comparing meadows displaying differentvegetation stageslike duringour secondsamplingsession.Weshallthereforehereafterfocusmostly ontheresultsofsweep-netting.

The higher abundance and species richness of bees and hoverfliesinR-andD-meadowsinthesecondsamplingsession, comparedtoC-meadowsislikelytoresultfromtheexperimentally prolonged availability of resources, such as nectar and pollen.

Previous research has highlighted the value of refuges for promoting the abundance of wild bees (Buri et al., 2014) and butterflies (Kühne et al., 2015; Bruppacher et al., 2016). The provision of floral resourcesby delayingmowing orleaving an uncut refuge can be particularly important in agro-ecosystems laterintheseason,asfloralresourcesmayoftenbelimited,either due tocessationof flowering in somespecies, or management practices,suchaslarge-scalemowing(Scheperetal.,2014;Requier etal.,2015).WhileBurietal.(2014)investigatedtheeffectofthese mowingregimesonwildbeecommunitiesin2011,thisstudyonly utilisedpan-trapping.Here,webuilduponthepreviousstudyby incorporating pan-trapping and sweep-netting, which gives a moreaccuraterepresentationofon-fieldeffects.IncontrasttoBuri etal.(2014),wefoundnoeffectofmowingregimeonwildbee abundance priortothefirstcut.Alternatively, wefoundsimilar resultsinthesecondsamplingsession,withR-andD-meadows havingahigherabundancethanC-meadows.However,ourresults were not significant for pan-trapping, but for sweep-netting.

Furthermore,whileBurietal.(2014)foundnoeffectofthemowing regimesonwildbee speciesrichness following thefirst cutby using pan traps, we showed that sweep-netting resulted in a higherspeciesrichnessinR-andD-comparedtoC-meadows.This may indicate that sweep-netting, or a combination of the two methods provides a more accurate measure of the local bee community.Thedifferencesbetweentheresultsofthetwostudies couldpossiblyarisefrominter-annualvariationinbeeabundance.

This may also be reflected by the generally lower number of specimenscapturedinourstudyin2015,comparedtoBurietal.

(2014)in2011.Forexample,itisknownthatbeepopulationscan display significant spatio-temporal variation in abundance and communitycompositionbetweenyears(e.g.Pottsetal.,2009).

Asground-nestingspeciescomprisedthemajorityofthebees collected (95.9%; Table S1), the response of this guild to the mowing regimes reflected the results for the overall bee community.Itisestimatedthatthereareapproximately610wild bee species in Switzerland. Approximately 76% (445 spp.) are assumedtobuildnestsandtheothersarecleptoparasitic.Ofthose thatbuildnests,73%(approximately325spp.)nestbelowground, whiletheother27%(120spp.)areeitherabove-groundnesting,or theirnestingbiologyisunknown(http://http://www.wildbienen.

de/). Thelow abundance of above-groundnesting species may havebeenduetothegeneraldramaticnegativeeffectofmodern agriculturalmatricesandpractices,asthisguildhasbeenshownto be sensitive to isolation from remnant natural habitat and agriculturalintensification(Williamsetal.,2010).

Thedominanthoverflylarvalguildwasthepredatoryspecies, whichareoftenabundantinagriculturallandscapes(Frank,1999;

Haenkeetal.,2009,2014;Meyeretal.,2009).Followingthefirst cut,thisguildhad asignificantlyhigherabundance andspecies richness in D- and R-meadows compared to C-meadowswhen sampledwithsweep-netting.Delayedand R-meadowsmaintain theswardforlongerintheseasoncomparedtoC-meadows,which mayinturnmaintainpreypopulations,thusbenefittingpredatory species (seeBuri etal., 2016).Smallpredatory species,such as Melanostoma spp. and Platycheirus spp. were dominant in the sweep-netting samples. These species also include a high proportionofpollenintheirdiet,particularlyfromwindpollinated plants,suchasgrassesandplantains(BranquartandHemptinne, 2000).Therefore,weassumethatR-andespeciallyD-meadows harbouringahighabundance oftallgrassescouldprovidevital pollen resourcesfor thesespecies at a time when most of the grasslands within the agricultural matrix have been mown.

SaprophagousspeciesweremoreabundantinR-thanD-meadows, asdetectedbypan-trapping.Incomparisontobees,hoverfliesare notconstrainedbytheneedtoprovisionoffspringandthusare relatively free to move in the landscape in search of suitable resources(GathmannandTscharntke,2002;Greenleafetal.,2007;

Jaukeretal.,2009).Thehigherabundanceofsaprophagousspecies in R- than D-meadows may have resulted from these flies searching for floral resources in the regenerating vegetation (Lebeauetal.,2015).Thegenerallylowabundanceofsaprophagous species in the landscape may be due to a limitation of larval habitats,asmanyofthesespeciesrequiremoistmicrohabitatsin whichtolaytheireggs(RotherayandGilbert,1999).

Our results indicate a higher abundance of wild bees and hoverfliesinD-andR-meadowsfollowingthefirstcutcouldbe partly due toa short-term concentration effect; resulting from animals moving to these relatively resource rich patches from mownareas(seeKleijnetal.,2011).However,weshowahigher abundanceofpredatoryhoverfliesinR-comparedtoC-meadows, priortothefirstcut,whichmayindicateacumulativeeffect(i.e.

carry-overeffectinducedbytheapplicationoftheexperimental mowingregimesinpreviousyears)inthelongterm,andnotjust withinthesameseason.Inotherwords,thealternativemowing regimesmayhavealong-lastingpositiveeffectonlocalhoverfly populations.

5.Conclusionsandmanagementrecommendations

We demonstrated that altered mowing regimes, such as a delayingthe first mowing dateor leaving an uncut refuge has positive effects on wild bee and hoverfly communities and populations. Refugeand D- meadowssupportedan increase in abundance(upto+68%and+81%)andspeciesrichness(upto+69%

(8)

and70%)ofhoverfliesandwildbees,respectivelyTherefore,our studyprovidesevidencethatthisrelativelysimplemanagement technique could benefit pollinator populations in extensively managed grasslands. Spill-over of pollinators from extensively managedmeadowsmayprovidepollinationservicestoadjacent crops (e.g. Albrecht et al., 2007). The delayed mowing regime providesaprolongedperiodofresourceavailabilityforpollinators at an otherwise resource limited time (Requier et al., 2015).

Interestingly, overall wild bee and hoverfly communities responded similarly to the experimental mowing regimes.

However, there were differences in the responses of the life- history guilds. Therefore, we recommend delaying the first possiblemowingdateofcurrentAESmeadowsandanyextensively managedgrasslandstructuressuchasditchbanksandroadverges to15July,orleaving anuncutrefuge ifmownearlier. Thetwo alternativemowingregimestestedhereaffectedthewildbeeand hoverfly communities in different but complementary ways.

Therefore,we recommend implementingboth delayed mowing dates,andleavinguncutgrassrefuges.Ifproperlyimplementedat the landscape scale, such a spatio-temporally heterogeneous managementregimewillenhancewildbeeandhoverflycommu- nities and populations, and may have positive impacts on pollination services and biocontrol of insect pests in the surrounding landscape (Jönsson et al., 2015; Tschumi et al., 2015,2016).

Acknowledgements

Wewould liketo thankthe farmers for theircollaboration.

Claudia Blumenstein assisted with field work, Sabine Oertli assistedwithwildbeeidentification,EvaKnopprovidedstatistical advice,andWolfgangNentwigprovidedusefulcommentsonthe manuscript. Funding was provided by the Federal Offices for Agriculture and Environment, and the Swiss National Science Foundation(grantnumbers:31003A_125398and31003A_149656 toR.Arlettaz),andthe CantonalOffices ofEnvironmentand/or Agricultureof Bern, Vaud, Basel-Landschaft,Aargau, Neuchâtel, Fribourg,ValaisandGraubünden.

References

Albrecht,M.,Duelli,P.,Muller,C.,Kleijn,D.,Schmid,B.,2007.TheSwissagri- environmentschemeenhancespollinatordiversityandplantreproductive successinnearbyintensivelymanagedfarmland.J.Appl.Ecol.44,813–822.

Amiet,F.,Müller,A.,Neumeyer,R.,1999.FaunaHelvetica.Apidae.2.Colletes, Dufourea,Hylaeus,Nomia,Nomioides,Rhophitoides,Rophites,Sphecodes, Systropha.SchweizerischeEntomologischeGesellschaft,Neuchatel.

Amiet,F.,Herrmann,M.,Müller,A.,Neumeyer,R.,2001.FaunaHelvetica.Apidae.3.

Lasioglossum,Halictus.SchweizerischeEntomologischeGesellschaft,Neuchatel.

Amiet,F.,Herrmann,M.,Müller,A.,Neumeyer,R.,2004.FaunaHelvetica.Apidae.4.

Anthidium,Chelostoma,Coelioxys,Dioxys,Heriades,Lithurgus,Megachile,Osmia, Stelis.SchweizerischeEntomologischeGesellschaft,Neuchatel.

Amiet,F.,Herrmann,M.,Müller,A.,Neumeyer,R.,2007.FaunaHelvetica.Apidae.5.

Ammobates,Ammobatoides,Anthophora,Biastes,Ceratina,Dasypoda,Epeoloides, Epeolus,Eucera,Macropis,Melecta,Melitta,Nomada,Pasites,Tetralonia,Thyreus, Xylocopa.SchweizerischeEntomologischeGesellschaft,Neuchatel.

Amiet,F.,1996.FaunaHelveticaApidae.1.Teil(Bombus,Psithyrus).Schweizerische EntomologischeGesellschaft,Neuchatel.

Batáry,P.,Andras,B.,Kleijn,D.,Tscharntke,T.,2011.Landscape-moderated biodiversityeffectsofagri-environmentalmanagement:ameta-analysis.Proc.

R.Soc.B278,1894–1902.

Bates,D.,Maechler,M.,Bolker,B.,Walker,S.,2015.Fittinglinearmixed-effects modelsusinglme4.J.Stat.Softw.67,1–48.

Benton,T.G.,Vickery,J.A.,Wilson,J.D.,2003.Farmlandbiodiversity:ishabitat heterogeneitythekey?TrendsEcol.Evol.18,182–188.

Biesmeijer,J.C.,Roberts,S.P.M.,Reemer,M.,Ohlemuller,R.,Edwards,M.,Peeters,T.,

2006.Paralleldeclinesinpollinatorsandinsect-pollinatedplantsinBritainand theNetherlands.Science313,351–354.

Branquart,E.,Hemptinne,J.-L.,2000.Selectivityintheexploitationoffloral resourcesbyhoverflies(Diptera:syrphinae).Ecography23,732–742.

Bruppacher,L.,Pellet,J.,Arlettaz,R.,Humbert,J.-Y.,2016.Simplemodificationsof mowingregimepromotebutterfliesinextensivelymanagedmeadows:

evidencefromfield-scaleexperiments.Biol.Conserv.196,196–202.

Buri,P.,Arlettaz,R.,Humbert,J.-Y.,2013.Delayingmowingandleavinguncut refugesboostsorthopteransinextensivelymanagedmeadows:evidencedrawn fromfield-scaleexperimentation.Agric.Ecosyst.Environ.181,22–30.

Buri,P.,Humbert,J.-Y.,Arlettaz,R.,2014.Promotingpollinatinginsectsinintensive agriculturalmatrices:field-scaleexperimentalmanipulationofhay-meadow mowingregimesanditseffectsonbees.PLoSOne9,e85635.doi:http://dx.doi.

org/10.1371/journal.pone.0085635.

Buri,P.,Humbert,J.-Y.,Stanska,M.,Hajdamowicz,I.,Tran,E.,Entling,M.H.,Arlettaz, R.,2016.Delayedmowingpromotesplanthoppers,leafhoppersandspidersin extensivelymanagedmeadows.InsectConserv.Divers.9,536–545.

Cizek,O.,Zamecnik,J.,Tropek,R.,Kocarek,P.,Konvicka,M.,2012.Diversificationof mowingregimeincreasesarthropodsdiversityinspecies-poorculturalhay meadows.J.InsectConserv.16,215–226.

Concepción,E.D.,Díaz,M.,Kleijn,D.,Báldi,A.,Batáry,P.,Clough,Y.,Gabriel,D., Herzog,F.,Holzschuh,A.,Knop,E.,Marshall,E.J.P.,Tscharntke,T.,Verhulst,J., 2012.Interactiveeffectsoflandscapecontextconstraintheeffectivenessoflocal agri-environmentalmanagement.J.Appl.Ecol.49,695–705.

Elman,A.,Hill,J.,2009.DataAnalysisUsingRegressionandMultilevel/Hierarchical Models.CambridgeUniversityPress,NewYork.

Frank,T., 1999.Densityofadulthoverflies(Dipt.,Syrphidae)insownweedstripsand adjacentfields.J.Appl.Entomol.123,351–355.

Garibaldi,L.A.,Steffan-Dewenter,I.,Winfree,R.,Aizen,M.A.,Bommarco,R., Cunningham,S.A.,Kremen,C.,Carvalheiro,L.G.,Harder,L.D.,Afik,O.,Bartomeus, I.,Benjamin,F.,Boreux,V.,Cariveau,D.,Chacoff,N.P.,Dudenhöffer,J.H.,Freitas,B.

M.,Ghazoul,J.,Greenleaf,S.,Hipólito,J.,Holzschuh,A.,Howlett,B.,Isaacs,R., Javorek,S.K.,Kennedy,C.M.,Krewenka,K.M.,Krishnan,S.,Mandelik,Y., Mayfield,M.M.,Motzke,I.,Munyuli,T.,Nault,B.A.,Otieno,M.,Petersen,J., Pisanty,G.,Potts,S.G.,Rader,R.,Ricketts,T.H.,Rundlöf,M.,Seymour,C.L., Schüepp,C.,Szentgyörgyi,H.,Taki,H.,Tscharntke,T.,Vergara,C.H.,Viana,B.F., Wanger,T.C.,Westphal,C.,Williams,N.,Klein,A.M.,2013.Wildpollinators enhancefruitsetofcropsregardlessofhoneybeeabundance.Science339, 1608–1611.

Garibaldi,L.A.,Carvalheiro,L.G.,Leonhardt,S.D.,Aizen,M.A.,Blaauw,B.R.,Isaacs,R., Kuhlmann,M.,Kleijn,D.,Klein,A.M.,Kremen,C.,Morandin,L.,Scheper,J., Winfree,R.,2014.Fromresearchtoaction:enhancingcropyieldthroughwild pollinators.Front.Ecol.Environ.12,439–447.

Gathmann,A.,Tscharntke,T.,2002.Foragingrangesofsolitarybees.J.Anim.Ecol.71, 757–764.

Greenleaf,S.S.,Williams,N.W.,Winfree,R.,Kremen,C.,2007.Beeforagingranges andtheirrelationshiptobodysize.Oecologia153,589–596.

Haenke,S.,Scheid,B.,Schaefer,M.,Tscharntke,T.,Thies,C.,2009.Increasingsyrphid flydiversityanddensityinsownflowerstripswithinsimplevscomplex landscapes.J.Appl.Ecol.46,1106–1114.

Haenke,S.,Kovács-Hostyánszki,A.,Fründ,J.,Batáry,P.,Jauker,B.,Tscharntke,T., Holzschuh,A.,2014.Landscapeconfigurationofcropsandhedgerowsdrives localsyrphidflyabundance.J.Appl.Ecol.51,503–513.

Hickman,J.M.,Wratten,S.D.,Jepson,P.C.,Frampton,C.M.,2001.Effectofhungeron yellowwatertrapcatchesofhoverfly(DipteraSyrphidae)adults.Agric.For.

Entomol.3,35–40.

Humbert,J.-Y.,Ghazoul,J.,Richner,N.,Walter,T.,2012.Uncutgrassrefugesmitigate theimpactofmechanicalmeadowharvestingonorthopterans.Biol.Conserv.

152,96–101.

Jönsson,A.M.,Ekroos,J.,Dänhardt,J.,Andersson,G.K.S.,Olsson,O.,Smith,H.G.,2015.

SownflowerstripsinsouthernSwedenincreaseabundancesofwildbeesand hoverfliesinthewiderlandscape.Biol.Conserv.184,51–58.

Jauker,F.,Diekötter,T.,Schwarzbach,F.,Wolters,V.,2009.Pollinatordispersalinan agriculturalmatrix:opposingresponsesofwildbeesandhoverfliesto landscapestructureanddistancefrommainhabitat.Landsc.Ecol.24,547–555.

Jauker,F.,Bondarenko,B.,Becker,H.C.,Steffan-Dewenter,I.,2012.Pollination efficiencyofwildbeesandhoverfliesprovidedtooilseedrape.Agric.For.

Entomol.14,81–87.

Kühne,I.,Arlettaz,R.,Pellet,J.,Bruppacher,L.,Humbert,J.-Y.,2015.Leavinganuncut grassrefugepromotesbutterflyabundanceinextensivelymanagedlowlandhay meadowsinSwitzerland.Conserv.Evid.12,25–27.

Kennedy,C.M.,Lonsdorf,E.,Neel,M.C.,Williams,N.M.,Ricketts,T.H.,Winfree,R., Bommarco,R.,Brittain,C.,Burley,A.L.,Cariveau,D.,Carvalheiro,L.G.,Chacoff,N.

P.,Cunningham,S.A.,Danforth,B.N.,Dudenhöffer,J.-H.,Elle,E.,Gaines,H.R., Garibaldi,L.A.,Gratton,C.,Holzschuh,A.,Isaacs,R.,Javorek,S.K.,Jha,S.,Klein,A.

M.,Krewenka,K.,Mandelik,Y.,Mayfield,M.M.,Morandin,L.,Naeme,L.A., Oteino,M.,Park,M.,Potts,S.G.,Rundlöf,M.,Saez,A.,Steffan-Dewenter,I.,Taki, H.,FelipeViana,B.,Westphal,C.,Wilson,J.K.,Greenleaf,S.S.,Kremen,C.,2013.A globalquantitativesynthesisoflocalandlandscapeeffectsonwildbee pollinatorsinagroecosystems.Ecol.Lett.16,584–599.

Kleijn,D.,Sutherland,W.J.,2003.HoweffectiveareEuropeanagri-environment schemesinconservingandpromotingbiodiversity.J.Appl.Ecol.40,947–969.

Kleijn,D.,Baquero,R.A.,Clough,Y.,Diaz,M.,DeEsteban,J.,Fernandez,F.,Gabriel,D., Herzog,F.,Holzschuh,A.,Johl,R.,Knop,E.,Kruess,A.,Marshall,E.J.P.,Steffan- Dewenter,I.,Tscharntke,T.,Verhulst,J.,West,T.M.,Yela,J.L.,2006.Mixed

Referenzen

ÄHNLICHE DOKUMENTE

We also tested the influence of green area type (garden vs. grassland) and plant richness on these arthropod communities. plant species richness) and landscape factors

From a review on abandoned wet grasslands by Joyce (2014) it is evident that there are several shortcomings in studies on vegetation recovery in wet grasslands: only a few

The increase in the abundance of some of these traditional dune meadow species may also be explained by increased vegetative dis- persal as the abundance of

The aim of this study was to examine the effects of landscape complexity (i.e. complex landscapes) and local management (i.e. conventional farming) on arable weed communities

Results: We describe the oral and cloacal microbiota of Mediterranean loggerhead sea turtles by 16S rRNA gene sequencing to compare the microbial communities of wild versus

Our general expectation is that OSR availability decreases the foraging distance, and the preference for strawberry fields, as well as the pollen collection from

Syrphid flies are present at much higher diversity and abundance in farmland landscapes with no semi-natural habitats than wild bees (Verboven et al. 2015) and may also

The reduction of maintenance and the establishment of natural (infrequently, rather than intensely, mowed) green spaces and waysides can have a significant impact on mitigating