• Keine Ergebnisse gefunden

Temperature dependent non-monotonic bands shift in ZrTe<sub>5</sub>

N/A
N/A
Protected

Academic year: 2022

Aktie "Temperature dependent non-monotonic bands shift in ZrTe<sub>5</sub>"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Temperature dependent non-monotonic bands shift in ZrTe 5

G. Manzoni

a

, A. Crepaldi

b,c

, G. Autès

c,d

, A. Sterzi

a

, F. Cilento

b

, A. Akrap

e

, I. Vobornik

f

, L. Gragnaniello

g

, Ph. Bugnon

c

, M. Fonin

g

, H. Berger

c

, M. Zacchigna

f

, O.V. Yazyev

c,d

, F. Parmigiani

a,b,h,∗

aUniversitádegliStudidiTrieste,ViaA.Valerio2,Trieste34127,Italy

bElettraSincrotroneTriesteS.C.p.A.,StradaStatale14,km163.5,Trieste,Italy

cInstitueofPhysics,EcolePolytechniqueFédéraledeLausanne(EPFL),CH-1015Lausanne,Switzerland

dNationalCentreforComputationalDesignandDiscoveryofNovelMaterialsMARVEL,EcolePolytechniqueFédéraledeLausanne(EPFL), CH-1015Lausanne,Switzerland

eDQMP,UniversityofGeneva,CH-1211Geneva4,Switzerland

fCNR-IOM,StradaStatale14,km163.5,34149Trieste,Italy

gUniversityofKonstanz,78457Konstanz,Germany

hInternationalFaculty,UniversityofKöln,50937Köln,Germany

a b s t r a c t

TheelectronicstructureofZrTe5hasbeenmatterofrenewedinterestaimedatclarifying,alongwithits topologicalcharacter,thetemperaturedependenceoftheunusualtransportpropertiesofthismaterial.

Here,wereportanextensivehighresolutionAngleResolvedPhotoelectronSpectroscopy(ARPES)study unveilinganon-monotonicshiftofthebands,whenthesampletemperatureisvariedbetween16Kand 300K.Moreover,thepresentconventionalARPESandcircularlydichroicARPESmeasurementsreveal thepresenceoftwostatesatthetopofthevalenceband.ThestrongARPESdichroicsignaldetectedin proximityoftheFermienergyhasbeeninterpretedastheindicationofthepresenceofspinpolarized states,inagreementwiththepredictedstrongtopologicalcharacterofthismaterial.

1. Introduction

TherecentdebateaboutthetopologicalcharacterofZrTe5[1–6]

hastriggerednovelstudiesaimedatunderstandingtheoriginsof itsexotictransportproperties[7–9].

Theunusualtemperatureevolutionoftheelectronictransport propertiesofZrTe5consistsinaresisitivitypeakatT*accompanied byasignreversaloftheSeebeckcoefficient.However,duetothe presenceofimpuritiesanddefectsderivingfromthesamplegrowth conditions[10,11],T*isstronglysampledependentanditcanvary from∼60Kto∼170K[1,7,12,13].

Theoriginoftheseanomalouspropertieshasbeensubjectof debateanddifferentmechanismsincludingastructuralphasetran- sition[11,14],formationofchargedensitywaves(CDW)[7,15]and thepresenceofpolaronicchargecarriers[10]havebeenconsidered.

However,directexperimentalevidencessupportingthesetheories

Correspondingauthorat:UniversitádegliStudidiTrieste,ViaA.Valerio2,Trieste 34127,Italy.

arestilllacking[11,15],andanunanimousconsensusaboutthe bandstructurebehaviourversustemperaturehasnotbeenreached.

Ourpreviousbandstructureinvestigation[16]hasrevealeda bandshifttowardslowerE−EFenergies,whichwasmonotonicin theinvestigatedtemperaturerangeof300–125K.Inparticular,the bindingenergyofthecharacteristicDiracconeatthepointofthe Brillouinzonereachesitsmaximumat∼T*[16].

RecentARPESdata[12],performedbetween∼300Kand∼2K, haveshownthatthebandshiftismonotonictowardhigherbinding energies,whenthesampleiscooled.Asaconsequence,theDirac pointand thebottomoftheconduction band(CB) aredetected belowtheFermienergy(EF)at∼2K[12].Conversely,otherARPES experiments,doneat24K[5]andat20K[1],haveshowntheBulk ValenceBand(BVB)ofZrTe5crossingEF.

In this work,wehave performedAngleResolved Photoelec- tronSpectroscopy(ARPES)measurementsinatemperaturerange between16Kand 300K,revealing a non-monotonic bandshift acrosstheFermilevelatka=kc=0 ˚A,withtheinversionpointin proximityof T*.The shiftof theDiracpoint acrossEF seemsto beconsistentwiththeresistivitypeakdetectedatT*,aswehave reportedinourpreviousstudy[16].However,thediscoveryofa

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-415008

Erschienen in: Journal of Electron Spectroscopy and Related Phenomena ; 219 (2017). - S. 9-15 https://dx.doi.org/10.1016/j.elspec.2016.09.006

(2)

Fig.1.(a)ElectronicbandstructureofZrTe5alongthekadirectionmeasuredat∼16Kwithphotonenergyof22eV.Theblacklines,h1andh2,indicatetwobandsdispersing withsimilargroupvelocity:Vh1∼8±1×105m/sandVh2∼7±1×105m/s.(b)Constantenergymapsobtainedintegrating∼45meVaround(i)EF,(ii)−0.24eV,(iii)−0.46eV, (iv)−0.72eV,(v)−0.88eV,(vi)1.15eVand(vii)−1.30eV.

non-monotonicbehaviouroftheenergybandshiftcallsforadif- ferentexplanationthanwhatwehavereportedbefore[16]about thecarriersignchange,aswewillfurtherdiscussinthefollowing.

Dependingonthecrystallatticeparameters,theoreticalcalcu- lationshavepredictedZrTe5 tobeatthevergeofatopological phase transition between strong and weak topological insula- tor (STI-WTI) [3]. Scanning tunneling microscopy/spectroscopy (STM/STS)experimentshaveproposedtheexistenceofunidimen- sionaltopologicallyprotectedstatesatstepedges[4,5],suggesting thepossibilitythatthematerialisintheWTIphase.Thepredic- tionoftheSTIphaseofZrTe5hasbeenalsorecentlysupportedby acombinedARPESandSTM/STSstudy[6].

InordertobetterclarifythetopologicalphaseofZrTe5,theSTI characterof thismaterial is discussedherein thelight ofhigh resolution(HR)ARPESdataandcirculardichroic(CD)ARPESmea- surements.Inparticular,thestrongCDsignalobservedinproximity oftheFermienergyisproposedtobeafingerprintofthepresence ofspinpolarizedstates.ThissupportstheSTInatureofZrTe5.

2. Methods

HighqualityZrTe5 singlecrystalshavebeengrownbyvapor transporttechniquewithiodinemethods[17].ZrTe5presentsan orthorombicstructureandbelongstotheCmcm(D172h)pointgroup symmetry.PrismaticZrTe3chainsareconnectedbyTeatomsalong thecaxis,witha=3.99 ˚Aandc=13.73 ˚AasdeterminedbyX-ray powderdiffraction[18].EachcrystalcellcontainstwoZrTe5planes piledalong the baxis,withan interlayer distance,at 300K, of 7.23 ˚AasdeterminedbypreviousXRDstudy.Theplanesareweakly boundedbyvanderWaalsforces.Thecleansurfaceexposedafter acleaveisthea−csurface.

ARPESmeasurementshavebeencarriedoutattheAPEbeam- line, Elettra, with linear horizontal(LH) polarization at a fixed photonenergy of22eV.Valence bandsand Fermisurfacemea- surementswereperformedusingahighresolution VG-SCIENTA

DA30electronanalyzer,withenergyandangularresolutionbetter than20meVand0.2,respectively.TheVG-SCIENTADA30elec- tronanalyzerhasthecapabilitytomapthemomentumspacein twodimensions,kaandkc,withoutmovingthesample.Inourcase, kawasalongtheslitdirection,kcwasscannedviathenewlydevel- oped deflectorsystem.Sampleshave been cleavedin ultrahigh vacuum(UHV,basepressurep∼1×10−10mbar)atroomtemper- atureandmountedonavariabletemperaturecryostat;datahave beencollectedfrom16Kto300K.Thecrystalshavebeenpreviously orientedbylow-energyelectrondiffraction(LEED).

Theresistivitywasdeterminedusingfour-pointmethod,with thecontactsmadeusingsilverpasteandgoldwires.Thecurrent wasinjectedalongtheaaxis.Themeasuredsampleswereseveral mmlong.

Densityfunctionaltheory(DFT)calculationsofbulkZrTe5elec- tronicstructurewereperformedwithinthegeneralizedgradient approximationasimplementedintheQuantum-Espressopackage [19].Spin–orbitcoupling(SOC)istakenintoaccountwiththehelp offullyrelativisticnorm-conservingpseudopotentials.Thecalcu- lationswerecarriedoutusingan24×24×12k-pointmeshand aplanewavekineticenergycutoffof80Ryforthewavefunctions.

WeusedtheexperimentallydeterminedcrystalstructurefromRef.

[18].

3. Results

3.1. ZrTe5bandstructureat16K

Fig.1showstheresultsofhighresolutionARPESmeasurement along theka direction(panel(a)) anddifferentconstant energy mapsintheka−kc plane(panel(b)),asobtainedbyintegrating over∼45meVatselectedbindingenergies.Thesampletempera- turewas∼16K.TheZrTe5Fermisurfaceisshowninpanel(b–i).The hole-likestateh1formsacircularpocketatEF,anditsevolutionis trackedinFig.1(b-i)–(b-iv).Thepocketchangesfromacircletoa

(3)

-36 Ted

Tez Tet

Ted Tez

Tet a)

b)

~0.72 eV

~0.72 eV 10

5

0

-42 -40 -38

Intensity (arb. u.)

E - EF (eV)

-40 -38

E - EF (eV)

).u .bra(SOD detaluclaC

4d3/2

4d5/2

Fig.2. (a)MeasuredTecorelevels:4d3/2and4d5/2.(b)CalculatedTe4dcorelevels.

warpedrectangle(b-i)–(b-ii),then,itevolvesinamorecomplex shape(Fig.1(b-iii)–(b-iv)).

Fig.1(a)revealsanotherband,h2,dispersingwithsimilargroup velocityofh1andappearingathigherbindingenergy.Thisband (seeFig.1(a))hasthemaximumlocatedatka=kc0 ˚A−1andbind- ingenergy∼−0.72eV.ThebandsvelocitiesVh1 andVh2 havebeen estimated∼8±1×105m/sand∼7±1×105m/s,respectively.

Thedifferentevolutionsofthetwobandsintheconstantenergy maps(CEMs)ofFig.1(b)havegiventhepossibilitytodiscardthe idea,suggestedbythecloseVh1 andVh2 values,thath2mightbe ahigherbindingenergyreplicaofh1,asreportedforothercom- pounds havingmultiplesurfaceterminations[20].Inparticular, Fig.1(b-v)showsthath2doesnotevolveinawarpedrectangle, ash1inpanel(b-ii),butinanalmond-likeshape,suggestingadif- ferentoriginfortheh1andh2bands.Moreover,in(b-vi)and(b-vii), thequasi1Dcharacterofh2isrevealedbythelineardispersionof thebandthatcrossesthesurfaceBrillouinzone(BZ)withnegligi- bledispersionalongthekcdirection.Thisobservationprovidesnew informationaboutthismaterial.Indeed,eventhoughthecrystalis formedbychainswithreduceddimensionality,thequasi1Dband h2doesnotreachEF.Thiscanjustifywhytheelectronictransport propertiesreflectthetwo-dimensionalcharacterofh1.

AnotherinterestingfeatureoftheZrTe5 electronicproperties is thesplittingofthe 4d3/2 and 4d5/2 Te corelevels.TheTe 4d emissionpeaks,collectedatatemperatureof∼77Kandatpho- tonenergyh=75eV,areshowninFig.2(a).Thesespectraclearly showa replicashiftedby∼0.72eVforboth the4d3/2 and4d5/2 spin–orbitsplittedpeaks.Weascribethisreplicatothepresence oftwodifferentlycoordinatedTeionsatthesurfacetermination.

Tobetterclarifytheoriginofthesespectralfeaturesinthe4d corelevels,weperformeddensityfunctionaltheory(DFT)calcula- tions.ThecalculatedTecorelevelsareshowninFig.2(b).

Relativistic norm-conserving pseudopotentials were used, includingthe4dcorestatesforTe.Thedensityofstatesprojected onthe4dorbitals ofthethreetypes ofTe atomsareshown in Fig.2(b),whereTetandTedcorrespondtothetopandthetwobot- tomatomsoftheZrTe3prism,whileTezcorrespondstotheatoms connectingtheZrTe3chainsalongthecaxis.Asitcanbeseen,the

3 2 1 Resistivity Ratio 0

300 200

100 0

Temperature (K)

T

1

T

2

T

3

Fig.3.(a)NormalizedresitivityofZrTe5asafunctionoftemperature.

DFTresultsreproduceaccuratelythespin–orbitsplittingofthe4d Testates.Thesplittingofthecorelevelsofdifferentsites,seenin experiment,isalsoqualitativelydescribed.Inparticular,theTet

corelevelareshiftedupby∼0.6eVwithrespecttotheTezsites corelevel.Theprojecteddensityofstates,whichreliesontheposi- tionofKohn–Shameigenvaluesandconsidersonlytheinitialstate, canjustreproducequalitativelythephotoemissionspectra.Asa consequence,smalldiscrepanciesareobservedintheenergyshift estimation(∼0.72eVintheexperiment,∼0.6eVintheDFTmodel) andmoreimportantlyintheobtainedbindingenergyvalues.How- ever,thecalculationsprovideuswithvaluableinformationabout themechanismattheoriginofthechemicalshift.

Thecalculatedcorelevelsplittinggivesanenergeticpositionof theTezpeakswhichhavenotbeenobservedexperimentally.Within DFT,amoreaccurateestimationoftheXPSspectracanbeobtained byfollowingthemethodproposedinRef.[21].Withinthisscheme, thecorelevelshiftsarecalculatedasthedifferenceoftotalenergy betweentheunexcitedsystemandasystemwithacoreholeonan excitedTeatom.TosimulateexcitedTeatoms,weproduceapseu- dopotentialforTewithaholeinthe4dshelltreatedasacorelevel.

Oneexcitedatomisthenintroducedasanimpurityina2×2×2 supercellforeachofthethreeinequivalentTepositions.Thesecal- culationsshow,inagreementwiththeexperiments,thattheTed andTez corelevelsareseparatedbyonly∼8meVwhiletheTet corelevelisshiftedupwardby∼515meVwithrespecttotheTed level.ThestrongchemicalshiftoftheTetcorelevelwithrespect totheotherTesitescanbeascribedtothedifferentcoordination oftheTeions.Inparticular,theTetatomatthetopoftheZrTe3 prismhaslongerboundswiththeneighboringZrand Teatoms whencomparedtothetwoothersites.

3.2. Temperaturedependentnon-monotonicbandsshift

Havingdetailedthedispersionofsomesignificativefeaturesof theZrTe5bandstructureat∼16K,wecannowlookattheevolu- tionoftheelectronicpropertieswiththetemperature.Thisstudyis motivatedbytheanomalousresistivitypeak(Fig.3)reportedvary- ingthesampletemperature.Forthesampleusedinthepresent experiment,theresistivitypeakislocatedatT*150K,butmea- surementscarriedoutondifferentsamplesfromthesamebatch, i.e.grownunderthesameconditions,revealthatT*canvaryfrom 140Kto160K.

Wehaveinvestigatedindetailsthetemperatureevolutionof theZrTe5electronicbandstructurealongthekadirection,collecting ARPESdatabetween16Kand300K.Threerepresentativetempera- tureshavebeenconsideredhere,T1=16K,T2=150KandT3=300K, showninFig.4(a)–(c),respectively.Fig.4(d)–(f)showsthediffer- entialbanddispersionsresultingfromthesubtractionoftheARPES dataasfollow:(d)T3−T2,(e)T2−T1and(f)T3−T1.

Aremarkabletransferofspectralweightisobservedinallthe three differential images. By cooling thesample from 300K to

∼150K(d),thebandstructuremovestowardslowerE−EFvalues, consistentlywithourpreviousresults[16].However,bylower- ingthesampletemperature,downto∼16K,thebandshiftinverts

(4)

Fig.4.(a–c)ARPESdata,takenath=22eV,at(a)T1=16K,(b)T2=150Kand(c) T3=300K.(d–f)DifferentialARPESimagesobtainedbysubtractingthelowtemper- aturedispersionfromthehightemperatureone.Blue(<0)andred(>0)features inthedifferentialimagesmarkthetemperaturedrivenspectralweighttransfer.

(g)EDCcurvesextractedatka0 ˚A−1integratingover0.025 ˚A−1fromARPESdata takenatdifferenttemperatures.

directionbetween∼150Kand∼120Kunveilinganonmonotonic temperaturedependence.

ThespectralweighttransferobservedinFig.4(d)–(f)isinter- pretedasabandshiftacrossEF.Thisbandshiftcanbebetterseenin Fig.4(g)thankstotheenergydistributioncurves(EDCs)extracted fromARPESdatatakenatdifferenttemperaturesbetween16Kand 300K.TheEDCshavebeentakenatka0 ˚A−1andintegratedover 0.025 ˚A−1,theEDCsextractedfromdataatthethreecharacteris- tictemperaturesareshownrespectivelyingold(T1),black(T2)and violet(T3).

AquantitativeestimationoftheenergyshiftisshowninFig.5(a) andithasbeenobtainedusingthefollowingprocedure.Amomen- tumdistributioncurve(MDC),integratedover20meV,hasbeen extractedat−0.3eVfromtheARPESmeasurementtakenat300K, and thewavevectorska ofthetwo peakshave beenevaluated.

Successively,MDCshavebeenextractedforallthemeasuredtem- peratures.Inthesecases,thebindingenergieshavebeenchosen inordertopreservethepeakpositionsatthesamewavevectors, ka.TheenergypositionoftheMDCextractedatroomtemperature,

E−EF−0.3eV,hasbeentakenasreference.Thereportedener- giesshiftisthedifferencebetweentheMDCenergyatdifferent temperaturesandthereferenceone.

Theminimumoftheshiftisfoundat∼150K,henceatapprox- imatelythesametemperatureoftheresistivitymaximum,T*.The wholetrendoftheenergyshift,asobtainedinthepresentstudy, isshowninFig.5(bluesquares)anditiscomparedtothedata reportedinourpreviouslaser-ARPESwork(yellowsquares)[16].

The Fermi surface evolution with temperature brings com- plementaryinformationaboutthenon-monotonicbandshift. In panels(b–j)ofFig.5,wereporttheFermisurfacesanddifferent CEMstakenatT116K(b–d),T2150K(e–g)andT3300K(h–j).

Panels(b),(e)and(h)displaytheFermisurfaces(FSs)ofthematerial atdifferenttemperatures.

Thebandstructureshiftstowardhigherbindingenergies,by loweringthetemperaturefromT3 toT*.AtT*,theDiracpointis locatedatapproximatelyEF(Fig.5,panel(e)).Thisdeterminesa verylowdensityofchargecarriersavailableandtheconsequent riseoftheresisitivity.Coolingthesamplefrom∼150Kto∼16K, thebandstructureshiftinvertsitstrend,i.e.thebandsmovetoward lowerbindingenergies.AtT1thebandstructurereachesthelargest shiftvalue,withrespecttoroomtemperature.Thisobservationis supportedbyconsideringthattheareaoftheholepocketattem- peratureT1 (Fig.5panel(b))islargerthantheoneatT3 (Fig.5 panel(h)).AccordingtotherawdatashowninFig.4(a)–(c),the bandstructureshiftconsistsinarigidchangewithoutvariationof theFermivelocity.

Thesefindingsextendourpreviousinvestigation[16],where weobservedamonotonicshiftofthebandstructureinthetem- peraturerangebetween300Kand∼125K.Byloweringfurtherthe sampletemperaturedownto∼16K,weobservethatthebinding energyshiftisclearlynon-monotonic.Thisfindingisincontrast withthedatareportedinRef.[11],howeveritisconsistentwith otherworks[1,5]showingthatatlowtemperature(20K[1]and 24K[5])thebulkvalenceband(BVB)iscrossingEFandtheDirac pointisunoccupied.

AlthoughtheseARPESstudycouldjustifytheresisitvitypeakat T*,asimplesignreversaloftheSeebeckcoefficientisstillunex- plainedbyarigidandnon-monotonicbandshift,asobservedin thepresentexperiments.Hence,ournewdata,takenonawider temperaturerangethenbefore,callforanovelanddifferentexpla- nationforthechargecarriersign,withrespecttowhatwehave previouslyproposed[16].

3.3. Topologicalcharacter

Inordertocontributetothedebateaboutthetopologicalchar- acterofZrTe5[1–3,5,6],wepresentinFig.6highresolutionARPES data,asmeasuredat16Kandataphotonenergyof∼22eV.

Fig. 6(a) shows the Fermi surface of ZrTe5, where the blue andgreenmarkershighlighttheconcentricholepocketscontours.

Thesetwoquasi-degeneratebandscrossingtheFermiLevelcan beeasilyobservedinFig.6(b), whereanARPES imagetakenat kc=0 ˚A−1 is shown. The presence of thetwo bands have been alreadyreportedintheliterature[6,22]andtheyhavebeeninter- preted in terms of bands witha bulk and a surface dominant character,respectively[6].

Inordertoprovideclearevidenceaboutthepresenceoftwo distinctstatesinproximityofEF,wealsoanalyzeamomentum distributioncurve (MDC), integrated over 15meV, as shown in Fig. 6(b). The resulting MDC intensity is reported in Fig. 6(c).

Eachbranchatbothpositiveandnegativewavevectorsisclearly doubled,thusconfirming thepresenceof two distinctstates in proximityofEFat∼16K.

Wehaveshownthattheh1 bandiscomposed bythesuper- positionoftwodifferentstateswhich,inanotherwork[6],have

(5)

Fig.5.(a)Evolutionoftheextractedenergyshiftasafunctionofthetemperature(blue)comparedtotheoneofRef.[16](yellow).(b–j)ConstantenergymapstakenatEF, at−60meVandat−120meV,atthreedifferenttemperatures(T116K,T2150KandT3300K).

Fig.6.(a)FermiSurfacecollectedattemperature16Kandphotonenergyof22eV.Theblueandgreenmarkersindicatethetwoconcentricholepocketsposition.(b)Electronic bandstructureatkc=0 ˚A1.(c)MDCextractedinproximityofEF.Thebandappearstobedoublepeakedindicatingthepresenceoftwoquasi-degeneratestates.

beeninterpretedasasurfacestate(SS)andabulkvalenceband (BVB).TheproposedexistanceofaSSandaBVBsuggeststhatZrTe5 belongstotheSTIphase.IntheSTIphasetheSSisexpectedtobe spinpolarized.

The need to study the spin texture of strongly spin–orbit- coupledmaterialshasrecentlypromotedcirculardichroicangular resolvedphotoelectronspectroscopy(CD-ARPES)asanindirectbut

powerfultooltodetectthespinpolarization.Although,aquantita- tiveanalysisrequirestoaccountforfinalstateandphotoelectron interferenceeffects[23].

Fig.7(a)reportstheARPESdatameasuredat22eV,withlinear horizontalpolarizationat∼210K.Thesedataareusedforcompar- isonwiththeCD-ARPESdatatakenat∼210KshowninFig.7(b).

ThisfigurehasbeenobtainedfromthedifferenceIL−IR between

(6)

Fig.7. (a)ARPESimagetakenath=22eVandT=210K.Thephotonenergywaslinearhorizontal.(b)DichroicdifferentialimageobtainedfromthedifferenceILIRwhere ILandIRhavebeenobtainedwithcircularpolarizedlight(leftandright,respectively).TheimagehasbeendividedinfourenergyregionsofinterestA,B,CandD.

thetwoARPESdataobtainedwithleft(IL)andright(IR)circularly polarizedlight.

Fig.7(b)canbedividedinfourdifferentenergeticregions.In regionA,BandCtheSSandtheBVBhavebeentakeninexam.In particular,AandCpresentthesamebehaviour,i.e.positivesignal fornegativekaandviceversa.Importantistonotethatintheregion AtheBVBandtheSSstatesarewellseparatedinenergy,whereas theyarealmostdegenerateintheregionC.

RegionBpresentsanoppositebehaviour.Thesignalisnegative fornegativevaluesofkaandviceversa.InthisregiontheCDsignal isclearlydistributedalongtheM-likeshapeofBVB,thusresulting mainlyfromthebulkstate.

InaSTI,theexistenceofatopologicallyprotectedsurfacestate isaconsequenceofaninversionintheenergyorderingofthestates formingthebandgap.Thesearealsocharacterizedbydifferentpar- itiesattimereversalinvarianthighsymmetrypoints(inparticular, inthepresent caseat)[24].In thecaseofZrTe5,theopening ofaninvertedbandgaphasbeenalsointerpretedastheoriginof theM-likeshapeattheBVBtop.WeproposethattheCDsignal signreversalatthetopofBVBmightbethesignatureofthisband inversionbetweenthebottomoftheCBandthetopoftheBVB.

Finally, in theregionD,the h2 bandpresentsa verystrong dichroicsignal.Thisbandexhibitsanoppositecharacter,compared tothebehavioroftheBVBandtheSSinregionC.Thisconfirmsthat h2 isnotareplicaoftheBVB.Hence,theCDARPESsignalindi- catesadifferentorbitalcharacterofh2comparedtotheBVBand, eventually,aboutthedifferentspintexture,comparedtotheSS.

4. Conclusions

Inthepresentwork,wehaveperformedhighresolutionARPES measurementsandcorelevelanalysisonZrTe5.

Wehaveobservedadoublingofthe4dTecorelevelswhich,on thebasisofDFTcalculations,hasbeenattributedtothechemical shiftduetothepresenceofnon-equivalentTeatomsinthecrystal surface.

OurARPESresultsshowatemperatureevolutionoftheZrTe5

bandstructure,revealinganon-monotonicenergyshiftofthestates acrosstheFermiLevel.Thisenergybandshiftreachesitsminimum at∼T*.ThesefindingscouldexplaintheresistivityanomalyofZrTe5. Unfortunately,thenon-monotoniccharacterofthebindingenergy

shiftoftheDiracconereopensthequestionaboutthesignreversal oftheSeebeckcoefficient.

Highresolution ARPESmeasurementsreveal thepresence of two quasi-degeneratebands,forming theh1 state, crossingthe Fermi level at very low temperature, 16K. The band structure presentalsoaband,h2,withFermivelocitycomparabletoh1.The twobandsh1andh2revealastrongandoppositedichroicsignal andtheassociatedCEMsshowthattheyhaveverydifferentcon- stantenergycontours.Inparticular,h2displaysaone-dimensional character,withlittledispersionalongkc.

CD ARPES measurements bringnovel information aboutthe bandinversionatthetopofthevalenceband.Thestrongdichroic signaldetectedinproximityofEFhasbeeninterpretedastheindi- cation ofthepresence ofspin polarizedstates, asalsorecently observedinspinresolvedARPESmeasurements[25],suggesting thatZrTe5isastrongtopologicalinsulator.

Acknowledgments

We acknowledge G.Miceli forhelpfuldiscussions aboutthe computationofcore-levelshifts withintheDFTframework. We alsoacknowledgeF.Giustiforthegraphicalsupport.Thisworkwas supportedinpartbytheItalianMinistryofUniversityandResearch underGrantNos.FIRBRBAP045JF2andFIRB-RBAP06AWK3andby theEuropean CommunityResearch Infrastructure Action under theFP6StructuringtheEuropeanResearchAreaProgramthrough the Integrated Infrastructure Initiative Integrating Activity on SynchrotronandFreeElectronLaserScience,ContractNo.RII3-CT- 2004-506008.G.A.andO.V.Y.acknowledgesupportbytheNCCR MarvelandtheERCStartinggrantTopoMat(GrantNo.306504).

A.A.acknowledgesfundingfromtheAmbizionefellowshipofthe SwissSNF.Firstprinciplescalculationshavebeenperformedatthe SwissNationalSupercomputingCentre(CSCS)underprojects675.

References

[1]Q.Li,etal.,Nat.Phys.(2016).

[2]R.Y.Chen,etal.,Phys.Rev.Lett.115(2015)176404.

[3]H.Weng,etal.,Phys.Rev.X4(2014)011002.

[4]X.-B.Lietal.,arXiv:1601.05930v1,2016.

[5]R.Wuetal.,arXiv:1601.07056v1,2016.

[6]G.Manzonietal.,arXiv:1608.03433,2016.

[7]E.F.Skelton,etal.,SolidStateCommun.4(1982)1.

(7)

[8]T.E.Jones,etal.,SolidStateCommun.42(1982)793.

[9]M.Izumi,etal.,SolidStateCommun.42(1982)773.

[10]M.Rubinstein,Phys.Rev.B60(1999)1627.

[11]F.J.DiSalvo,etal.,Phys.Rev.B24(1981)2935.

[12]Y.Zhangetal.,arXiV:1602.03576v1(2016).

[13]G.N.Kamm,etal.,Phys.Rev.B31(1985)12.

[14]S.Okada,etal.,J.Phys.Soc.Jpn.49(1980)839.

[15]S.Okada,etal.,J.Phys.Soc.Jpn.51(1982)460.

[16]G.Manzoni,etal.,Phys.Rev.lett.115(2015)207402.

[17]F.Lévy,H.Berger,JournalofCrystalGrowth61(1983)61.

[18]H.Fjellvag,A.Kjejshus,SolidStateCommun.60(1986)91.

[19]P.Giannozzi,etal.,J.Phys.:Condens.Matter21(2009)395502.

[20]A.Crepaldi,etal.,Phys.Rev.Lett.109(2012)096803.

[21]A.Pasquarello,M.S.Hybertsen,R.CAr,Phys.Rev.Lett.74(1995)1024.

[22]D.N.McIlroy,etal.,J.Phys.:Condens.Matter16(2004)L359.

[23]A.Crepaldi,etal.,Phys.Rev.B89(12)(2014)125408.

[24]M.Z.Hasan,C.L.Kane,Rev.Mod.Phys.82(2010)3046.

[25]G.Manzonietal.,2016,inpreparation.

Referenzen

ÄHNLICHE DOKUMENTE

I found a reduction in the probability of re-election (38% for each 1,000 PEN of mining transfers per-capita) and the level of political competition (4.9% for each 1,000 PEN of

In many environ- ments, the majority voting rule maximizes agents’ ex-ante expected utilities among all anonymous and dominant-strategy implementable choice rules.. But in

1,3 Only recently, spin polarization values of over 90% near E F were found for CrO 2 at 1.8 K using superconducting point contact spectroscopy, 7,11–13 al- though values of 95%

• We used RNA-interference to silence the single gene encoding pyruvate-orthophosphate dikinase (PPDK) in Phaeodactylum tricornutum, essential for C4 metabolism,

An annealing step of 370°C for 40 min under atomic hydrogen atmosphere or under nitrogen atmosphere after SiN x :H deposition seems to be beneficial for the samples not

This empirical transport model based on reasonable assumptions and realistic material parameters yields a satisfactory quantitative description of the experimentally

To test our model, it is instructive to compare the structural changes described by the phonon vibrations with those induced by temperature or external

After storing the reaction solution for 2 weeks at room temperature the 31 P NMR spectrum revealed that the amount of the pentaphosphide Na 2 [5b] increased whereas the signals of