• Keine Ergebnisse gefunden

Symmetric Homotopy Theory for Operads and Weak Lie 3-Algebras

N/A
N/A
Protected

Academic year: 2022

Aktie "Symmetric Homotopy Theory for Operads and Weak Lie 3-Algebras"

Copied!
185
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Symmetric Homotopy Theory for Operads and

Weak Lie 3-Algebras

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades Doctor rerum naturalium

der Georg-August-Universitรคt Gรถttingen

im PromotionsstudiengangMathematical Sciences der Georg-August University School of Science (GAUSS)

vorgelegt von Malte Dehling aus Boston, Massachusetts

Gรถttingen, 2020

(2)

Betreuungsausschuss

Erstbetreuerin: Prof. Dr. Chenchang Zhu Mathematisches Institut

Georg-August-Universitรคt Gรถttingen Zweitbetreuer: Prof. Dr. Thomas Schick

Mathematisches Institut

Georg-August-Universitรคt Gรถttingen Mitglieder der Prรผfungskommission

Referentin: Prof. Dr. Chenchang Zhu Mathematisches Institut

Georg-August-Universitรคt Gรถttingen Korreferent: Prof. Dr. Bruno Vallette

Institut Galilรฉe

Universitรฉ Sorbonne Paris Nord Weitere Mitglieder: Prof. Dr. Madeleine Jotz Lean

Mathematisches Institut

Georg-August-Universitรคt Gรถttingen Prof. Dr. Russell Luke

Institut fรผr Numerische und Angewandte Mathematik Georg-August-Universitรคt Gรถttingen

Prof. Dr. Victor Pidstrygach Mathematisches Institut

Georg-August-Universitรคt Gรถttingen Prof. Dr. Thomas Schick

Mathematisches Institut

Georg-August-Universitรคt Gรถttingen

Tag der mรผndlichen Prรผfung:16. November 2020

(3)
(4)
(5)

Contents

Introduction 1

Structure 3

Acknowledgements 3

Chapter 1. Preliminaries 5

1. Chain Complexes 5

2. Permutations 7

3. Forests and Trees 9

Chapter 2. Operads 13

1. Collections 13

2. Operads 23

3. Cooperads 36

4. Resolutions of Operads 50

5. Resolutions of Algebras 61

6. Homotopy Algebras 63

7. Koszul Duality 68

Chapter 3. Symmetric Homotopy Theory for Operads 77

Introduction 77

1. The Colored Operad which Encodes Operads 80

2. Homotopy Theory of Symmetric Operads 98

3. Higher Homotopy Operads 118

A. Homotopy Group Representation 126

Chapter 4. On Weak Lie 3-Algebras 129

Introduction 129

1. An๐•Š-Free Resolution of the Koszul Dual Cooperad of the Lie Operad 131

2. The Category of Weak Lie 3-Algebras 141

3. Skewsymmetrization 148

4. Applications 154

A. Computations 160

Bibliography 173

Appendix A. Curriculum Vitae 177

v

(6)
(7)

Introduction

The study of algebraic structures up to homotopy combines the fields of algebra and homotopy theory. The objects of study are types of algebras and their invariance properties with respect to certain homotopy operations on their underlying spaces. In our setting, the underlying base category of spaces is a symmetric monoidal model categoryC, and the algebraic structures considered are algebras over an operad๐’ซinC.

Operads model many inputโ€“single output operations and their composition and are therefore suitable to describe many of the classical types of algebras, e.g., associative, commutative, and Lie algebras (see [46, 51]).

In general, algebras over an operad are rigid structures, meaning they do not play nice with homotopy operations on their underlying spaces. However, algebras over some operads๐’ฌdo have good homotopy properties; this is the case in particular over those that are cofibrant in the model structure on operads inC(see [5, 28, 29]). This model structure exists under some assumptions on the underlying model categoryC and some restrictions on the operads (see op. cit. for details). For such a cofibrant operad ๐’ฌ, we can also equip its category๐’ฌ-Algof๐’ฌ-algebras with a model structure, and in this category a version of the Boardmanโ€“Vogt homotopy invariance property holds: given a homotopy equivalence of cofibrantโ€“fibrant spaces๐‘‹,๐‘ŒinC, a structure of๐’ฌ-algebra on either induces a homotopy equivalent๐’ฌ-algebra structure on the other [5, Theorem 3.5].

We will often be interested in the homotopy category of๐’ฌ-algebras, i.e., the local- izationHo๐’ฌ-Alg= ๐’ฌ-Alg[๐‘Šโˆ’1]with respect to the class๐‘Šof weak equivalences. An isomorphism๐ด โ†’ ๐ดโ€ฒin the homotopy category is a zigzag of weak equivalences in the category๐’ฌ-Alg,

๐ด โ†’ โˆผโ† โ€ข โ† โˆผโ†’ โ‹ฏ โ†’ โˆผโ† โ€ข โ† โˆผโ†’ ๐ดโ€ฒ.

Given cofibrant (resp. fibrant) replacement functors๐‘„(resp.๐‘…) on the category๐’ฌ-Alg, it is a consequence of a general result on model categories (see, e.g., [32, Theorem 1.2.10]) that

HomHo๐’ฌ-Alg(๐ด, ๐ดโ€ฒ) โ‰…Hom๐’ฌ-Alg(๐‘„๐ด, ๐‘…๐ดโ€ฒ) /โˆผโ„Ž,

where the relationโˆผโ„Žis homotopy of morphisms. We call a morphism๐‘„๐ด โ†’ ๐‘…๐ดโ€ฒof ๐’ฌ-algebras a homotopy morphism from๐ดto๐ดโ€ฒand denote it by๐ด โ‡ ๐ดโ€ฒ.

In this thesis, we work in the differential graded framework. The categoryCwill be the category of chain complexes equipped with the standard projective model struc- ture, i.e., weak equivalences are quasi-isomorphisms, fibrations are degreewise epi- morphisms, and cofibrations are determined by the left lifting property with respect to acyclic fibrations. This model structure can be transferred to give model structures

1

(8)

on dg๐•Š-modules, dg operads, and dg algebras over a dg operad by defining the weak equivalences (resp. fibrations) to be those maps that are weak equivalences (resp. fibra- tions) on all underlying chain complexes. The cofibrations are then again determined by their lifting property. Note that the lifting property defining cofibrations depends on the structures, not just the underlying chain complexes. In particular, while it is clear from the above definition that all operads inCare fibrant, cofibrancy is an entirely different question.

On the category of augmented dg operads, we have functorial cofibrant resolutions given by the counitฮฉฮ’๐’ซ ฬƒโ†’ ๐’ซof the cobarโ€“bar adjunction

ฮฉ โˆถconil dg Coopd โ† โ‡€ โ‡€โ† aug dg Opdโˆถ ฮ’ ,

provided the operad๐’ซin question is already๐•Š-cofibrant, i.e., cofibrant in the under- lying category of๐•Š-modules. When working with chain complexes over a field๐คof characteristic0, this๐•Š-cofibrancy condition is always satisfied. A downside of such cobarโ€“bar resolutions is that they are very large, and therefore algebras over them have many generating operations. However, one of the main breakthroughs in the theory of operads is the development of Koszul duality for operads [24, 25], which provides us with an explicit construction of a small cooperad๐’ซยกas a candidate to replace the bar constructionฮ’๐’ซin the cobarโ€“bar resolution. The cooperad๐’ซยกis given by a presenta- tion dual to a choice of presentation for๐’ซ. The presentation is calledKoszulif in fact ๐’ซยกโ†ช ฮ’๐’ซis a weak equivalence in a Hinich-type model structure on dg cooperads (see [40]). In this case, the cobar construction on the Koszul dual cooperad๐’ซยกprovides us with a small resolution

ฮฉ๐’ซยก โ† โˆผโ†’ ฮฉฮ’๐’ซ โ† โˆผโ†’ ๐’ซ ,

called aKoszul resolution, and algebras over this type of resolution are known as๐’ซโˆž- algebras.

For the classical types of associative, commutative, or Lie algebras, Koszul duality provides us with the followingโˆž-analogues: For associative algebras, we recover the Aโˆž-algebras introduced by Stasheff [65] and the bar construction of Eilenbergโ€“MacLane [14]. For commutative algebras, we obtain the definition ofCโˆž-algebras introduced by Kadeishvili [33] and present in rational homotopy theory [60, 66], along with the Harri- son complex [27]. For Lie algebras, Koszul duality leads to the notion ofLโˆž-algebras as introduced by Hinichโ€“Schechtman [30] (see also [13]) and crucial in deformation the- ory [23, 38], and to the Chevalleyโ€“Eilenberg complex [10]. However, of these classical operadsAss,Com, andLie, onlyAssis๐•Š-cofibrant over any commutative ring๐ค, since its structural operations satisfy no symmetries.

For commutative algebras, there is also the notion ofEโˆž-algebras going back to May [52] and Boardmanโ€“Vogt [8]. AnEโˆž-operad is any๐•Š-cofibrant resolution of the operadCom, such as the Barrattโ€“Eccles operadโ„ฐin dg operads (see, e.g., [4]). We may use the Barrattโ€“Eccles operad for our purposes of constructing cofibrant resolutions for operads that are not๐•Š-cofibrant already: the tensor product of any dg operad๐’ซwithโ„ฐ

(9)

is๐•Š-cofibrant, and thus one obtains a cofibrant resolution ฮฉฮ’(๐’ซ โŠ— โ„ฐ) โ† โˆผโ†’ ๐’ซ โŠ— โ„ฐ โ† โˆผโ†’ ๐’ซ over an arbitrary commutative ring๐ค.

The reason for the๐•Š-cofibrancy condition is essentially that the cobarโ€“bar resolution of an operad ๐’ซresolves only the operadic composition, not the symmetries of the operations. This is a consequence of the classical treatment of operads as๐•Š-modules equipped with composition structure. In Chapter 3, we take a different perspective, viewing both the symmetry and the composition as part of the structure of an operad.

Among other findings, we obtain a new cobarโ€“bar adjunction whose counit resolves both structures simultaneously.

One of our original goals in this thesis was to give an explicit definition of homotopy Lie algebras over any commutative ring๐ค, also known asELโˆž-algebras. Unfortunately, in the context of our new cobarโ€“bar adjunction, a Koszul duality approach is not yet available. In Chapter 4, we use yet another technique to attempt to construct a resolution of theLieoperad: we consider the classical Koszul dual cooperadLieยกof theLieoperad and construct a small๐•Š-cofibrant resolutionLieโ‹„ โ†’ Lieยกon the cooperad sideโ€”at least in low degrees. This allows us to explicitly define weak Lie 3-algebras, i.e.,ELโˆž- algebras on underlying3-term complexes, and their homotopy morphisms. As 2-term truncations, we recover Roytenbergโ€™s weak Lie 2-algebras [63], thereby providing a more conceptual construction for them. Among other results, we prove the desired homotopy invariance property for weak Lie 3-algebras. We end the chapter with some initial applications of weak Lie 3-algebras in higher differential geometry.

Structure

We begin this thesis by presenting some preliminary material in Chapter 1, fixing notation, and introducing conventions followed throughout the rest of the work. In Chapter 2, we present the classical theory of operads and Koszul duality. We take great care to introduce concepts and state results in such a way that they hold when working with chain complexes over commutative rings. Chapter 3 comprises our joint work with Bruno Vallette [12] onSymmetric Homotopy Theory for Operads. Finally, in Chapter 4, we reproduce our workOn Weak Lie 3-Algebras[11].

Acknowledgements

The author wishes to express his appreciation to the Laboratoire J.A. Dieudonnรฉ of the University of Nice Sophia Antipolis; the Laboratoire Analyse, Gรฉomรฉtrie et Applications of the Universitรฉ Paris 13; and the Isaac Newton Institute for Mathematical Sciences for the invitations and the excellent working conditions. The author would also like to thank Chris Rogers and Dmitry Roytenberg for their insightful remarks and Yunhe Sheng for his inspiration. The author is most grateful to Chenchang Zhu for many helpful discussions and suggestions over the years, and to Bruno Vallette for his collaboration, valuable insights, and hospitality on numerous occasions.

(10)
(11)

Preliminaries

The aim of this chapter is to introduce notation and conventions used throughout this thesis.

We denote by๐คan arbitrary commutative unital ring and by๐ค-Modits category of modules. In practice, for any computations we will work over the integers๐ค = โ„ค. Since โ„คis the initial object in the category of unital commutative rings, this ensures that our results hold over any such ring๐ค.

1. Chain Complexes

Aโ„ค-gradedchain complex(๐‘‰, d)in๐ค-modulesis a collection of๐ค-modules{๐‘‰๐‘–}๐‘–โˆˆโ„ค

with๐ค-linear mapsd๐‘–: ๐‘‰๐‘– โ†’ ๐‘‰๐‘–โˆ’1satisfyingd๐‘–โˆ’1โˆ˜ d๐‘– = 0for all๐‘– โˆˆ โ„ค. The index๐‘–is referred to as(homological) degree, and we use the notation|๐‘ฃ| = ๐‘–for elements๐‘ฃ โˆˆ ๐‘‰๐‘–. Amorphism of chain complexes in๐ค-modules๐‘“: (๐‘‰, d๐‘‰) โ†’ (๐‘Š, d๐‘Š)is a collection of ๐ค-linear maps{๐‘“๐‘–: ๐‘‰๐‘– โ†’ ๐‘Š๐‘–}๐‘–โˆˆโ„ค, such thatd๐‘Š๐‘– โˆ˜ ๐‘“๐‘–= ๐‘“๐‘–โˆ’1โˆ˜ d๐‘‰๐‘– for all๐‘– โˆˆ โ„ค. The category of chain complexes in๐ค-Modis denoted by๐ค-Ch.

1.1. Abelian structure. It is a standard result that๐ค-Chis anabelian category withbiproductthe degreewise direct sum of๐ค-modules(๐‘‰ โŠ• ๐‘Š)๐‘–โ‰” ๐‘‰๐‘–โŠ• ๐‘Š๐‘–equipped with the componentwise differentiald๐‘‰ โŠ•๐‘Š(๐‘ฃ + ๐‘ค) = d๐‘‰(๐‘ฃ) + d๐‘Š(๐‘ค). Kernels and cokernels are computed degreewise, i.e.,ker(๐‘“)๐‘–=ker(๐‘“๐‘–)andcoker(๐‘“)๐‘–=coker(๐‘“๐‘–).

1.2. Symmetric monoidal structure. The category๐ค-Chcan be equipped with amonoidal product

(1) (๐‘‰ โŠ— ๐‘Š)๐‘–โ‰”โจ

๐‘—โˆˆโ„ค

๐‘‰๐‘—โŠ— ๐‘Š๐‘–โˆ’๐‘—, d๐‘‰ โŠ—๐‘Š(๐‘ฃ โŠ— ๐‘ค) = d๐‘‰(๐‘ฃ) โŠ— ๐‘ค + (โˆ’1)|๐‘ฃ|โ‹… ๐‘ฃ โŠ— d๐‘Š(๐‘ค) . Slightly abusing notation, the chain complex given by๐คin degree0and0in all other degrees is denoted again by๐ค. It acts as theunit objectwith respect to the monoidal product. The monoidal product satisfies a certain symmetry: we denote by๐œthe natural isomorphism with components given on homogeneous elementary tensors by (2) ๐œ๐‘‰ ,๐‘Š: ๐‘‰ โŠ— ๐‘Š โŸถ ๐‘Š โŠ— ๐‘‰ , ๐‘ฃ โŠ— ๐‘ค โŸผ (โˆ’1)|๐‘ฃ||๐‘ค|โ‹… ๐‘ค โŠ— ๐‘ฃ .

Clearly๐œ๐‘‰ ,๐‘Šโˆ˜ ๐œ๐‘Š ,๐‘‰=id, and together with the above monoidal structure this turns (๐ค-Ch, โŠ—, ๐ค)into asymmetric monoidal category.

Remark 1.2.1. The sign in the differential of the tensor product in Equation (1) is necessary to ensure thatd๐‘‰ โŠ—๐‘Šsquares to zero, and, as a consequence, the sign in the symmetry isomorphism in Equation (2) is required such that the components of๐œare

5

(12)

in fact morphisms of chain complexes. This is the basis for what is known as theKoszul sign rule, often phrased somewhat vaguely as: โ€œwhenever symbols๐‘ฅ,๐‘ฆof degree|๐‘ฅ|

resp.|๐‘ฆ|change their relative order, a factor(โˆ’1)|๐‘ฅ||๐‘ฆ|is introduced.โ€

1.3. Closed monoidal structure. By definition, the morphisms in๐ค-Chpreserve degrees and commute with the differentials. In addition, there exists another notion of so calledinternal homomorphisms, defined as follows. Lethom(๐‘‰, ๐‘Š)be the complex defined by

(3) hom(๐‘‰, ๐‘Š)๐‘–โ‰” โˆ

๐‘—โˆˆโ„ค

Hom(๐‘‰๐‘—, ๐‘Š๐‘–+๐‘—) , dhom(๐‘‰ ,๐‘Š )๐‘– (๐‘“)๐‘—โ‰” d๐‘Š๐‘–+๐‘—โˆ˜ ๐‘“๐‘—โˆ’ (โˆ’1)๐‘–โ‹… ๐‘“๐‘—โˆ’1โˆ˜ d๐‘—๐‘‰. The index๐‘–is referred to as the(homological) degreeof the internal morphisms๐‘“ โˆˆ hom(๐‘‰, ๐‘Š)๐‘–and we use the notation|๐‘“| = ๐‘–. The differential is sometimes written as

๐œ•or as the graded commutator[d, โฃ]. It is easy to verify that the functorโฃ โŠ— ๐‘‰is left adjoint tohom(๐‘‰, โฃ)for any๐‘‰and, hence,(๐ค-Ch, โŠ—, ๐ค)is aclosed symmetric monoidal category. Explicitly, the adjunction is given by the bijections

(4)

Hom(๐‘ˆ โŠ— ๐‘‰, ๐‘Š) Hom(๐‘ˆ,hom(๐‘‰, ๐‘Š))

๐‘“ (๐‘ข โ†ฆ (๐‘“(๐‘ข โŠ— โฃ): ๐‘ฃ โ†ฆ ๐‘“(๐‘ข โŠ— ๐‘ฃ)))

(๐‘ข โŠ— ๐‘ฃ โ†ฆ ๐‘”(๐‘ข)(๐‘ฃ)) ๐‘” .

โ†’ โ‰… โ†’

โ†ค โ†’

โ†’ โ†ค

Remark 1.3.1. The homomorphisms of chain complexes are precisely the0-cycles of the internal homomorphism complex,

Hom(๐‘‰, ๐‘Š) = { ๐‘“ โˆˆhom(๐‘‰, ๐‘Š)0โˆฃ ๐œ•(๐‘“) = 0 } =Hom(๐ค,hom(๐‘‰, ๐‘Š)) .

1.4. Enriched structure. Like any closed symmetric monoidal category,๐ค-Chis actuallyenrichedover itself [35]. The counit of the internal hom adjunction provides us withevaluation mapsfor internal homomorphisms: the identity morphisms

id:hom(๐‘‰, ๐‘Š) โ†’hom(๐‘‰, ๐‘Š) correspond to morphisms

(5) ev:hom(๐‘‰, ๐‘Š) โŠ— ๐‘‰ โ†’ ๐‘Š , ๐‘“ โŠ— ๐‘ฃ โ†ฆev(๐‘“, ๐‘ฃ) ,

which, for๐‘ฃ โˆˆ ๐‘‰๐‘–, evaluate toev(๐‘“, ๐‘ฃ) = ๐‘“๐‘–(๐‘ฃ). In particular, these allow us to define composition maps

(6) (โฃ โˆ˜ โฃ):hom(๐‘‰, ๐‘Š) โŠ—hom(๐‘ˆ, ๐‘‰) โ† โ†’ hom(๐‘ˆ, ๐‘Š) , for internal homomorphisms, corresponding to the successive evaluations (7) hom(๐‘‰, ๐‘Š) โŠ—hom(๐‘ˆ, ๐‘‰) โŠ— ๐‘ˆ idโŠ—evโ† โ†’ hom(๐‘‰, ๐‘Š) โŠ— ๐‘‰ โ† evโ†’ ๐‘Š .

Let๐‘“ โˆˆhom(๐‘‰, ๐‘Š),๐‘” โˆˆ hom(๐‘‰โ€ฒ, ๐‘Šโ€ฒ)be internal homomorphisms. Naturally, ๐‘“ โŠ— ๐‘”is an element inhom(๐‘‰, ๐‘Š) โŠ—hom(๐‘‰โ€ฒ, ๐‘Šโ€ฒ). We will however denote by๐‘“ โŠ— ๐‘” โˆˆ

(13)

hom(๐‘‰ โŠ— ๐‘‰โ€ฒ, ๐‘Š โŠ— ๐‘Šโ€ฒ)the image corresponding to the evaluation map

hom(๐‘‰, ๐‘‰โ€ฒ) โŠ—hom(๐‘Š, ๐‘Šโ€ฒ) โŠ— ๐‘‰ โŠ— ๐‘Šโˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’1โŠ—๐œโŠ—1 hom(๐‘‰, ๐‘‰โ€ฒ) โŠ— ๐‘‰ โŠ—hom(๐‘Š, ๐‘Šโ€ฒ) โŠ— ๐‘Š

evโŠ—ev

โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐‘‰โ€ฒโŠ— ๐‘Šโ€ฒ.

Explicitly, this means(๐‘“ โŠ— ๐‘”)(๐‘ฃ โŠ— ๐‘ค) = (โˆ’1)|๐‘”||๐‘ฃ|โ‹… ๐‘“(๐‘ฃ) โŠ— ๐‘”(๐‘ค)on homogeneous simple tensors in accordance with the Koszul sign rule.

Remark 1.4.1. Using this notation we can write the differential for the tensor product of chain complexes asd๐‘‰ โŠ—๐‘Š= d๐‘‰โŠ— 1 + 1 โŠ— d๐‘Š.

1.5. Suspension and desuspension functors. We denote by๐‘ ๐คthe chain com- plex given by(๐‘ ๐ค)1 = ๐คand(๐‘ ๐ค)๐‘– = 0for๐‘– โ‰  1. Using this notation, we define the suspension functor๐‘  โ‰” (๐‘ ๐ค โŠ— โฃ): ๐ค-Ch โ†’ ๐ค-Ch. Analogously, we denote by๐‘ โˆ’1๐คthe chain complex given by(๐‘ โˆ’1๐ค)โˆ’1 = ๐คand(๐‘ โˆ’1๐ค)๐‘– = 0 for๐‘– โ‰  โˆ’1. We define the desuspension functor๐‘ โˆ’1โ‰” (๐‘ โˆ’1๐ค โŠ— โฃ): ๐ค-Chโ†’ ๐ค-Ch.

In addition, we define the (internal)suspension isomorphism

โ†‘๐‘‰: ๐‘‰ โ†’ ๐‘ ๐‘‰ , โ†‘๐‘‰(๐‘ฃ) โ‰” ๐‘  โŠ— ๐‘ฃ , and the (internal)desuspension isomorphism

โ†“๐‘‰: ๐‘‰ โ†’ ๐‘ โˆ’1๐‘‰ , โ†“๐‘‰(๐‘ฃ) โ‰” ๐‘ โˆ’1โŠ— ๐‘ฃ .

Note that suspension and desuspension are1-cycles and(โˆ’1)-cycles, respectively. By abuse of notation, we will often denote the suspension and desuspension isomorphisms by๐‘ resp.๐‘ โˆ’1.

2. Permutations

We denote by๐•Š๐‘›thesymmetric groupon๐‘›elements, i.e., the group of bijections of the set๐‘› = {1, โ€ฆ , ๐‘›}. An element๐œŽ โˆˆ ๐•Š๐‘›is usually denoted by its values[๐œŽ(1), โ€ฆ, ๐œŽ(๐‘›)]

or as a product of cycles(๐‘–, ๐œŽ(๐‘–), โ€ฆ, ๐œŽ๐‘Ÿ(๐‘–)). Another way we depict symmetric group elements and their multiplication is using a graphical notation as indicated in Figure 1.

A permutation๐œŽis denoted by a diagram of strands connecting their๐‘–-th input to their

โ‹… = =

Figure 1. Example of multiplication:[213] โ‹… [231] = [132].

๐œŽ(๐‘–)-th output. Diagrams are read top to bottom, i.e., inputs are at the top, outputs are at the bottom. Multiplication๐œŽ โ‹… ๐œcan be computed graphically by placing the diagram for๐œon top of the diagram for๐œŽ.

(14)

2.1. Composition. It will sometimes be convenient to view the groups๐•Š๐‘›as one- object categories and denote by๐•Šthesymmetric groupoid๐•Š โ‰” โˆ ๐•Š๐‘›. In addition to the groupoid multiplication, we may define acompositionmap on๐•Šas follows. Given a permutation๐œŽ โˆˆ ๐•Š๐‘›and an๐‘›-tuple(๐œ1, โ€ฆ, ๐œ๐‘›)of permutations๐œ๐‘—โˆˆ ๐•Š๐‘˜๐‘—, we define their composition๐œŽ โˆ˜ (๐œ1, โ€ฆ, ๐œ๐‘›) โˆˆ ๐•Š๐‘˜1+โ‹ฏ+๐‘˜๐‘›by

(8) (๐œŽ โˆ˜ (๐œ1, โ€ฆ, ๐œ๐‘›))(๐‘–) = ๐œ๐‘—(๐‘– โˆ’ (๐‘˜1+ โ‹ฏ + ๐‘˜๐‘—โˆ’1)) + (๐‘˜๐œโˆ’1(1)+ โ‹ฏ + ๐‘˜๐œโˆ’1(๐œ(๐‘—)โˆ’1)) , for๐‘˜1+ โ‹ฏ + ๐‘˜๐‘—โˆ’1< ๐‘– โ‰ค ๐‘˜1+ โ‹ฏ + ๐‘˜๐‘—. In terms of graphical notation, this composition can be constructed as indicated in Figure 2 and described in the following. As the first step, for each๐‘— = 1, โ€ฆ, ๐‘›, we thicken the๐‘—-th strand of๐œŽto๐‘˜๐‘—parallel strands. In this way, we obtain a permutation of ๐•Š๐‘˜1+โ‹ฏ+๐‘˜๐‘› sometimes denoted๐œŽ(๐‘˜1, โ€ฆ, ๐‘˜๐‘›). The second step is to apply๐œ๐‘— locally to the corresponding ๐‘˜๐‘— strands. This amounts to multiplication of ๐œŽ(๐‘˜1, โ€ฆ, ๐‘˜๐‘›)by (๐œ1, โ€ฆ, ๐œ๐‘›) โˆˆ ๐•Š๐‘˜1ร— โ‹ฏ ร— ๐•Š๐‘˜๐‘›โŠ‚ ๐•Š๐‘˜1+โ‹ฏ+๐‘˜๐‘›.

โˆ˜ ( , , ) = โ‹…

= =

Figure 2. Example of composition:[213] โˆ˜ ([231], [1], [21]) = [342165].

A special case we will often encounter is the composition where all but one per- mutation๐œ๐‘—= ๐œ โˆˆ ๐•Š๐‘˜are the identity on a single strandid1โˆˆ ๐•Š1. This composition is called the๐‘—-th partial compositionand denoted

๐œŽ โˆ˜๐‘—๐œ โ‰” ๐œŽ โˆ˜ (id1, โ€ฆ,id1, ๐œ,id1, โ€ฆ,id1) โˆˆ ๐•Š๐‘›+๐‘˜โˆ’1.

In terms of graphical notation, it amounts to thickening the๐‘—-th strand of๐œŽto๐‘˜parallel strands and applying๐œthere, extended by the identity on all other strands.

โˆ˜2 = โ‹… = =

Figure 3. Example of partial composition:[21] โˆ˜2[231] = [4231].

2.2. Shuffle permutations. Let๐‘›1, โ€ฆ, ๐‘›๐‘šbe natural numbers such that๐‘› = ๐‘›1+

โ‹ฏ + ๐‘›๐‘š. We call๐œŽ โˆˆ ๐•Š๐‘›an(๐‘›1, โ€ฆ, ๐‘›๐‘š)-shuffle, if๐œŽ(๐‘–) < ๐œŽ(๐‘– + 1)for all1 โ‰ค ๐‘– < ๐‘›

(15)

except when๐‘– = ๐‘๐‘—โ‰” ๐‘›1+ โ‹ฏ + ๐‘›๐‘—for some1 โ‰ค ๐‘— < ๐‘š. We denote bySh(๐‘›1, โ€ฆ, ๐‘›๐‘š) โŠ‚ ๐•Š๐‘›the subset of these(๐‘›1, โ€ฆ, ๐‘›๐‘š)-shuffles. The shufflesSh(๐‘›1, โ€ฆ, ๐‘›๐‘š)form a set of representatives for the cosets๐•Š๐‘›/(๐•Š๐‘›1ร— โ‹ฏ ร— ๐•Š๐‘›๐‘š).

(a) Unreduced shuffle. (b) Reduced shuffle.

Figure 4. Examples of(3, 2, 2)-shuffle permutations.

We call an(๐‘›1, โ€ฆ, ๐‘›๐‘š)-shuffle๐œŽreduced, if๐œŽ(๐‘๐‘—) < ๐œŽ(๐‘๐‘—+1)for all1 โ‰ค ๐‘— < ๐‘š. The set of these reduced shuffles is denoted asSh(๐‘›1, โ€ฆ, ๐‘›๐‘š). The inverse of a (reduced) shuffle is called a(reduced) unshuffleand the set of these is denoted byShโˆ’1(๐‘›1, โ€ฆ, ๐‘›๐‘š) resp.Shโˆ’1(๐‘›1, โ€ฆ, ๐‘›๐‘š).

2.3. Representations. We use the notation๐ค[๐•Š๐‘›]for the group algebra and the (right)regular representationof๐•Š๐‘›. We denote by๐คโ‹…sgn๐‘›the one-dimensionalsignature represenationof๐•Š๐‘›, i.e., its underlying module is๐คand the adjacent transpositions๐œŽ๐‘–= (๐‘– ๐‘– + 1)act by multiplication withโˆ’1. We implicitely extend the group representations to representations of the group algebra by๐ค-linearity and write e.g.,๐‘ฅโˆ’๐œ+๐œ= โˆ’๐‘ฅ๐œ+ ๐‘ฅ๐œ.

3. Forests and Trees

Aforest๐น = (๐‘‹, ๐‘)consists of a finite setedge(๐น) โ‰” ๐‘‹ofedgeswith aparentmap ๐‘: ๐‘‹ โ†’ ๐‘‹, such that for some๐‘› โ‰ฅ 0the property๐‘(๐‘๐‘›(๐‘ฅ)) = ๐‘๐‘›(๐‘ฅ)holds for all edges ๐‘ฅ โˆˆ ๐‘‹. By definition, the set of edges comes with a partition๐‘‹ = โˆ๐‘–โ‰ฅ0๐‘‹๐‘–, where

๐‘‹0โ‰” { ๐‘ฅ โˆˆ ๐‘‹ โˆฃ ๐‘(๐‘ฅ) = ๐‘ฅ } and ๐‘‹๐‘–โ‰” { ๐‘ฅ โˆˆ ๐‘‹ โˆฃ ๐‘(๐‘๐‘–(๐‘ฅ)) = ๐‘๐‘–(๐‘ฅ) } โงต ๐‘‹๐‘–โˆ’1, and the parent map๐‘decomposes asโˆ๐‘–โ‰ฅ0๐‘๐‘–with๐‘๐‘–: ๐‘‹๐‘– โ†’ ๐‘‹๐‘–โˆ’1and๐‘0 =id. As a result, a forest is equivalent to a diagram๐‘‹0โ† โ‹ฏ โ† ๐‘‹๐‘›of finite sets where๐‘‹๐‘›โ‰  โˆ….

When the components๐‘๐‘–of the parent map are all surjective, we call๐นan๐‘›-forest.

We call elements ofroot(๐น) โ‰” ๐‘‹0rootsfor๐นand edges inedge(๐น)๐‘– โ‰” ๐‘‹๐‘–its๐‘–-th generation edges. Elements ofvert(๐น) โ‰” ๐‘(๐‘‹ โงต ๐‘‹0)are referred to asverticesand those of leaf(๐น) โ‰” ๐‘‹ โงต๐‘(๐‘‹ โงต๐‘‹0)asleaves. For a vertex๐‘“, we call elements ofin(๐‘“) โ‰” ๐‘โˆ’1(๐‘“)โงต๐‘‹0 itsinput edgesandout(๐‘“) โ‰” ๐‘“itsoutput edge. Atree๐‘‡ = (๐‘‹, ๐‘)is a particularly simple forest with a unique root resp. a diagram1 โ† ๐‘‹1โ† โ‹ฏ โ† ๐‘‹๐‘›of finite sets. When the ๐‘๐‘–are all surjective, we call๐‘‡an๐‘›-tree.

Note that in our terminology vertices appear only implicitly, and by definition they have at least one input and exactly one output edge. As a result, the roots and leavesโ€“together calledexternal edgesorthe boundaryโ€“of a forest are incident on fewer than two vertices. The remaining edges are incident on two vertices and calledinternal edges. A more general definition ofrooted trees with boundaryallowing for0input vertices can be found in [37]. For our purposes, this simpler but more restrictive version will suffice.

(16)

(a) Trivial tree. (b) Corolla.

๐‘ง1 ๐‘ง2

๐‘ฆ1 ๐‘ฆ2 ๐‘ฆ3 ๐‘ฅ (c) Tree with inner edge.

Figure 5. Examples of trees

Examples. (i) The empty forest๐‘‹ = โˆ…has no edges and thus no vertices. Since it has no root, it is not a tree. (ii) The trivial tree๐‘‹ = 1consists of a single edge and no vertices (Figure 5a). Its only edge is both its root, as well as a leaf. (iii) The corolla ๐‘‹ = 1 โจฟ ๐‘‹1with๐‘(๐‘ฅ) = 1for all๐‘ฅ โˆˆ ๐‘‹has a single vertex whose set of input edges is๐‘‹1and whose output edge is the root (Figure 5b). Note that๐‘‹1 โ‰  โˆ…is assumed.

(iv) See Figure 5c. The set of edges for this tree isedge(๐‘‡) = {๐‘ฅ, ๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3, ๐‘ง1, ๐‘ง2}and the parent map is given by๐‘(๐‘ฅ) = ๐‘ฅ,๐‘(๐‘ฆ๐‘–) = ๐‘ฅ, and๐‘(๐‘ง๐‘–) = ๐‘ฆ1. This makes๐‘ฅthe root, leaf(๐‘‡) = {๐‘ง1, ๐‘ง2, ๐‘ฆ2, ๐‘ฆ3}the leaves, and๐‘ฆ1the only internal edge for๐‘‡.

Remark 3.0.1. By drawing a tree๐‘‡in the plane such as we have done in Figure 5, we place a (total) order on the incoming edgesin(๐‘“)at each vertex๐‘“ โˆˆvert(๐‘‡). Such a choice is called aplanar structure(see Section 3.4 for details) and a tree with fixed choice of planar structure is known as aplanar tree. When working with nonplanar trees, we disregard this additional structure.

3.1. Morphisms and subtrees. Let๐น = (๐‘‹, ๐‘)and๐บ = (๐‘Œ , ๐‘ž)be forests. An isomorphism of forests๐œ‘: ๐น โ†’ ๐บis a bijection of edges๐œ‘: ๐‘‹ โ†’ ๐‘Œcompatible with the parent maps: ๐œ‘ โˆ˜ ๐‘ = ๐‘ž โˆ˜ ๐œ‘. We denote byForest(resp.Tree) the category of forests (resp. trees) with isomorphisms as morphisms and by๐‘›-Forest(resp.๐‘›-Tree) their full subcategories of๐‘›-forests (resp.๐‘›-trees).

In case๐‘† = ๐น = (๐‘‹, ๐‘)is actually a tree, we define another type of morphism. An inclusion of a tree๐œ„: ๐‘† โ†ช ๐บis an injective map๐œ„: ๐‘‹ โ†ช ๐‘Œof edges, such that

(i) for๐‘ฅ โˆˆedge(๐‘†) โงต 1a non-root edge:๐œ„(๐‘(๐‘ฅ)) = ๐‘ž(๐œ„(๐‘ฅ)); and (ii) for๐‘“ โˆˆvert(๐‘†)any vertex:in(๐œ„(๐‘“)) โŠ‚ ๐œ„(๐‘‹).

Two inclusions๐œ„: ๐‘† โ†ช ๐บand๐œ„โ€ฒ: ๐‘†โ€ฒ โ†ช ๐บare considered equivalent if there exists an isomorphism๐œ‘: ๐‘† โ†’ ๐‘†โ€ฒsuch that๐œ„โ€ฒโˆ˜ ๐œ‘ = ๐œ„. Asubtree๐‘† โŠ‚ ๐บis an equivalence class of inclusions๐‘† โ†ช ๐บ.

Let๐น = (๐‘‹, ๐‘)be a forest and๐‘Ž โˆˆ ๐‘‹a marked edge. The subset ๐‘‹|๐‘Ž= { ๐‘ฅ โˆˆ ๐‘‹ โˆฃ โˆƒ๐‘› โ‰ฅ 0: ๐‘๐‘›(๐‘ฅ) = ๐‘Ž } with induced parent map

๐‘|๐‘Ž: ๐‘‹|๐‘ŽโŸถ ๐‘‹|๐‘Ž, ๐‘ฅ โŸผ {๐‘Ž , if๐‘ฅ = ๐‘Ž , ๐‘(๐‘ฅ) , otherwise,

(17)

forms a subtree๐น|๐‘ŽโŠ‚ ๐น. Given any collection{ ๐น๐‘Ž= (๐‘‹๐‘Ž, ๐‘๐‘Ž) }๐‘Žโˆˆ๐ดof trees, their disjoint union is a forest๐‘‹ = โˆ ๐‘‹๐‘Žwith๐‘‹0= ๐ด. In particular, for any forest๐น = (๐‘‹, ๐‘), we have a canonical isomorphism

๐น โ‰… โˆ

๐‘Žโˆˆ๐‘‹0

๐น|๐‘Ž.

3.2. Grafting of trees. Given a tree๐‘†with a marked leaf๐‘™ โˆˆleaf(๐‘†)and a second tree๐‘‡, thegraftingof๐‘†with๐‘‡at๐‘™is denoted by๐‘† โˆ˜๐‘™๐‘‡and obtained by identifying the marked leaf๐‘™of๐‘†with the root of๐‘‡as shown in Figure 6. Formally, given๐‘† = (๐‘‹๐‘†, ๐‘๐‘†), ๐‘‡ = (๐‘‹๐‘‡, ๐‘๐‘‡), and a choice of leaf๐‘™ โˆˆleaf(๐‘†), we define the grafting๐‘† โˆ˜๐‘™๐‘‡of๐‘†with๐‘‡ at leaf๐‘™as follows:

๐‘‹๐‘†โˆ˜๐‘™๐‘‡โ‰” (๐‘‹๐‘†โจฟ ๐‘‹๐‘‡)/(๐‘™ = 1๐‘‡) , ๐‘๐‘†โˆ˜๐‘™๐‘‡([๐‘ฅ]) โ‰”

โŽงโŽช

โŽจโŽช

โŽฉ

๐‘๐‘†(๐‘ฅ) , if๐‘ฅ โˆˆ ๐‘‹๐‘†, ๐‘๐‘†(๐‘™) , if๐‘ฅ = 1๐‘‡, ๐‘๐‘‡(๐‘ฅ) , if๐‘ฅ โˆˆ ๐‘‹๐‘‡โงต 1๐‘‡, where1๐‘‡denotes the root of๐‘‡.

โŽ›

โŽœ

โŽœ

โŽœ

โŽ

๐‘™ ,

โŽž

โŽŸ

โŽŸ

โŽŸ

โŽ 

โŸผ

Figure 6. Grafting of trees.

3.3. Contraction of subtrees. Let๐‘‡be a tree and let๐œ„: ๐‘† โ†ช ๐‘‡represent a subtree of๐‘† โŠ‚ ๐‘‡. A subtree is uniquely determined by its set of verticesvert(๐‘†) โŠ‚ vert(๐‘‡).

Thecontractionof๐‘†in๐‘‡is denoted๐‘‡/๐‘†and formed by identifying the vertices of๐‘†as indicated in Figure 7. In terms of edges, this amounts to removing the inner edges of๐‘† and appropriately redefining the parent map on leaves of๐‘†as follows:

๐‘‹๐‘‡/๐‘†โ‰” ๐‘‹๐‘‡โงต ๐œ„(inner edges of๐‘†) , ๐‘๐‘‡/๐‘†(๐‘ฅ) โ‰” {๐œ„(1๐‘†) , if๐‘ฅ โˆˆ ๐œ„(leaf(๐‘†)) , ๐‘๐‘‡(๐‘ฅ) , otherwise.

โŸผ

Figure 7. Contraction of the marked subtree.

Since all of our morphisms are injective, we cannot expect to obtain a quotient map ๐‘† โ†ช ๐‘‡ โ†  ๐‘‡/๐‘†. This ad-hoc construction, however, will be enough for our purposes.

(18)

3.4. Planar structure. Let๐‘‡ = (๐‘‹, ๐‘)be a tree. Aplanar structureon๐‘‡is a collection of ordering bijections๐œ’(๐‘“):in(๐‘“) โ†’ ๐‘›for all๐‘“ โˆˆvert(๐‘‡). A tree๐‘‡together with a choice of planar structure is called aplanar tree. Morphisms๐œ‘: ๐‘† โ†’ ๐‘‡of such trees are assumed to respect the planar structure in the sense that๐œ’๐‘‡(๐œ‘(๐‘“)) โˆ˜ ๐œ‘ = ๐œ’๐‘†(๐‘“).

Equivalently, a planar tree is a diagram1 โ† ๐‘‹1โ† โ‹ฏ โ† ๐‘‹๐‘›in the categoryFOrd of finite ordered sets and order-preserving maps. Similarly, we define aplanar forestas a diagram๐‘‹0โ† โ‹ฏ โ† ๐‘‹๐‘›inFOrd.

3.5. Coloring. Let๐นbe a forest and๐ถa fixed set whose elements we refer to as colors. A๐ถ-coloringfor๐นis a map๐‘:edge(๐น) โ†’ ๐ถ. A forest equipped with a๐ถ-coloring is called a๐ถ-colored forest. Morphisms๐œ‘: ๐น โ†’ ๐บof such colored forests are assumed to be compatible with the colorings in the sense that๐‘๐บโˆ˜ ๐œ‘ = ๐‘๐น.

In the colored context, there exist trivial trees ๐‘for each color๐‘ โˆˆ ๐ถand there are no morphisms between trivial trees of different colors. The constructions on trees we have seen earlier carry over to the colored case with the following caveat: we can only graft trees when the colors of their relevant leaf and root match.

(19)

Operads

In this chapter, we recall basic definitions and results of the theory of algebraic operads. For a textbook introduction to algebraic operads we refer the reader to [46], upon which large parts of this chapter are heavily based. The constructions here are given in enough generality to obtain results for operads in chain complexes over a commutative ring๐ค.

This chapter is organized as follows. In Section 1, we introduce various categories of collections underlying different types of operads. In Section 2, we give the basic definitions of operads as well as their modules and algebras. We consider some construc- tions, including that of free operads. In Section 3, we introduce the dual concepts for cooperads. In Section 4, we recall the classical cobarโ€“bar adjunction between cooperads and operads and the resolutions it provides. In Section 5, we define the cobarโ€“bar ad- junction for algebras over an operad. Its counit provides us with resolutions for operadic algebras. In Section 6, we give a treatment of the theory of homotopy algebras from an operadic perspective. Finally, in Section 7, we give a short overview of the classical Koszul duality theory for quadratic operads and its curved Koszul duality extension for quadraticโ€“linearโ€“constant operads.

1. Collections

We define categories ofcollectionsas modules over groupoids of 1-trees. Recall that for a groupoid๐’ข, its category of left (resp. right) modules in๐’žis the functor category [๐’ข, ๐’ž](resp.[๐’ขop, ๐’ž]). We work in the differential graded framework, i.e. we take the category๐’žto be the category๐ค-Chof chain complexes.

The basic case we consider is the category ofdg symmetric collectionsor simplydg collections

dg Coll= [(1-Tree)op, ๐ค-Ch] . In addition, the categories

dg ns Coll= [(planar 1-Tree)op, ๐ค-Ch]

ofdg nonsymmetricordg ns collectionsand

dg๐ถ-col Coll= [(๐ถ-colored 1-Tree)op, ๐ค-Ch]

ofdg๐ถ-colored collectionsplay an important role. For now, we will give definitions and introduce constructions only for basic dg collections in order to reduce repetition. In

13

(20)

Section 1.4 (resp. Section 1.5), we go over the necessary changes for dg ns collections (resp. dg๐ถ-colored collections).

Since๐ค-Chis a monoidal category, we can equip the category of dg symmetric collections with the pointwise abelian and symmetric monoidal structures, i.e. for dg collections๐‘€,๐‘we define

(๐‘€ โŠ• ๐‘)[1 โ† ๐‘‹] โ‰” ๐‘€[1 โ† ๐‘‹] โŠ• ๐‘[1 โ† ๐‘‹] , (9)

(๐‘€ โŠ— ๐‘)[1 โ† ๐‘‹] โ‰” ๐‘€[1 โ† ๐‘‹] โŠ— ๐‘[1 โ† ๐‘‹] . (10)

Given another dg collection๐พwith a morphism (natural transformation)๐‘”: ๐‘€ โŠ— ๐‘ โ†’ ๐พ, its components satisfy

Hom((๐‘€ โŠ— ๐‘)[1 โ† ๐‘‹], ๐พ[1 โ† ๐‘‹]) โ‰œHom(๐‘€[1 โ† ๐‘‹] โŠ— ๐‘[1 โ† ๐‘‹], ๐พ[1 โ† ๐‘‹])

โ‰…Hom(๐‘€[1 โ† ๐‘‹],hom(๐‘[1 โ† ๐‘‹], ๐พ[1 โ† ๐‘‹])) . We define a dg collectionhom(๐‘, ๐พ)pointwise by,

(11) hom(๐‘, ๐พ)[1 โ† ๐‘‹] โ‰”hom(๐‘[1 โ† ๐‘‹], ๐พ[1 โ† ๐‘‹]) and on morphisms๐œ‘op: (1 โ† ๐‘‹) โŸถ (1 โ† ๐‘‹โ€ฒ)in1-Treeop,

hom(๐‘, ๐พ)[๐œ‘op]:hom(๐‘, ๐พ)[1 โ† ๐‘‹] โŸถhom(๐‘, ๐พ)[1 โ† ๐‘‹โ€ฒ] is given by conjugation:

hom(๐‘, ๐พ)[๐œ‘op](๐‘“) = ๐พ[๐œ‘op] โˆ˜ ๐‘“ โˆ˜ ๐‘[๐œ‘โˆ’1,op] . With this definition, the components๐‘”[1 โ† ๐‘‹]correspond to

โ„Ž[1 โ† ๐‘‹]: ๐‘€[1 โ† ๐‘‹] โŸถhom(๐‘, ๐พ)[1 โ† ๐‘‹]

and these form a natural transformationโ„Ž: ๐‘€ โ†’hom(๐‘, ๐พ). In fact, this isomorphism Hom(๐‘€ โŠ— ๐‘, ๐พ) โ‰…Hom(๐‘€,hom(๐‘, ๐พ))

is natural in๐‘€,๐‘, and๐พ, and thushom(โฃ, โฃ)provides an internal hom functor with respect to the pointwise tensor productโฃ โŠ— โฃon dg collections.

1.1. Composite product. We equip the category of dg collections with another monoidal product called thecomposite product. To do so, we first extend the domain category of a collection๐‘from1-Treeopto1-Forestopvia

(12) ๐‘[๐ต โ† ๐‘‹] โ‰” colim

๐œ’:๐ตโ†’๐‘š๐‘[1 โ† ๐‘‹1] โŠ— โ‹ฏ โŠ— ๐‘[1 โ† ๐‘‹๐‘š] ,

where the colimit is taken over bijections๐œ’: ๐ต โ†’ ๐‘š. We denote here by๐‘๐‘–the unique element of๐ตfor which๐œ’(๐‘๐‘–) = ๐‘–, and write๐‘‹๐‘–as shorthand for๐‘‹๐‘๐‘–โ‰” ๐‘โˆ’1(๐‘๐‘–) โŠ‚ ๐‘‹with parent map๐‘. The colimit can be computed as

(13) ๐‘[๐ต โ† ๐‘‹] = ( โจ

๐œ’:๐ตโ†’๐‘š

๐‘[1 โ† ๐‘‹1] โŠ— โ‹ฏ โŠ— ๐‘[1 โ† ๐‘‹๐‘š])

๐•Š๐‘š

,

(21)

where the๐•Š๐‘š-action is given by

๐œŽ โ‹… (๐œ’, ๐œˆ1โŠ— โ‹ฏ โŠ— ๐œˆ๐‘š) = ยฑ(๐œŽ๐œ’, ๐œˆ๐œโˆ’1(1)โŠ— โ‹ฏ โŠ— ๐œˆ๐œโˆ’1(๐‘š))

with the appropriate Koszul sign. For a morphism๐œ‘op: (๐ต โ† ๐‘‹) โŸถ (๐ตโ€ฒ โ† ๐‘‹โ€ฒ) of1-Forestop, we define๐‘[๐œ‘op]to be the universal morphism mapping a component ๐œ’: ๐ต โ†’ ๐‘što๐œ’โ€ฒโ‰” ๐œ‘โˆ—๐œ’: ๐ตโ€ฒโ†’ ๐‘šby application of

๐‘[๐œ‘1op] โŠ— โ‹ฏ โŠ— ๐‘[๐œ‘op๐‘š] , where๐œ‘๐‘–are the appropriate restrictions of๐œ‘.

With this new notation in place, we define thecomposite productof dg collections ๐‘€,๐‘by

(14) (๐‘€ โˆ˜ ๐‘)[1 โ† ๐‘‹] โ‰” colim

1โ†๐ตโ†๐‘‹

โˆˆ2-Tree(๐‘‹)op

๐‘€[1 โ† ๐ต] โŠ— ๐‘[๐ต โ† ๐‘‹] ,

where the category2-Tree(๐‘‹)consists of 2-trees with a given set๐‘‹of leaves and mor- phisms acting identically on the leaves. Note that this can be interpreted as a colimit over the slice category2-Treeop/(1 โ† ๐‘‹).

We now provide a simple and explicit way of computing the colimit above. Consider apartition๐‘ƒof๐‘‹, i.e. a set of disjoint nonempty subsets covering๐‘‹. Such a partition defines a 2-tree1 โ† ๐‘ƒ โ† ๐‘‹where the map from๐‘‹to๐‘ƒsends each element to its containing subset. On the other hand, any 2-tree1 โ† ๐ต โ† ๐‘‹gives rise to a partition ๐‘ƒ โ‰” { ๐‘‹๐‘โˆฃ ๐‘ โˆˆ ๐ต }of๐‘‹, and any two isomorphic objects of2-Tree(๐‘‹)define the same partition๐‘ƒ. In other words, the discrete categoryPart(๐‘‹)provides a skeleton for the category2-Tree(๐‘‹). As a result, the composite product๐‘€ โˆ˜ ๐‘of dg collections๐‘€,๐‘can be computed as

(๐‘€ โˆ˜ ๐‘)[1 โ† ๐‘‹] = โจ

๐‘ƒโˆˆPart(๐‘‹)

๐‘€[1 โ† ๐‘ƒ] โŠ— ๐‘[๐‘ƒ โ† ๐‘‹]

= โจ

๐‘ƒโˆˆPart(๐‘‹)๐‘€[1 โ† ๐‘ƒ] โŠ— ( โจ

๐œ’:๐‘ƒโ†’๐‘š

๐‘[1 โ† ๐‘ƒ1] โŠ— โ‹ฏ โŠ— ๐‘[1 โ† ๐‘ƒ๐‘š])

๐•Š๐‘š

, where we used the notation๐‘ƒ๐‘–โ‰” ๐œ’โˆ’1(๐‘–). A typical element of(๐‘€ โˆ˜ ๐‘)[1 โ† ๐‘‹]is denoted as๐œ‡ โˆ˜๐œ’(๐œˆ1, โ€ฆ, ๐œˆ๐‘š).

We define a dg collection๐ผby

๐ผ[1 โ† ๐‘‹] โ‰” {๐ค , if๐‘‹ โ‰… 1 , 0 , otherwise.

This provides a unit for the composite product and turns(dg Coll, โˆ˜, ๐ผ)into a monoidal category. The monoidal structure is nonsymmetric, and the associativity isomorphisms (๐‘€ โˆ˜ ๐‘) โˆ˜ ๐พ โ‰… ๐‘€ โˆ˜ (๐‘ โˆ˜ ๐พ)involve reordering elements (see Figure 1) and hence the Koszul sign rule.

(22)

1 2

4 5

3

6 7

โŸท (ยฑ)

1 2

3 4

5

6 7

Figure 1. Associativity of the composite product.

1.2. Infinitesimal composite product. Note that the composite product isnot linear in its right argument, i.e. in general

๐‘€ โˆ˜ (๐‘1โŠ• ๐‘2) โ‰  ๐‘€ โˆ˜ ๐‘1โŠ• ๐‘€ โˆ˜ ๐‘2

for dg collections๐‘€,๐‘1,๐‘2. We introduce here the notation๐‘€ โˆ˜ (๐‘1; ๐‘2)for the sub dg collection that is linear in๐‘2, i.e. that is spanned by elements๐œ‡ โˆ˜๐œ’(๐œˆ1, โ€ฆ, ๐œˆ๐‘š)where ๐œˆ๐‘– โˆˆ ๐‘2 for exactly one of๐œˆ1, โ€ฆ, ๐œˆ๐‘šand๐œˆ๐‘— โˆˆ ๐‘1for๐‘— โ‰  ๐‘–. More precisely, one might define a functor(๐‘1; ๐‘2)on 1-forests with a marked tree:

(๐‘1; ๐‘2)[๐‘ โˆˆ ๐ต โ† ๐‘‹] โ‰” ๐‘1[๐ต โงต ๐‘ โ† ๐‘‹ โงต ๐‘‹๐‘] โŠ— ๐‘2[1 โ† ๐‘‹๐‘] and extend it to give

(๐‘1; ๐‘2)[๐ต โ† ๐‘‹] =โจ

๐‘โˆˆ๐ต

๐‘1[๐ต โงต ๐‘ โ† ๐‘‹ โงต ๐‘‹๐‘] โŠ— ๐‘2[1 โ† ๐‘‹๐‘]

โ‰… ( โจ

๐œ’:๐ตโ†’๐‘› ๐‘›

โจ๐‘–=1

๐‘1[1 โ† ๐‘‹1] โŠ— โ‹ฏ โŠ— ๐‘2[1 โ† ๐‘‹๐‘–] โŠ— โ‹ฏ โŠ— ๐‘1[1 โ† ๐‘‹๐‘›])

๐•Š๐‘›

. Theinfinitesimal composite productcan then be defined as

๐‘€ โˆ˜ (๐‘1; ๐‘2)[1 โ† ๐‘‹] โ‰” colim

1โ†๐ตโ†๐‘‹

โˆˆ2-Tree(๐‘‹)op

๐‘€[1 โ† ๐ต] โŠ— (๐‘1; ๐‘2)[๐ต โ† ๐‘‹] .

As shorthand notation, we introduce๐‘€ โˆ˜(1)๐‘ โ‰” ๐‘€ โˆ˜ (๐ผ; ๐‘)since it appears so frequently, and we write๐œ‡ โŠ—๐œ’,๐‘–๐œˆfor๐œ‡ โˆ˜๐œ’(1, โ€ฆ, 1, ๐œˆ, 1, โ€ฆ, 1)with๐œˆin๐‘–-th place.

On morphisms, we introduce two types of infinitesimal composite product. Given ๐‘“: ๐‘€ โ†’ ๐‘€โ€ฒ,๐‘”1: ๐‘1โ†’ ๐‘1โ€ฒ, and๐‘”2: ๐‘2 โ†’ ๐‘2โ€ฒ, we define๐‘“ โˆ˜ (๐‘”1; ๐‘”2)as the composition

๐‘€ โˆ˜ (๐‘1; ๐‘2) ๐‘€โ€ฒโˆ˜ (๐‘1โ€ฒ; ๐‘2โ€ฒ)

๐‘€ โˆ˜ (๐‘1โŠ• ๐‘2) ๐‘€โ€ฒโˆ˜ (๐‘1โ€ฒโŠ• ๐‘2โ€ฒ) .

โ†ฉโ†’

โ† โ†’

๐‘“โˆ˜(๐‘”1;๐‘”2)

โ† โ†’

๐‘“โˆ˜(๐‘”1โŠ•๐‘”2)

โ† โ† 

Consider now๐‘“: ๐‘€ โ†’ ๐‘€โ€ฒand๐‘”: ๐‘ โ†’ ๐‘โ€ฒ. We denote by๐‘“ โˆ˜(1)๐‘”the morphism๐‘“ โˆ˜ (1; ๐‘”), i.e.(๐‘“ โˆ˜(1)๐‘”)(๐œ‡ โŠ—๐œ’,๐‘–๐œˆ) = (โˆ’1)|๐‘”||๐œ‡|โ‹… ๐‘“(๐œ‡) โŠ—๐œ’,๐‘–๐‘”(๐œˆ). Given the same data, we also define a morphism

๐‘“ โˆ˜โ€ฒ๐‘”: ๐‘€ โˆ˜ ๐‘ โŸถ ๐‘€ โˆ˜ (๐‘; ๐‘)โˆ’โˆ’โˆ’โˆ’โ†’ ๐‘€๐‘“โˆ˜(1)๐‘” โ€ฒโˆ˜ (๐‘; ๐‘โ€ฒ) , and when๐‘โ€ฒ= ๐‘we implicitly postcompose with

๐‘€โ€ฒโˆ˜ (๐‘; ๐‘),โŸถ ๐‘€โ€ฒโˆ˜ (๐‘ โŠ• ๐‘) โŸถโ†’ ๐‘€ โˆ˜ ๐‘ ,

(23)

where the second map is just addition. In this way we obtain๐‘“ โˆ˜โ€ฒ๐‘”: ๐‘€ โˆ˜ ๐‘ โ†’ ๐‘€โ€ฒโˆ˜ ๐‘.

Remark 1.2.1. With the above notation, we can write the differential of the full com- posite product asd๐‘€โˆ˜๐‘= d๐‘€โˆ˜ 1 + 1 โˆ˜โ€ฒd๐‘.

1.3. ๐•Š-Modules. Let๐•Š โ‰” โˆ๐‘›โ‰ฅ1๐•Š๐‘›be the symmetric groupoid and denote by dg๐•Š-Mod= [๐•Šop, ๐ค-Ch]

the category ofright๐•Š-modules in๐ค-Chordg๐•Š-modulesfor short. Explicitly, adg๐•Š- module๐‘€is a collection of chain complexes๐‘€(๐‘›)equipped with right๐•Š๐‘›-actions for eacharity๐‘› โ‰ฅ 1. Amorphism of dg๐•Š-modules๐‘“: ๐‘€ โ†’ ๐‘is a collection of equivariant morphisms๐‘“(๐‘›): ๐‘€(๐‘›) โ†’ ๐‘(๐‘›)of chain complexes. We will often write a dg๐•Š-module as a sequence(๐‘€(1), ๐‘€(2), โ€ฆ).

The symmetric groupoid๐•Šprovides a skeleton for the category1-Treevia the obvious embedding functor mapping๐‘› โˆˆ ๐•Što the 1-tree1 โ† ๐‘›. In the following, we use this to equipdg๐•Š-Modwith extra structure in such a way that it becomes equivalent to dg Collin the sense of Lemmas 1.3.1 and 1.3.2.

As for dg collections, the category of dg๐•Š-modules inherits the abelian and sym- metric monoidal structure of๐ค-Ch, i.e. for dg๐•Š-modules๐‘€,๐‘we have

(๐‘€ โŠ• ๐‘)(๐‘›) โ‰” ๐‘€(๐‘›) โŠ• ๐‘(๐‘›) , (15)

(๐‘€ โŠ— ๐‘)(๐‘›) โ‰” ๐‘€(๐‘›) โŠ— ๐‘(๐‘›) , (16)

with the diagonal๐•Š๐‘›-action. Given another dg๐•Š-module๐พ, we define (17) hom(๐‘, ๐พ)(๐‘›) โ‰”hom(๐‘(๐‘›), ๐พ(๐‘›))

with๐•Š๐‘›-action given by

hom(๐‘, ๐พ)(๐œŽop): ๐‘“ โŸผ ๐‘“๐œ= ๐พ(๐œŽop) โˆ˜ ๐‘“ โˆ˜ ๐‘(๐œŽโˆ’1,op)

resp.๐‘“๐œ(๐œˆ) = ๐‘“(๐œˆ โ‹… ๐œŽโˆ’1) โ‹… ๐œŽ. This again gives an internal homomorphism adjunction (18) Hom(๐‘€ โŠ— ๐‘, ๐พ) โ‰…Hom(๐‘€,hom(๐‘, ๐พ)) .

Lemma 1.3.1. The categoriesdg๐•Š-Modof dg๐•Š-modules anddg Collof dg collections are equivalent.

Proof. Precomposition of dg collections with the embedding๐•Šop โ†ช 1-Treeop defines a restriction functor and this functor admits a left adjoint

(โฃ) โˆถหœ dg๐•Š-Mod= [๐•Šop, ๐ค-Ch] โ† โ‡€ โ‡€โ† [1-Treeop, ๐ค-Ch] =dg Collโˆถ (โฃ)|๐•Šop defined as follows. For an๐•Š-module๐‘€, consider its left Kan extension๐‘€หœas in the diagram

๐•Šop ๐ค-Ch

1-Treeop .

โ† ๐‘€ โ†’

โ†ฉโ†’ โ† โ†’

๐‘€หœ

โ‡’ โ‡

๐œ‚

(24)

Since๐•Šopis small and๐ค-Chis cocomplete, these Kan extensions exist for all๐•Š-modules ๐‘€, and they can be computed pointwise as

(19) ๐‘€[1 โ† ๐‘‹] =หœ colim

๐œ’:๐‘‹โ†’๐‘›๐‘€(๐‘›) = ( โจ

๐œ’:๐‘‹โ†’๐‘›

๐‘€(๐‘›))

๐•Š๐‘›

,

where the colimit is taken over the comma category(๐•Šop โ†“1-Treeop). The universal property of the Kan extension gives a bijection

Nat( หœ๐‘€, ๐‘) โ‰…Nat(๐‘€, ๐‘|๐•Šop) ,

thereby proving the adjunction. Since๐•Šopโ†ช1-Treeopis fully faithful, the components ๐œ‚๐‘› are isomorphisms. This proves that the adjunction is in fact an equivalence of

categories. โ—ผ

We now equip the category of dg๐•Š-modules with acomposite productas we did for dg collections. For dg๐•Š-modules๐‘€,๐‘, we define

(20) (๐‘€ โˆ˜ ๐‘)(๐‘›) โ‰”โจ

๐‘šโ‰ฅ1

๐‘€(๐‘š) โŠ—๐•Š๐‘šโจ

๐‘›=๐‘›1+โ‹ฏ+๐‘›๐‘š

Ind๐•Š๐•Š๐‘›

๐‘›1ร—โ‹ฏร—๐•Š๐‘›๐‘š(๐‘(๐‘›1) โŠ— โ‹ฏ โŠ— ๐‘(๐‘›๐‘š)) , where the (left)๐•Š๐‘š-action on the right is given by transposing factors while honoring the Koszul sign rule. The๐•Š-module๐ผ = (๐ค, 0, โ€ฆ)acts as a (two-sided)unitwith respect to the composite product. This turns the category of dg๐•Š-modules into amonoidal category(dg ๐•Š-Mod, โˆ˜, ๐ผ).

Note that, since the unshufflesShโˆ’1(๐‘›1, โ€ฆ, ๐‘›๐‘š)form a set of representatives for the right cosets๐•Š๐‘›/(๐•Š๐‘›1ร— โ‹ฏ ร— ๐•Š๐‘›๐‘š), the composite product admits an expansion

(๐‘€ โˆ˜ ๐‘)(๐‘›) =โจ

๐‘šโ‰ฅ1

๐‘€(๐‘š) โŠ—๐•Š๐‘šโจ

๐‘›=๐‘›1+โ‹ฏ+๐‘›๐‘š

๐‘(๐‘›1) โŠ— โ‹ฏ โŠ— ๐‘(๐‘›๐‘š) โŠ— ๐ค[Shโˆ’1(๐‘›1, โ€ฆ, ๐‘›๐‘š)] , (21)

and, since the๐•Š๐‘š-action on the right is free,

=โจ

๐‘›=๐‘›1๐‘šโ‰ฅ1+โ‹ฏ+๐‘›๐‘š

๐‘€(๐‘š) โŠ— ๐‘(๐‘›1) โŠ— โ‹ฏ โŠ— ๐‘(๐‘›๐‘š) โŠ— ๐ค[Shโˆ’1(๐‘›1, โ€ฆ, ๐‘›๐‘š)] . (22)

We denote an element๐œ‡ โŠ—๐•Š๐‘š๐œˆ1โŠ— โ‹ฏ โŠ— ๐œˆ๐‘šโŠ— ๐œŽof(๐‘€ โˆ˜ ๐‘)(๐‘›)by๐œ‡ โˆ˜ (๐œˆ1, โ€ฆ, ๐œˆ๐‘š)๐œ. Lemma 1.3.2. The adjoint equivalence

(โฃ) โˆถหœ dg๐•Š-Mod dg Collโˆถ (โฃ)|๐•Šop

โ† โ‡€โ†

โ‡€

of Lemma 1.3.1 is an equivalence of monoidal categories.

Proof. It is enough to show that(โฃ)|๐•Šopis strong monoidal, i.e. admits a natural isomorphism

๐œ™: (โฃ)|๐•Šopโˆ˜ (โฃ)|๐•ŠopโŸน (โฃ โˆ˜ โฃ)|๐•Šop. For dg symmetric collections๐‘€,๐‘, we have

(๐‘€|๐•Šopโˆ˜ ๐‘|๐•Šop)(๐‘›)

=โจ

๐‘šโ‰ฅ1

๐‘€[1 โ† ๐‘š] โŠ—๐•Š๐‘šโจ

๐‘›=๐‘›1+โ‹ฏ+๐‘›๐‘š

Ind๐•Š๐•Š๐‘›

๐‘›1ร—โ‹ฏร—๐•Š๐‘›๐‘š(๐‘[1 โ† ๐‘›1] โŠ— โ‹ฏ โŠ— ๐‘[1 โ† ๐‘›๐‘š]) ,

(25)

(๐‘€ โˆ˜ ๐‘)|๐•Šop(๐‘›)

=โจ

๐‘ƒโˆˆPart(๐‘›)๐‘€[1 โ† ๐‘ƒ] โŠ— ( โจ

๐œ’:๐‘ƒโ†’๐‘š

๐‘[1 โ† ๐‘ƒ1] โŠ— โ‹ฏ โŠ— ๐‘[1 โ† ๐‘ƒ๐‘š])

๐•Š๐‘š

.

The main ingredients for the definition of the components๐œ™๐‘€,๐‘are, for each element ๐œ‡ โˆ˜ (๐œˆ1, โ€ฆ, ๐œˆ๐‘š)๐œ โˆˆ (๐‘€|๐•Šopโˆ˜ ๐‘|๐•Šop)(๐‘›), a partition๐‘ƒof๐‘›and bijections๐œ’: ๐‘ƒ โ†’ ๐‘šand ๐œ’๐‘–: ๐‘ƒ๐‘– โ†’ ๐‘›๐‘–. From such data we then obtain morphisms

๐‘€[๐œ’op]: ๐‘€[1 โ† ๐‘š] โŸถ ๐‘€[1 โ† ๐‘ƒ] , ๐‘[๐œ’๐‘–op]: ๐‘[1 โ† ๐‘›๐‘–] โŸถ ๐‘€[1 โ† ๐‘ƒ๐‘–] . Consider the subsets๐‘ƒ๐‘–โŠ‚ ๐‘›defined by

๐‘ƒ1= ๐œŽโˆ’1(๐‘›1) = ๐œŽโˆ’1({1, โ€ฆ, ๐‘›1}) ,

๐‘ƒ2= ๐œŽโˆ’1(๐‘›1+ ๐‘›2) = ๐œŽโˆ’1({๐‘›1+ 1, โ€ฆ, ๐‘›1+ ๐‘›2}) , etc.

These๐‘ƒ๐‘–form a partition๐‘ƒ = {๐‘ƒ1, ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘š}, i.e.๐‘› = โˆ๐‘–๐‘ƒ๐‘–. Now denote by๐œ’the map ๐œ’: ๐‘ƒ โ†’ ๐‘š , ๐‘ƒ๐‘–โ†ฆ ๐‘– ,

and by๐œ’๐‘–: ๐‘ƒ๐‘–โ†’ ๐‘›๐‘–the bijections preserving the induced order on๐‘ƒ๐‘–โŠ‚ ๐‘›.

It remains to verify that the above construction leads to welldefined morphisms ๐œ™๐‘€,๐‘(๐‘›), these morphisms are, in fact, isomorphisms, and the construction is natural in๐‘›as well as๐‘€,๐‘. We leave the rest of the proof to the reader. โ—ผ The notation for the infinitesimal composite product of dg collections still makes sense for dg๐•Š-modules and we adopt it in this context.

1.4. Nonsymmetric collections andโ„•-modules. Consider now the categorydg ns Collintroduced earlier. It carries the same pointwise abelian and closed symmetric monoidal structures as given in Equations (9)โ€“(11). The composite product is defined as before via Equations (12) and (14), with the colimits understood over corresponding planar trees. We denote byOrdPart(๐‘‹)the discrete category ofordered partitions, i.e.

of ordered sets๐‘ƒof disjoint nonempty subsets covering๐‘‹such that the map๐‘ƒ โ† ๐‘‹ mapping elements to their containing subset is order preserving. This category forms a skeleton for the category of planar 2-trees with leaves๐‘‹, and we obtain

(23) (๐‘€ โˆ˜ ๐‘)[1 โ† ๐‘‹] = โจ

๐‘ƒโˆˆOrdPart(๐‘‹)

๐‘€[1 โ† ๐‘ƒ] โŠ— (๐‘[1 โ† ๐‘ƒ1] โŠ— โ‹ฏ โŠ— ๐‘[1 โ† ๐‘ƒ๐‘š]) , where๐‘ƒ = {๐‘ƒ1< โ‹ฏ < ๐‘ƒ๐‘š}.

Letโ„•be the discrete groupoid of natural numbers๐‘› โ‰ฅ 1and denote by dgโ„•-Modโ‰” [โ„•op, ๐ค-Ch]

the category of rightโ„•-modulesresp.dgโ„•-modules. Explicitly, a dgโ„•-module๐‘€is a collection of chain complexes๐‘€(๐‘›)for each arity๐‘› โ‰ฅ 1and a morphism of dgโ„•- modules๐‘“: ๐‘€ โ†’ ๐‘is a collection of morphisms๐‘“(๐‘›): ๐‘€(๐‘›) โ†’ ๐‘(๐‘›)of chain complexes.

The abelian and closed symmetric monoidal structure on dgโ„•-modules is again given

(26)

pointwise as in Equations (15)โ€“(17) and the composite product ofโ„•-modules๐‘€and๐‘ is defined by

(24) (๐‘€ โˆ˜ ๐‘)(๐‘›) โ‰”โจ

๐‘šโ‰ฅ1

๐‘€(๐‘š) โŠ—โจ

๐‘›=๐‘›1+โ‹ฏ+๐‘›๐‘š

(๐‘(๐‘›1) โŠ— โ‹ฏ โŠ— ๐‘(๐‘›๐‘š)) .

Theโ„•-module๐ผ = (๐ค, 0, โ€ฆ)acts as aunitwith respect to the composite product, and this turns(dgโ„•-Mod, โˆ˜, ๐ผ)into amonoidal category. As is the case for dg collections and dg๐•Š-modules, there is an adjoint equivalence

(โฃ) โˆถหœ dgโ„•-Mod dg ns Collโˆถ (โฃ)|โ„•op

โ† โ‡€โ†

โ‡€

between the categories of dg ns collections and dgโ„•-modules, and it is an equivalence of monoidal categories.

1.5. Colored collections and colored๐•Š-modules. We now turn our attention to the category of dg๐ถ-colored collections for some fixed set๐ถof colors. While planar structures on trees simplify their category of modules,๐ถ-colorings add to the bookkeep- ing involved. We define the same pointwise abelian and closed symmetric monoidal structures as for dg collections using Equations (9)โ€“(11). The composite product is defined as before via Equations (12) and (14), with the colimit taken over appropriate ๐ถ-colored trees. We denote by๐ถ-col Part(๐‘‹)the discrete category of๐ถ-colored partitions of๐‘‹, i.e. of partitions๐‘ƒof๐‘‹with a coloring map๐‘ƒ โ†’ ๐ถ. This category is a skeleton for ๐ถ-col 2-Tree(๐‘‹)and this gives us the following expansions for the composite product:

(๐‘€ โˆ˜ ๐‘)[1 โ† ๐‘‹] =โจ

๐‘ƒโˆˆ๐ถ-col Part(๐‘‹)

๐‘€[1 โ† ๐‘ƒ] โŠ— ๐‘[๐‘ƒ โ† ๐‘‹]

=โจ

๐‘ƒโˆˆ๐ถ-col Part(๐‘‹)๐‘€[1 โ† ๐‘ƒ] โŠ— ( โจ

๐œ’:๐‘ƒโ†’๐‘š

๐‘[1 โ† ๐‘ƒ1] โŠ— โ‹ฏ โŠ— ๐‘[1 โ† ๐‘ƒ๐‘š])

๐•Š๐‘š

. Let๐•Š+/๐ถdenote the slice category for

๐•Š+: ๐•Š โ†’Set, ๐‘› โ†ฆ ๐‘›+= {0, โ€ฆ, ๐‘›}

over the constant functor๐ถ. An object of๐•Š+/๐ถis a tuple(๐‘›, ๐‘)consisting of an object ๐‘› โˆˆ ๐•Šwith a coloring๐‘: ๐‘›+โ†’ ๐ถ. The category๐•Š+/๐ถis a skeleton for the category of ๐ถ-colored 1-trees via the embedding

๐•Š+/๐ถ,โŸถ ๐ถ-col 1-Tree, (๐‘›, ๐‘) โŸผ (1 โ† ๐‘›, 1 โจฟ ๐‘› โ‰… ๐‘›+โ†’ ๐ถ) . We denote by

dg๐ถ-col๐•Š-Modโ‰” [(๐•Š+/๐ถ)op, ๐ค-Ch]

the category ofright๐•Š+/๐ถ-modules in๐ค-complexesordg๐ถ-colored๐•Š-modules. Explicitly, a dg๐ถ-colored๐•Š-module ๐‘€consists of, for each arity๐‘› โ‰ฅ 1, a collection of chain complexes๐‘€(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›)indexed by(๐‘› + 1)-tuples of colors๐‘๐‘–โˆˆ ๐ถequipped with right ๐•Š๐‘›-actions

(โฃ)๐œ: ๐‘€(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) โŸถ ๐‘€(๐‘0; ๐‘๐œ(1), โ€ฆ, ๐‘๐œ(๐‘›)) .

(27)

A morphism๐‘“: ๐‘€ โ†’ ๐‘is a collection of equivariant morphisms ๐‘“(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›): ๐‘€(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) โŸถ ๐‘(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›)

of chain complexes. The abelian and closed symmetric monoidal structures on dg ๐ถ-colored๐•Š-modules are defined pointwise, i.e.

(๐‘€ โŠ• ๐‘)(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) โ‰” ๐‘€(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) โŠ• ๐‘(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) , (๐‘€ โŠ— ๐‘)(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) โ‰” ๐‘€(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) โŠ— ๐‘(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) , with the diagonal๐•Š๐‘›-actions, and

hom(๐‘€, ๐‘)(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›) โ‰”hom(๐‘€(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›), ๐‘(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›)) . Thecomposite productfor dg๐ถ-colored๐•Š-modules is given by

(๐‘€ โˆ˜ ๐‘)(๐‘0; ๐‘1, โ€ฆ, ๐‘๐‘›)

โ‰”โจ

๐‘šโ‰ฅ1(โจ

๐‘‘๐‘–โˆˆ๐ถ

(๐‘€(๐‘0; ๐‘‘1, โ€ฆ, ๐‘‘๐‘š) โŠ—โจ

๐‘›=๐‘›1+โ‹ฏ+๐‘›๐‘š

Ind๐•Š๐•Š๐‘›

๐‘›1ร—โ‹ฏร—๐•Š๐‘›๐‘š(๐‘(๐‘‘1; ๐‘1, โ€ฆ, ๐‘๐‘›1) โŠ— โ‹ฏ)))

๐•Š๐‘š

, and the dg๐ถ-colored๐•Š-module๐ผdefined by๐ผ(๐‘; ๐‘) = ๐คfor๐‘ โˆˆ ๐ถand zero otherwise acts as aunitwith respect to it, turning(dg๐ถ-col๐•Š-Mod, โˆ˜, ๐ผ)into a monoidal category.

As before, there is an adjoint equivalence

(โฃ) โˆถหœ dg ๐ถ-col๐•Š-Mod โ† โ‡€ โ‡€โ† dg ๐ถ-col Collโˆถ (โฃ)|(๐•Š+/๐ถ)op, and it is an equivalence of monoidal categories.

1.6. Weightgraded collections. A weightgraded chain complex is a chain com- plex๐‘‰with an additional decomposition๐‘‰ = โจ๐‘คโ‰ฅ0๐‘‰(๐‘ค)into its weight๐‘คcomponents ๐‘‰(๐‘ค). The direct sum and tensor product of weightgraded chain complexes๐‘ˆand๐‘‰are again weightgraded with components

(๐‘ˆ โŠ• ๐‘‰)(๐‘ค)= ๐‘ˆ(๐‘ค)โŠ• ๐‘‰(๐‘ค) resp. (๐‘ˆ โŠ— ๐‘‰)(๐‘ค)=โจ

๐‘ค=แต†+๐‘ฃ

๐‘ˆ(แต†)โŠ— ๐‘‰(๐‘ฃ).

The category ofweightgraded dg collectionsorwdg collections is the category of dg collections taking values in weightgraded chain complexes. Given a wdg collection๐‘€, we introduce its sub dg collection๐‘€(๐‘ค)[1 โ† ๐‘‹] โ‰” ๐‘€[1 โ† ๐‘‹](๐‘ค)of weight๐‘คelements and denote bywdeg(๐œ‡) = ๐‘คtheweightof a weighthomogeneous element๐œ‡ โˆˆ ๐‘€(๐‘ค). Slightly abusing notation, we introduce the extension

๐‘(๐‘ฃ)[๐ต โ† ๐‘‹] โ‰”

โŽ›

โŽœโŽœ

โŽ

๐œ’:๐ตโ†’๐‘šโจ

๐‘ฃ=๐‘ฃ1+โ‹ฏ+๐‘ฃ๐‘š

๐‘(๐‘ฃ1)[1 โ† ๐‘‹1] โŠ— โ‹ฏ โŠ— ๐‘(๐‘ฃ๐‘š)[1 โ† ๐‘‹๐‘š]

โŽž

โŽŸโŽŸ

โŽ ๐•Š

๐‘š

,

and obtain for the composite product the components (๐‘€ โˆ˜ ๐‘)(๐‘ค)[1 โ† ๐‘‹] โ‰” colim

1โ†๐ตโ†๐‘‹

โˆˆ2-Tree(๐‘‹)op( โจ

๐‘ค=แต†+๐‘ฃ

๐‘€(แต†)[1 โ† ๐ต] โŠ— ๐‘(๐‘ฃ)[๐ต โ† ๐‘‹])

Referenzen

ร„HNLICHE DOKUMENTE

Onย itsย mostย basicย level,ย ORBISย calculatesย theย timeย costย ofย travelย betweenย variousย nodesย ofย theย Roman

Now, we introduce a class of coarse CW-complexes which are the ana- logue for coarse topology of the regular CW-complexes for topology. They come to play in different occasions,

Proposition 3.8 (Cf. 2.26]) If A is a tilting-discrete weakly symmetric algebra, then A is in fact silting-discrete and all silting complexes for A are tilting... Proof Suppose that

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC), is a control method that computes a feedback law by iteratively solving optimal control problems on

Pyongyang is clearly not against theย  deepening ะพfย  the stand-off between Russia and theย  United States that, according toย  Pyongyangโ€™s strategistsโ€™ logic, will lead

In this section, we shall recall some fundamental definitions and facts pertaining to filtered and graded k-modules and k-algebras, and specifically to the (stan- dard) filtration

Abstract: We describe the finite-dimensional representation category of gl(m|n) and of its quan- tized enveloping algebra using variations of Howe duality, and we review

In Philosophy for Children, each class of fictional children offers itself to the live children in the classroom as a model of philosophical inquiry.. Contrast this with