• Keine Ergebnisse gefunden

IMPACT OF SEEDING IMPURITIES ON ITER PLASMA-FACING MATERIALS

N/A
N/A
Protected

Academic year: 2022

Aktie "IMPACT OF SEEDING IMPURITIES ON ITER PLASMA-FACING MATERIALS"

Copied!
23
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Member of the Helmholtz Association

IMPACT OF SEEDING IMPURITIES ON ITER PLASMA-FACING MATERIALS

B. Unterberg 1* , S. Brezinsek 1 , T. Dittmar 1 , L. Gao 2 , W. Jacob 2 , A.

Kreter 1 , Ch. Linsmeier 1 , G. Meisl 2 , S. Möller 1 , M. Rasinski 1 , M.

Reinhart 1 , T. Schwarz- Selinger 2

1 Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, D-52425 Jülich, Germany

2 Max-Planck Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

ICFRM-17, Aachen, Germany, 12-16 October 2015

(2)

Impact of impurities on

plasma material Interaction processes

 Physical sputtering by impurities

 Larger energy gain within Debye sheath (∆E = 3 Z T e )

 Larger energy transfer to lattice atoms during binary collisions → larger yield, lower sputtering threshold

 Formation of nano-structures within plasma facing materials (inert gases)

 Surface modifications (roughness, 3D structures), defect formation

 sputtering yields (incident angle), re-deposition of eroded materials

Fuel retention

 Formation of mixed surface layers for chemically active

impurities

(3)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 3

Plasma facing materials and impurities in ITER

Plasma facing materials

 Tungsten (divertor)

 Beryllium (first wall armour)

 Stainless steel (plasma facing surfaces of port plugs)

 Mixed W – B layer systems

 Tungsten beryllide systems (800-1200°C)

October 14th 2015

(4)

Plasma facing materials and impurities in ITER

(Seeding) impurities

 Helium (product of DT

fusion, during low activation face) – inert gas, 5-10%

 Nitrogen (divertor radiation, replacement for carbon) – chemically active, < 3%

 Neon (edge / divertor

radiation) – inert gas, < 2 %

 Argon (edge / main

chamber radiation) – inert gas → DEMO, <1%

A. Kallenbach et al., Nucl. Fusion 2009

(5)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 5

Plasma facing materials and impurities in ITER - this contribution

Plasma facing materials

 Tungsten (divertor)

 Beryllium (first wall armour)

 Stainless steel (plasma facing surfaces of port plugs)

 Mixed W – B layer systems

 Tungsten beryllide systems (800-1200°C)

(Seeding) impurities

 Helium (product of DT

fusion, during low activation face) – inert gas

 Nitrogen (divertor radiation, replacement for carbon) – chemically active

 Neon (edge / divertor radiation) – inert gas

 Argon (edge / main

chamber radiation) – inert gas → DEMO

October 14th 2015

(6)

Experiments

Toroidal confinement devices

 JET ITER-like wall (Be first wall, W divertor)

S. Brezinsek, JET-EFDA contributors, JNM 463 (2015) 11–21

 ASDEX-Upgrade with full tungsten wall

A.Kallenbach et al., Plasma Phys. Control.

Fusion 55 (2013) 124041

 EAST, WEST

Linear plasma devices

 PISCES-B (UCSD)

 MAGNUM-PSI / Pilot-PSI (DIFFER)

 PSI-2 (FZ Jülich)

 NAGDIS-II (U Nagoya)

 Linear plasma generator (JAERI)

Ion beam experiments Laboratory plasma

experiments

 PLAQ (IPP Garching)

(7)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 7

Experiments

Toroidal confinement devices

 JET ITER-like wall (Be first wall, W divertor)

S. Brezinsek, JET-EFDA contributors, JNM 463 (2015) 11–21

 ASDEX-Upgrade with full tungsten wall

A.Kallenbach et al., Plasma Phys. Control.

Fusion 55 (2013) 124041

 EAST, WEST

Linear plasma devices

 PISCES-B (UCSD)

 MAGNUM-PSI / Pilot-PSI (DIFFER)

PSI-2 (FZ Jülich)

 NAGDIS-II (U Nagoya)

 Linear plasma generator (JAERI)

October 14th 2015

Ion beam experiments Laboratory plasma

experiments

PLAQ (IPP Garching)

(8)

Linear plasma device PSI-2

target positions plasma source

target exchange &

analysis chamber

linear manipulator

(9)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 9

Linear plasma device PSI-2

Coils

Side-fed manipulator Plasma

source

Target station

TEAC

Periphery level

October 14th 2015

(10)

Plasma exposure parameters in PSI-2

Magnetic field in

exposure chamber 0.1 T steady-state Plasma species D, H, N, Ar, He, Ne etc.

Electron temperature 1 - 25 eV (for D) El. density ~10

16

- 10

19

m

-3

Particle flux ~10

20

- 10

23

m

-2

s

-1

Particle fluence up to ~10

27

m

-2

per

exposure

Incident ion energy ~10 - 300 eV (negative bias)

Sample temperature RT - 2000°C Diameter of plasma

column ≈ 6 cm

Langmuir probe measurements for deuterium plasma

Plasma parameters

(11)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 11

Plasma exposure parameters in these studies

Incident ion flux ~ 10 22 m -2 s -1 Incident ion fluence ~ 10 26 m -2 Incident ion energy ≈40 eV Sample temperature 380 K Fraction of seeded

Helium and Argon ions 0 – 8%, controlled by spectroscopy Sample surface mechanically polished, annealed at 1000°C for 2 h

October 14th 2015

(12)

Deuterium retention in tungsten

under influence of helium and argon

0 200 400 600 800

0 1 2 3 4 5 6 7 8

D r el eas e r at e [ x10

17

m

-2

s

-1

]

Desorption temperature [°C]

D

2

D

2

+ 1% He D

2

+ 5% He

0 200 400 600 800

0 1 2 3 4 5 6 7 8

D r el eas e r at e [ x10

17

m

-2

s

-1

]

Desorption temperature [°C]

D

2

D

2

+ 4% Ar D

2

+ 8% Ar Thermal desorption spectra (TDS) of tungsten exposed to mixed plasmas

0.4 K/s ramp

0.4 K/s ramp

M. Reinhart et al., JNM, 463 (2015) 48639, 1021-1024

(13)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 13

Deuterium retention in tungsten

under influence of helium and argon

Effect of helium:

 Total deuterium retention is reduced by a factor of 3

Effect of argon:

 Total deuterium retention slightly increased

 TDS spectra show different shapes

→ Change in trapping sites due to material damage by argon

[M. Reinhart et al.,

JNM, 463 (2015) 48639, 1021-1024]

Total amount of deuterium retained in exposed tungsten

0 1 2 3 4 5 6 7 8 9 10 0

1 2 3 4 5

deut er ium r et ent ion [ x10 20 m -2 ]

impurity ion fraction [%]

D + He D + Ar

October 14th 2015

(14)

TEM cross-section images

for D, D+He and D+Ar exposure

a) platinum coating

b) damaged surface layer/

He nano-bubbles c) bulk tungsten

D, D+Ar exposures:

• damaged layer depth is in the ion penetration range (2 nm) D+He exposure:

• damaged layer depth is beyond the ion penetration range

→ formation and growth of helium nano-bubble layer

• Layer thickness constant at fluencies 10 24 -10 26 m -2 but increases with

(15)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 15

Deuterium retention in tungsten for variation of incident fluences

Influence of He develops at low fluences (He

+

fluence <10

23

m

-2

)

Reduction in retention of factor of 3-4 remains constant for the range of fluences

10 24 10 25 10 26

0.1 1 10

deut er ium r et ent ion / 10 20 m -2

deuterium fluence / m -2 D

D + He

D + 5% He: ~Φ 0.4±0.1 pure D: ~Φ 0.35±0.1

October 14th 2015

(16)

PlaQ (versatile plasma implantation source)

[1] A Manhard, et. al. 2011 Plasma Sources Sci. T. 20 015010

D implantation: PlaQ [1]

• 1.0 Pa: D 3 + (94%) + D 2 + (3%) + D + (3%)

• Flux: 9.9×10 19 D∙m -2 ∙s -1 (at 200 V) 1.07 ×10 20 D∙m -2 ∙s -1 (at 600 V)

• Fluence: 1×10 23 - 6×10 24 D∙m -2

• Ion energy: 10 to 600 V

• Temperature: 230 to 800 K

IPP Garching

(17)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 17

W sputtering by impurity ions

October 14th 2015

A.Kallenbach et al., Plasma Phys.

Control. Fusion 55 (2013) 124041

Cold divertor

plasma required

ELMs govern W

erosion

(18)

W sputtering by impurity ions –

Dynamics of WN formation reduces W sputtering

K. Schmid et al., Nucl. Fusion 50 (2010) 025006

Co-bombardment of D and N:

Preferential sputtering of N by D out of WN layer can undo W shielding effect

(19)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 19

Formation of WN layers by N impact

October 14th 2015

Numbers: fluence of 10 keV N 2 + beam

K. Schmid et al., Nucl. Fusion 50 (2010) 025006

 N content in W surface saturates at stoichiometry of W-nitride (50% N).

 Nitride formation within ion

implantation range

 WN unstable for T> 600 K

(decomposition by

N outgassing)

(20)

Fuel retention in WN model system (produced via magnetron sputtering)

 Exposure of WN model system in PlaQ

 Analysis of fuel retention by NRA

 Implantation of deuterium within implantation zone, no diffusion across WN layer at 300K

 Diffusion at 600 K much slower than in W reference samples

WN

x

W

Si

70 nm

(21)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 21

Influence of nitrogen pre-implantation on deuterium retention in tungsten

 Exposure of bulk W to N or D plasmas in PlaQ

 N pre-implantation at a fluence of

1.5x10 22 N m -2 (N 2 + dominating)

 D exposure at a fluence of 10 24 D m -

2 (D 3 + dominating)

October 14th 2015

L. Gao, et al, Phys. Scr.

T159 (2014), 014023

300 K

500 K

No N pre-implantation With N pre-implantation

(22)

Influence of nitrogen pre-implantation on deuterium retention in tungsten

L. Gao, et al, Phys. Scr.

Thin WN layer acts as barrier for diffusion to surface

 Exposure of bulk W to N or D plasmas in PlaQ

 N pre-implantation at a fluence of

1.5x10 22 N m -2 (N 2 + dominating)

 D exposure at a fluence of 10 24 D m -

2 (D 3 + dominating)

(23)

Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Nr. 23

Conclusions

Impurities govern PMI in fusion devices to a large extent and will do so in ITER

 Low temperature operation in the divertor required because of sputtering thresholds of impurities

 Strong surface modifications by inert gases, structure formation influences fuel retention decisively.

 Chemically active impurities such as N form layers which might reduce erosion of bulk material but act as diffusion barriers to enhance deuterium retention.

October 14th 2015

Referenzen

ÄHNLICHE DOKUMENTE

Oder gibt es bereits Veränderungen, die sich negativ auf die Qualität der Butter oder des Joghurts ausge- wirkt haben und die bedeuten, dass das Produkt nicht mehr verkauft

Aber auch andere Jülicher Forscher sehen genau hin – etwa wie der Boden das Klima beeinflusst, was Diabetes, Alzheimer und Parkinson gemeinsam haben oder was einen besonders

Das geht bei Python zwar bei umfangreichen Pro- grammierungen auf Kosten der Schnelligkeit, lässt sich aber mit speziellen Zusatzmodulen auffangen – oder indem man Python mit

Jülicher Forscher von Institut für Energie­ und Klimaforschung untersuchen diese Keramiken zum Beispiel, um damit Sauerstoff aus der Umgebungsluft abzutrennen – das ist bisher nur

Die Forscher sind sich jedoch einig, dass es in komplexen Gefügen wie der At- mosphäre und der Politik meist nicht eine Lösung für alle Bedingungen gibt.. „Neben

Winter ist daher davon überzeugt, dass die Akku- mulatorforschung in den nächsten 15 Jahren von der Weiterentwicklung der Lithium-Ionen-Tech- nologie getrieben wird: Benötigt

Die Gründe für ein Dipolmoment, sofern vorhanden, lassen sich wohl nur herausfinden, wenn man die Dipolmomente von zwei Teilchen vergleicht, die aus unterschiedlichen Quarks

Was indes schon funktioniert: Die Wissenschaftler kreieren eine Population von 20 bis 30 Nervenzellen, bei der sie zwar keine Kontrolle über die Signalübertragung innerhalb