• Keine Ergebnisse gefunden

Example 1

N/A
N/A
Protected

Academic year: 2021

Aktie "Example 1"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

>

>

(1.8) (1.8)

>

>

>

>

(1.7) (1.7) (1.6) (1.6)

>

>

>

>

>

>

(1.5) (1.5)

>

>

>

>

>

>

(1.2) (1.2)

>

>

>

>

(1.3) (1.3)

>

>

(1.1) (1.1)

(1.4) (1.4) restart;

read "qFPS.mpl":

with(qFPS):

Example 1

Computation of 2-fold q-hypergeometric solutions of a linear q-recurrence equation m:=2;

m:= 2 r:=(q+1)*q^7*(x-1)/(q^2-2)/(x-q)/x^4;

r:= qC1 q7 xK1 q2K2 xKq x4

RE1:=denom(r)*qshift(f(x),[x$m],q)-numer(r)*f(x)=0;

RE1:= q2K2 KxCq x4 Sqx,x f x C qC1 q7 xK1 f x = 0

RE2:=x^2*qshift(f(x),[x$2],q)-(q-1)*qshift(f(x),x,q)+q*(x-2)*f(x)

=0;

RE2:=x2 Sqx,x f x K qK1 Sqx f x Cq xK2 f x = 0 RE:=qNormal(qMultiplyRE(RE2,RE1,f(x)),f(x)):

qLocalTypesCandidates(RE,f(x),q,mhypersol=m);

q7 qC1

q2K2 , 4 , K1

q7 , 1 , q6 qC1

q2K2 ,K4 , xK2, 0, 1 , xK1, 0, 1 , xKq, K1, 0

st:=time():

qHypergeomSolveRE(RE,f(x),method=qPetkovsek,mhypersol=m);

time()-st;

K qC1 q7 xK1 q2K2 KxCq x4

0.265 st:=time():

qHypergeomSolveRE(RE,f(x),method=modqPetkovsek,mhypersol=m);

time()-st;

K qC1 q7 xK1 q2K2 KxCq x4

0.048 st:=time():

qHypergeomSolveRE(RE,f(x),method=qVanHoeij,mhypersol=m);

time()-st;

K qC1 q7 xK1 q2K2 KxCq x4

0.754

Example 2

(2)

(2.8) (2.8)

>

>

(2.2) (2.2)

>

>

>

>

>

>

>

>

>

>

>

>

(2.5) (2.5)

>

>

>

>

(2.4) (2.4)

>

>

(2.3) (2.3)

(2.7) (2.7)

(3.1) (3.1)

>

>

(3.2) (3.2) (2.6) (2.6) (2.1) (2.1) Computation of 3-fold q-hypergeometric solutions of a linear q-recurrence equation

m:=3;

m:= 3 r:=sqrt(2)*q*(q-1)*x/(x-1);

r:= 2 q qK1 x xK1

RE1:=denom(r)*qshift(f(x),[x$m],q)-numer(r)*f(x)=0;

RE1:= xK1 Sqx,x,x f x K 2 q qK1 x f x = 0

RE2:=(3*x-1)*x*qshift(f(x),[x$2],q)-(q-1)*x*qshift(f(x),x,q)-q^2*

(x-q)*f(x)=0;

RE2:= 3 xK1 x Sqx,x f x K qK1 x Sqx f x Kq2 xKq f x = 0 RE:=qNormal(qMultiplyRE(RE2,RE1,f(x)),f(x)):

qLocalTypesCandidates(RE,f(x),q,mhypersol=m);

2 qK1 q, 0 , K 2 qK1 q, 1 , xK1, K1, 0 , xKq, 0, 1 , x K 1

3 q2, K1, 0 st:=time():

qHypergeomSolveRE(RE,f(x),method=qPetkovsek,mhypersol=m);

time()-st;

2 q qK1 x xK1 0.139 st:=time():

qHypergeomSolveRE(RE,f(x),method=modqPetkovsek,mhypersol=m);

time()-st;

2 q qK1 x xK1 0.034 st:=time():

qHypergeomSolveRE(RE,f(x),method=qVanHoeij,mhypersol=m);

time()-st;

2 q qK1 x xK1 8.588

Example 3

Computation of 2-fold q-hypergeometric solutions of a linear q-recurrence equation with two solutions

m:=2;

m:= 2 r1:=(x+2*q)^2/(x-q);

(3)

>

>

>

>

(4.2) (4.2) (3.9) (3.9)

>

>

(3.6) (3.6) (3.4) (3.4) (3.3) (3.3)

(3.8) (3.8)

>

>

>

>

(3.5) (3.5)

>

>

>

>

(3.7) (3.7)

(4.1) (4.1) (3.2) (3.2)

>

>

>

>

>

>

r1:= xC2 q 2 xKq

RE1:=denom(r1)*qshift(f(x),[x$m],q)-numer(r1)*f(x)=0;

RE1:= KxCq Sqx,x f x C xC2 q 2 f x = 0 r2:=(x-q)^2/(x-2);

r2:= xKq 2 xK2

RE2:=denom(r2)*qshift(f(x),[x$m],q)-numer(r2)*f(x)=0;

RE2:= xK2 Sqx,x f x K KxCq 2 f x = 0 RE:=qNormal(qLCM(RE2,RE1,f(x)),f(x)):

qLocalTypesCandidates(RE,f(x),q,mhypersol=m);

1,K1 , 1

q2 ,K1 , K4 q, 0 , K1

2 q2, 0 , q7Cq4 xK8 q6C7 q x2K8 q3 xK2 x2

7 qK2 , K1, 1 , xK2, K1, 0 , xKq,

K1, 2 , xC2 q, 0, 2 st:=time():

qHypergeomSolveRE(RE,f(x),method=qPetkovsek,mhypersol=m);

time()-st;

KxCq 2

xK2 ,K xC2 q 2 KxCq 1.964

st:=time():

qHypergeomSolveRE(RE,f(x),method=modqPetkovsek,mhypersol=m);

time()-st;

KxCq 2

xK2 ,K xC2 q 2 KxCq 0.156

st:=time():

qHypergeomSolveRE(RE,f(x),method=qVanHoeij,mhypersol=m);

time()-st;

KxCq 2

xK2 ,K xC2 q 2 KxCq 0.813

Example 4

Computation of all m-fold q-hypergeometric solutions of a linear q-recurrence equation m1:=2;

m1:= 2 r1:=sqrt(2)*q*(q-1)*x/(x-1);

(4)

(4.2) (4.2)

(4.4) (4.4)

(4.7) (4.7)

>

>

(4.6) (4.6)

>

>

>

>

>

>

(4.3) (4.3)

>

>

(5.4) (5.4) (4.5) (4.5)

>

>

>

>

>

>

>

>

>

>

>

>

>

>

(5.1) (5.1)

(5.3) (5.3)

(5.5) (5.5) (5.2) (5.2) (3.2) (3.2)

r1:= 2 q qK1 x xK1

RE1:=denom(r1)*qshift(f(x),[x$m1],q)-numer(r1)*f(x)=0;

RE1:= xK1 Sqx,x f x K 2 q qK1 x f x = 0 m2:=3;

m2:= 3 r2:=(q-1)*(x-3)^2/(x-q);

r2:= qK1 xK3 2 xKq

RE2:=denom(r2)*qshift(f(x),[x$m2],q)-numer(r2)*f(x)=0;

RE2:= KxCq Sqx,x,x f x C qK1 xK3 2 f x = 0 RE:=qNormal(qLCM(RE2,RE1,f(x)),f(x)):

st:=time():

qHypergeomSolveRE(RE,f(x),mhypersol=0);

time()-st;

2, 2 q qK1 x

xK1 , 3, K qK1 xK3 2 KxCq 57.867

Example 5

Computation of q-hypergeometric solutions of a linear q-recurrence equation showing additionally Newton polygon

r1:=q*(q-1)*x/(x-1);

r1:= q qK1 x xK1

L1:=denom(r1)*qshift(f(x),x,q)-numer(r1)*f(x);

L1:= xK1 Sqx f x Kq qK1 x f x

r2:=q/(x-q)^2;

r2:= q xKq 2

L2:=denom(r2)*qshift(f(x),x,q)-numer(r2)*f(x);

L2:= KxCq 2 Sqx f x Kq f x L:=qNormal(qLCM(L1,L2,f(x)),f(x));

L:=q qK1 x K2 q4 x2Cq4 xCq4 x3C2 q3 x2Kq3 xKq3 x3Kq xC1 f x K x K1 1K3 q5 x3Kq xCq5 x5K2 q4 x5Cq3 x5C3 q5 x4Cx3 q7Kq7 x2

C2 q4 x3K2 q6 x4Kq5 x2C2 x2 q6Kx4 q3 Sqx f x C xK1 2 q q xK1 1 KxKq2 xCq3 xC2 q x2K2 q2 x2Kx3Cx3 q Sqx,x f x = 0

qPlotNewtonPolygon(L,f(x),q,v=((a,x)->ldegree(a,x)));

(5)

>

>

(3.2) (3.2)

(4.2) (4.2)

0 0.5 1 1.5 2

0 0.2 0.4 0.6 0.8 1

qPlotNewtonPolygon(L,f(x),q,v=((a,x)->-degree(a,x)));

(6)

(4.2) (4.2)

(5.7) (5.7)

>

>

>

>

>

>

(5.8) (5.8) (5.6) (5.6) (3.2) (3.2)

0 0.5 1 1.5 2

K6 K5.5 K5 K4.5 K4

st:=time():

qHypergeomSolveRE(L,f(x),method=qPetkovsek);

time()-st;

q

KxCq 2 , q qK1 x xK1 0.237 st:=time():

qHypergeomSolveRE(L,f(x),method=qVanHoeij);

time()-st;

q

KxCq 2 , q qK1 x xK1 0.257 st:=time():

qHypergeomSolveRE(L,f(x),method=modqPetkovsek);

time()-st;

q

KxCq 2 , q qK1 x xK1 0.055

(7)

(6.1.3) (6.1.3)

>

>

>

>

(4.2) (4.2)

>

>

>

>

>

>

(6.2.2) (6.2.2) (6.1.4) (6.1.4)

>

>

(6.2.3) (6.2.3) (6.2.1) (6.2.1) (6.1.2) (6.1.2)

>

>

>

>

>

>

(3.2) (3.2)

(6.1.1) (6.1.1)

>

>

Example 6 (Timings)

J:=8:

Example Operator (3.2)

L1:=mul(x+i*q^i,i=1..floor((J-1)/2))*qshift(F(x),[x$2],q)+mul (x-i*q^i,i=1..floor(J/2))*F(x):

L1:=qNormal(qMultiplyRE(L1,qshift(F(x),[x],q)-x*F(x),F(x)),F (x));

L1:= xCq xC2 q2 xC3 q3 Sqx,x,x F x K xCq xC2 q2 x C3 q3 q2 x Sqx,x F x C KxCq KxC2 q2 KxC3 q3 Kx

C4 q4 Sqx F x K KxCq KxC2 q2 KxC3 q3 KxC4 q4 x F x

= 0

st:=time():

qHypergeomSolveRE(L1,F(x),method=qPetkovsek);

time()-st;

x 2.573 st:=time():

qHypergeomSolveRE(L1,F(x),method=qVanHoeij);

time()-st;

x 1.106 st:=time():

qHypergeomSolveRE(L1,F(x),method=modqPetkovsek);

time()-st;

x 0.128

Example Operator (3.3)

L2:=mul(x-q^i,i=1..floor((J-1)/2))*qshift(F(x),[x$2],q)+mul(x- i*q^i,i=1..floor(J/2))*F(x):

L2:=qNormal(qMultiplyRE(L2,qshift(F(x),[x],q)-x*F(x),F(x)),F (x));

L2:=x KxC3 q3 KxC4 q4 KxC2 q2 F x K KxC3 q3 KxC4 q4 Kx C2 q2 Sqx F x Kq2 x KxCq2 KxCq3 Sqx,x F x C KxCq2 Kx

Cq3 Sqx,x,x F x = 0 st:=time():

qHypergeomSolveRE(L2,F(x),method=qPetkovsek);

time()-st;

x 0.583 st:=time():

qHypergeomSolveRE(L2,F(x),method=qVanHoeij);

time()-st;

(8)

>

>

(4.2) (4.2)

>

>

>

>

(7.1) (7.1)

>

>

>

>

>

>

(7.10) (7.10) (7.7) (7.7) (6.2.3) (6.2.3)

(6.2.4) (6.2.4)

(7.8) (7.8) (7.3) (7.3)

>

>

(7.5) (7.5) (7.6) (7.6)

(7.9) (7.9) (7.4) (7.4)

>

>

>

>

>

>

(7.2) (7.2)

>

>

>

>

(3.2) (3.2)

x 0.314 st:=time():

qHypergeomSolveRE(L2,F(x),method=modqPetkovsek);

time()-st;

x 0.054

Example 7 (Example of 2 and 3-fold q-hypergeometric solutions)

m1:=2;

m1:= 2 cert1:=q*(q-1)*x/(x-1);

cert1:= q qK1 x xK1

RE1:=denom(cert1)*qshift(f(x),[x$m1],q)-numer(cert1)*f(x)=0;

RE1:= xK1 Sqx,x f x Kq qK1 x f x = 0 m2:=3;

m2:= 3 cert2:=(q-1)*(x-3)^2/(x-q);

cert2:= qK1 xK3 2 xKq

RE2:=denom(cert2)*qshift(f(x),[x$m2],q)-numer(cert2)*f(x)=0;

RE2:= KxCq Sqx,x,x f x C qK1 xK3 2 f x = 0 RE:=qNormal(qLCM(RE2,RE1,f(x)),f(x)):

qOrder(RE,f(x));

5 st:=time():

qHypergeomSolveRE(RE,f(x),method=qVanHoeij,mhypersol=2);

time()-st;

q qK1 x xK1 9.878 st:=time():

qHypergeomSolveRE(RE,f(x),method=qPetkovsek,mhypersol=2);

time()-st;

q qK1 x xK1 2.128 st:=time():

qHypergeomSolveRE(RE,f(x),method=modqPetkovsek,mhypersol=2);

time()-st;

q qK1 x xK1

(9)

>

>

(7.11) (7.11) (4.2) (4.2)

(7.12) (7.12)

>

>

>

>

>

>

(7.10) (7.10)

(8.3) (8.3)

>

>

(6.2.3) (6.2.3)

(8.1) (8.1) (7.14) (7.14)

(8.2) (8.2) (7.13) (7.13)

>

>

>

>

(3.2) (3.2)

0.241 st:=time():

qHypergeomSolveRE(RE,f(x),method=qVanHoeij,mhypersol=3);

time()-st;

K xK3 2 qK1 KxCq 17.025 st:=time():

qHypergeomSolveRE(RE,f(x),method=qPetkovsek,mhypersol=3);

time()-st;

K xK3 2 qK1 KxCq 2.211 st:=time():

qHypergeomSolveRE(RE,f(x),method=modqPetkovsek,mhypersol=3);

time()-st;

K xK3 2 qK1 KxCq 0.924 st:=time():

qHypergeomSolveRE(RE,f(x),mhypersol=0);

time()-st;

2, q qK1 x

xK1 , 3, K xK3 2 qK1 KxCq 2.020

Example 8 (Example of computation of 2-fold q-

hypergeometric series expansion of small q-sine function)

Computation of series cofficients of small q-sine function qDE:=qHolonomicDE(qsin(y,q),F(y));

qDE:=F y C qK1 2 Dqy,y F y = 0

RE:=qDEtoRE(qDE,F(y),c(j),base=qpower,expansionpt=a);

RE:=c j Cq a qj qC1 c jC1 C Kqj qKqj q2C qj 2 q3Cq4 qj 2 a2 C1 c jC2 Cq a qj qC1 qj q3K1 qj q2K1 c jC3

Cq4 qj 2 a2 qj q4K1 qj q3K1 c jC4 = 0 qHypergeomSolveRE(RE,c(j),mhypersol=2);

A251 K1 j

qpochhammer q,q, 2 j , A252 qK1 K1 j

qj 2 qK1 qpochhammer q,q, 2 j

Referenzen

ÄHNLICHE DOKUMENTE

Examples of F-spaces are: Hausdor↵ finite dimensional t.v.s., Hilbert spaces, and Banach spaces.. In the following we will present two examples of F-spaces which do not belong to any

Fr´echet spaces Let us first recall some standard notations... which is also evidently Hausdor↵ since the family Q

In the given example, there are four different affine transformations involved, and the one that is picked at a given step is randomized; each transformation has a

The corresponding probability space yields a stochastic model for the simple case of gambling, which was mentioned in the introductory Example I.2.. We study several classes of

Prove that the fixed point set of every linear anti-symplectic involution of R 2n is a Lagrangian

If we are interested in topdown deterministic types, it suffices to determine the set of paths in

Idea: Life Range Splitting.. Interference graphs for minimal live ranges on basic blocks are known as interval graphs:. vertex === interval.. The covering number of a vertex is given

• If the join point v is reached by more than one definition for the same variable x which is live at program point v , insert. definitions x = x; at the end of each