• Keine Ergebnisse gefunden

In zahlreichen Studien zum Belohnungslernen konnte gezeigt werden, dass Dopamin Verhaltensweisen verstärkt, die für das Individuum positive Konsequenzen haben.

Ob und, wenn ja, welche Funktionen Dopamin in Lernsituationen hat, in denen Handlungen weder belohnt noch negativ bewertet werden, ist allerdings noch unklar.

In der vorliegenden Studie wurde der Einfluss von Dopamin auf Feedback-unabhängiges, implizites Lernen unter der grundsätzlichen Annahme analysiert, dass Lernmodulation durch Dopamin allgemein und nicht ausschließlich im Kontext bewusst erlebter Verhaltensgratifikation oder -sanktion stattfindet.

Dazu bearbeiteten nebst gesunden Kontrollprobanden Levodopa-behandelte Parkinsonpatienten im medikamentösen OFF und ON zwei Aufgaben. Den Probanden wurden wiederholt vier gleichhäufige Stimuli in pseudorandomisierter Reihenfolge präsentiert. Einer dieser Stimuli fungierte als Zielreiz‚ dem während einer ‚Konditionierungsphase’ zunächst immer der gleiche Stimulus (Precue) vorausging. In der nachfolgenden ‚Dekonditionierungsphase’ wurde diese Precue-Zielreiz-Kopplung aufgehoben, ohne dass dieses Schema den Teilnehmern bewusst (gemacht) wurde. In der Go-Aufgabe sollte nach Erscheinen des Zielreizes ein Tastendruck erfolgen, während keine Reaktion nach allen anderen Stimuli gefordert war. In der Nogo-Aufgabe sollte nach jedem nicht-Zielreiz ein Tastendruck erfolgen, während nur nach Erscheinen des Zielreizes der Tastendruck unterdrückt werden sollte.

Kernergebnis der Untersuchung war, dass die Aufgabenperformanz von Patienten im OFF der von gesunden Kontrollprobanden ähnelte, sich jedoch deutlich von der Performanz im ON unterschied: Patienten im OFF und Kontrollprobanden zeigten einen Fehleranstieg in der Dekonditionierungsphase der Nogo-Aufgabe, während sich im Verlauf der Go-Aufgabe keine Unterschiede der Fehlerrate entwickelten.

Umgekehrt trat ein Fehleranstieg bei Patienten im Levodopa-ON nur in der Dekonditionierungsphase der Go-Aufgabe auf, während dies in der Nogo-Aufgabe nicht der Fall war.

Die Fehleranstiege in der Dekonditionierungsphase können in erster Linie als ‚Carry-Over-Effekte’ im Sinne der Fortführung von in der Konditionierungsphase erlernten Verhaltensmustern verstanden werden. Die Modulation dieser Effekte durch

66

Levodopa-Medikation weist darauf hin, dass die Verfügbarkeit von Dopamin das Erlernen ‚neutraler’, also weder belohnter noch sanktionierter, Verhaltensweisen beeinflusst. Die differentiellen Effekte in Go- versus Nogo-Aufgabe wurden als Hinweis darauf verstanden, dass hohe Spiegel (in erster Linie innerhalb des dopaminergen mesokortikalen Systems) in pro-exekutiven Zusammenhängen (Go-Aufgabe) ‚habituelles’ Verhalten verstärken, während sie ─ entsprechend Ergebnissen aus dem Bereich des Belohnungslernens ─ implizite Lernleistungen eher abschwächen, sofern eine inhibitorische Leistung zu erbringen ist (Nogo-Bedingung). Aus klinischer Sicht ist diese Interpretation vor allem hinsichtlich verstärkter Passivität von Parkinsonpatienten von modellhaftem Interesse.

Entsprechenden Verhaltensweisen könnten demnach ─ nebst Krankheits-inhärenten

─ auch erlernte Faktoren zugrunde liegen, da dopaminerge Medikation in allen selektiven Handlungszusammenhängen (in denen auf nur einen aus vielen

‚neutralen’ Reizen zu reagieren bzw. zu handeln ist) das inaktive Grundverhalten verstärken würde.

67

Schriftenverzeichnis

1. Aarsland, D., J. P. Larsen, et al. (1999). "Range of neuropsychiatric disturbances in patients with Parkinson's disease." J Neurol Neurosurg Psychiatry 67(4): 492-496.

2. Agid, Y. (1991). "Parkinson's disease: pathophysiology." Lancet 337(8753):

1321-1324.

3. Albin, R. L., A. B. Young, et al. (1989). "The functional anatomy of basal ganglia disorders." Trends Neurosci 12(10): 366-375.

4. Alexander, G. E., M. R. DeLong, et al. (1986). "Parallel organization of functionally segregated circuits linking basal ganglia and cortex." Annu Rev Neurosci 9: 357-381.

5. Ardouin, C., V. Voon, et al. (2006). "Pathological gambling in Parkinson's disease improves on chronic subthalamic nucleus stimulation." Mov Disord 21(11): 1941-1946.

6. Bartholini, G. and A. Pletscher (1975). "Decarboxylase inhibitors." Pharmacol Ther B 1(3): 407-421.

7. Bechara, A., H. Damasio, et al. (1999). "Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making." J Neurosci 19(13): 5473-5481.

8. Bechara, A., H. Damasio, et al. (1998). "Dissociation Of working memory from decision making within the human prefrontal cortex." J Neurosci 18(1): 428-437.

9. Bechara, A., S. Dolan, et al. (2001). "Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers." Neuropsychologia 39(4): 376-389.

10. Beck, A. T., C. H. Ward, et al. (1961). "An inventory for measuring depression." Arch Gen Psychiatry 4: 561-571.

11. Bernheimer, H., W. Birkmayer, et al. (1962). "[Behavior of monoamine oxidase in the brain of man after therapy with monoamine oxidase inhibitors]." Wien Klin Wochenschr 74: 558-559.

68

12. Beste, C., R. Willemssen, et al. (2010). "Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects." Neuropsychologia 48(2): 366-373.

13. Birkmayer, W. (1969). "[Experimental results of the combined treatment of parkinsonism using L-DOPA and a decarboxylase inhibitory agent (Ro 4-4602)]." Wien Klin Wochenschr 81(39): 677-679.

14. Bokura, H., S. Yamaguchi, et al. (2005). "Event-related potentials for response inhibition in Parkinson's disease." Neuropsychologia 43(6): 967-975.

15. Bolam, J. P., J. J. Hanley, et al. (2000). "Synaptic organisation of the basal ganglia." J Anat 196 ( Pt 4): 527-542.

16. Bonifati, V., P. Rizzu, et al. (2003). "Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism." Science 299(5604): 256-259.

17. Cedarbaum, J. M. (1987). "Clinical pharmacokinetics of anti-parkinsonian drugs." Clin Pharmacokinet 13(3): 141-178.

18. Cepeda, C., N. A. Buchwald, et al. (1993). "Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated." Proc Natl Acad Sci U S A 90(20): 9576-9580.

19. Chen, N. H., I. M. White, et al. (2001). "Neuronal activity in dorsomedial frontal cortex and prefrontal cortex reflecting irrelevant stimulus dimensions." Exp Brain Res 139(1): 116-119.

20. Chevalier, G. and J. M. Deniau (1990). "Disinhibition as a basic process in the expression of striatal functions." Trends Neurosci 13(7): 277-280.

21. Chudasama, Y. and T. W. Robbins (2006). "Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans." Biol Psychol 73(1): 19-38.

22. Cohen, J. D., F. S. D., et al. (1993). "Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI." Human Brain Mapping 1(4): 293–304.

23. Cools, R., R. A. Barker, et al. (2001). "Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands." Cereb Cortex 11(12): 1136-1143.

69

24. Cools, R., R. A. Barker, et al. (2003). "L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease."

Neuropsychologia 41(11): 1431-1441.

25. Cools, R., S. J. Lewis, et al. (2007). "L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease."

Neuropsychopharmacology 32(1): 180-189.

26. Cooper, J. A., H. J. Sagar, et al. (1994). "Slowed central processing in simple and go/no-go reaction time tasks in Parkinson's disease." Brain 117 ( Pt 3):

517-529.

27. Corti, O., C. Hampe, et al. (2005). "Parkinson's disease: from causes to mechanisms." C R Biol 328(2): 131-142.

28. Dauer, W. and S. Przedborski (2003). "Parkinson's disease: mechanisms and models." Neuron 39(6): 889-909.

29. de Rijk, M. C., L. J. Launer, et al. (2000). "Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group." Neurology 54(11 Suppl 5): S21-23.

30. Destrebecqz, A. and A. Cleeremans (2001). "Can sequence learning be implicit? New evidence with the process dissociation procedure." Psychon Bull Rev 8(2): 343-350.

31. Di Monte, D. A. (2003). "The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins?" Lancet Neurol 2(9): 531-538.

32. Dias, R., T. W. Robbins, et al. (1996). "Dissociation in prefrontal cortex of affective and attentional shifts." Nature 380(6569): 69-72.

33. Dias, R., T. W. Robbins, et al. (1997). "Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test:

restriction to novel situations and independence from "on-line" processing." J Neurosci 17(23): 9285-9297.

34. Dienes, Z. a. B., D. (1997). "Implicit learning: Below the subjective threshold "

Psychonomic Bulletin & Review 4(1): 3-23.

35. Dodd, M. L., K. J. Klos, et al. (2005). "Pathological gambling caused by drugs used to treat Parkinson disease." Arch Neurol 62(9): 1377-1381.

70

36. Downes, J. J., A. C. Roberts, et al. (1989). "Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson's disease: evidence for a specific attentional dysfunction." Neuropsychologia 27(11-12): 1329-1343.

37. Dujardin, K., P. Sockeel, et al. (2007). "Characteristics of apathy in Parkinson's disease." Mov Disord 22(6): 778-784.

38. Eriksen, B. A. and C. W. Eriksen (1974). "Effects of noise letters upon the identification of a target letter in a nonsearch task." Perception &

Psychophysics 16(1): 143-149.

39. Evans, A. H., R. Katzenschlager, et al. (2004). "Punding in Parkinson's disease: its relation to the dopamine dysregulation syndrome." Mov Disord 19(4): 397-405.

40. Evans, A. H., A. D. Lawrence, et al. (2010). "Compulsive use of dopaminergic drug therapy in Parkinson's disease: reward and anti-reward." Mov Disord 25(7): 867-876.

41. Fahn, S., R. Elton, et al. (1987). "Unified Parkinson's Disease Rating Scale. ."

Recent

42. developments in Parkinson’s disease. 2: 153-163.

43. Fahn, S. and D. Sulzer (2004). "Neurodegeneration and neuroprotection in Parkinson disease." NeuroRx 1(1): 139-154.

44. Fellows, L. K. and M. J. Farah (2005). "Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans." Cereb Cortex 15(1): 58-63.

45. Ferraro, F. R., D. A. Balota, et al. (1993). "Implicit memory and the formation of new associations in nondemented Parkinson's disease individuals and individuals with senile dementia of the Alzheimer type: a serial reaction time (SRT) investigation." Brain Cogn 21(2): 163-180.

46. Fillenbaum, G., A. Heyman, et al. (1990). "Sensitivity and specificity of standardized screens of cognitive impairment and dementia among elderly black and white community residents." J Clin Epidemiol 43(7): 651-660.

47. Floresco, S. B. and O. Magyar (2006). "Mesocortical dopamine modulation of executive functions: beyond working memory." Psychopharmacology (Berl) 188(4): 567-585.

71

48. Floresco, S. B., O. Magyar, et al. (2006). "Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting."

Neuropsychopharmacology 31(2): 297-309.

49. Floresco, S. B. and A. G. Phillips (2001). "Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex." Behav Neurosci 115(4): 934-939.

50. Folstein, M. F., S. E. Folstein, et al. (1975). ""Mini-mental state". A practical method for grading the cognitive state of patients for the clinician." J Psychiatr Res 12(3): 189-198.

51. Forno, L. S. (1986). "Lewy bodies." N Engl J Med 314(2): 122.

52. Frank, M. J. (2005). "Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism." J Cogn Neurosci 17(1): 51-72.

53. Frank, M. J., J. Samanta, et al. (2007). "Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism." Science 318(5854): 1309-1312.

54. Frank, M. J., L. C. Seeberger, et al. (2004). "By carrot or by stick: cognitive reinforcement learning in parkinsonism." Science 306(5703): 1940-1943.

55. Freedman, M. and M. Oscar-Berman (1986). "Selective delayed response deficits in Parkinson's and Alzheimer's disease." Arch Neurol 43(9): 886-890.

56. Frensch, P. A., J. Lin, et al. (1998). "Learning versus behavioral expression of the learned: The effects of a secondary tone-counting task on implicit learning in the serial reaction task " Psychological Research 61(2): 83-98.

57. Gancher, S. T., J. G. Nutt, et al. (1987). "Peripheral pharmacokinetics of levodopa in untreated, stable, and fluctuating parkinsonian patients."

Neurology 37(6): 940-944.

58. Gasser, T. (2009). "Molecular pathogenesis of Parkinson disease: insights from genetic studies." Expert Rev Mol Med 11: e22.

59. Gerfen, C. R. (2000). "Molecular effects of dopamine on striatal-projection pathways." Trends Neurosci 23(10 Suppl): S64-70.

60. Gerfen, C. R. and W. S. Young, 3rd (1988). "Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study."

Brain Res 460(1): 161-167.

72

61. Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analysis of variance and covariance. Review of educational research, 42, 237–288.

62. Glick, S. D., D. A. Ross, et al. (1982). "Lateral asymmetry of neurotransmitters in human brain." Brain Res 234(1): 53-63.

63. Goldman-Rakic, P. S. (1996). "Regional and cellular fractionation of working memory." Proc Natl Acad Sci U S A 93(24): 13473-13480.

64. Gorelova, N. A. and C. R. Yang (2000). "Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro." J Neurophysiol 84(1): 75-87.

65. Gotham, A. M., R. G. Brown, et al. (1988). "'Frontal' cognitive function in patients with Parkinson's disease 'on' and 'off' levodopa." Brain 111 ( Pt 2):

299-321.

66. Graef, S., G. Biele, et al. (2010). "Differential influence of levodopa on reward-based learning in Parkinson's disease." Front Hum Neurosci 4: 169.

67. Gulledge, A. T. and D. B. Jaffe (1998). "Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex." J Neurosci 18(21): 9139-9151.

68. Hodgson, T. L., D. Mort, et al. (2002). "Orbitofrontal cortex mediates inhibition of return." Neuropsychologia 40(12): 1891-1901.

69. Hoehn, M. M. and M. D. Yahr (1967). "Parkinsonism: onset, progression and mortality." Neurology 17(5): 427-442.

70. Hsiao, A. T. and A. S. Reber (2001). "The dual-task SRT procedure: fine-tuning the timing." Psychon Bull Rev 8(2): 336-342.

71. Hughes, A. J., S. E. Daniel, et al. (2002). "The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service." Brain 125(Pt 4): 861-870.

72. Hughes, A. J., S. E. Daniel, et al. (1992). "Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases." J Neurol Neurosurg Psychiatry 55(3): 181-184.

73. Ibanez, P., A. M. Bonnet, et al. (2004). "Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease." Lancet 364(9440): 1169-1171.

73

74. Jackson, D. M. and A. Westlind-Danielsson (1994). "Dopamine receptors:

molecular biology, biochemistry and behavioural aspects." Pharmacol Ther 64(2): 291-370.

75. Jackson, G. M., S. R. Jackson, et al. (1995). "Serial reaction time learning and Parkinson's disease: evidence for a procedural learning deficit."

Neuropsychologia 33(5): 577-593.

76. Jenner, P. and C. W. Olanow (2006). "The pathogenesis of cell death in Parkinson's disease." Neurology 66(10 Suppl 4): S24-36.

77. Jorga, K., B. Fotteler, et al. (1997). "The effect of COMT inhibition by tolcapone on tolerability and pharmacokinetics of different levodopa/benserazide formulations." Eur Neurol 38(1): 59-67.

78. Kalbe, E., P. Calabrese, et al. (2008). "Screening for cognitive deficits in Parkinson's disease with the Parkinson neuropsychometric dementia assessment (PANDA) instrument." Parkinsonism Relat Disord 14(2): 93-101.

79. Kirik, D., C. Rosenblad, et al. (2002). "Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system." J Neurosci 22(7): 2780-2791.

80. Kish, S. J., K. Shannak, et al. (1988). "Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications." N Engl J Med 318(14): 876-880.

81. Klinke, Pape, Kurtz, Silbernagl: Physiologie. 6. Auflage, Thieme, 2009: 757-799

82. Kubota, K. and H. Niki (1971). "Prefrontal cortical unit activity and delayed alternation performance in monkeys." J Neurophysiol 34(3): 337-347.

83. Langston, J. W., P. Ballard, et al. (1983). "Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis." Science 219(4587): 979-980.

84. Lawrence, A. D., A. H. Evans, et al. (2003). "Compulsive use of dopamine replacement therapy in Parkinson's disease: reward systems gone awry?"

Lancet Neurol 2(10): 595-604.

85. Löffler, Petrides Heinrich: Biochemie und Pathobiochemie. 8. Auflage, Springer, 2006: 1024-1036

86. Logan, G. D. (1985). "EXECUTIVE CONTROL OF THOUGHT AND ACTION."

Acta Psychologica 60: 193-210.

74

87. MacAvoy, M. G., J. P. Gottlieb, et al. (1991). "Smooth-pursuit eye movement representation in the primate frontal eye field." Cereb Cortex 1(1): 95-102.

88. Manes, F., B. Sahakian, et al. (2002). "Decision-making processes following damage to the prefrontal cortex." Brain 125(Pt 3): 624-639.

89. Marsden, C. D., P. E. Barry, et al. (1973). "Treatment of Parkinson's disease with levodopa combined with L-alpha-methyldopahydrazine, an inhibitor of extracerebral DOPA decarboxylase." J Neurol Neurosurg Psychiatry 36(1): 10-14.

90. Marsden, C. D. and J. D. Parkes (1977). "Success and problems of long-term levodopa therapy in Parkinson's disease." Lancet 1(8007): 345-349.

91. McCarthy, G., A. Puce, et al. (1996). "Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI." Cereb Cortex 6(4): 600-611.

92. Micieli, G., P. Tosi, et al. (2003). "Autonomic dysfunction in Parkinson's disease." Neurol Sci 24 Suppl 1: S32-34.

93. Mimura, M., R. Oeda, et al. (2006). "Impaired decision-making in Parkinson's disease." Parkinsonism Relat Disord 12(3): 169-175.

94. Miyasaki, J. M., K. Al Hassan, et al. (2007). "Punding prevalence in Parkinson's disease." Mov Disord 22(8): 1179-1181.

95. Molina, J. A., M. J. Sainz-Artiga, et al. (2000). "Pathologic gambling in Parkinson's disease: a behavioral manifestation of pharmacologic treatment?"

Mov Disord 15(5): 869-872.

96. Muslimovic, D., B. Post, et al. (2007). "Motor procedural learning in Parkinson's disease." Brain 130(Pt 11): 2887-2897.

97. Naccache, L., S. Dehaene, et al. (2005). "Effortless control: executive attention and conscious feeling of mental effort are dissociable." Neuropsychologia 43(9): 1318-1328.

98. Nichols, W. C., N. Pankratz, et al. (2005). "Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease." Lancet 365(9457):

410-412.

99. Nieoulon, A. (2002). "Dopamine and the regulation of cognition and attention.

." Progress in Neurobiology 67: 63-83.

75

100. Nieuwenhuis, S., J. F. Stins, et al. (2006). "Accounting for sequential trial effects in the flanker task: conflict adaptation or associative priming?" Mem Cognit 34(6): 1260-1272.

101. Nissen, M. J. a. B., P. (1987). "Attentional requirements of learning: Evidence from performance measures." Cognitive Psychology 19: 1-32.

102. Nussbaum, R. L. and C. E. Ellis (2003). "Alzheimer's disease and Parkinson's disease." N Engl J Med 348(14): 1356-1364.

103. Nutt, J. G. and J. H. Fellman (1984). "Pharmacokinetics of levodopa." Clin Neuropharmacol 7(1): 35-49.

104. Nutt, J. G., W. R. Woodward, et al. (1992). "Effect of long-term therapy on the pharmacodynamics of levodopa. Relation to on-off phenomenon." Arch Neurol 49(11): 1123-1130.

105. Olanow, C. W. and W. G. Tatton (1999). "Etiology and pathogenesis of Parkinson's disease." Annu Rev Neurosci 22: 123-144.

106. Oldfield, R. C. (1971). "The assessment and analysis of handedness: the Edinburgh inventory." Neuropsychologia 9(1): 97-113.

107. O'Sullivan, S. S., A. Djamshidian, et al. (2010). "Excessive hoarding in Parkinson's disease." Mov Disord 25(8): 1026-1033.

108. Owen, A. M., A. C. Roberts, et al. (1993). "Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease." Brain 116 ( Pt 5): 1159-1175.

109. Owen, A. M., A. C. Roberts, et al. (1991). "Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man." Neuropsychologia 29(10): 993-1006.

110. Parkinson, J. (2002). "An essay on the shaking palsy. 1817." J Neuropsychiatry Clin Neurosci 14(2): 223-236; discussion 222.

111. Periquet, M., C. Lucking, et al. (2001). "Origin of the mutations in the parkin gene in Europe: exon rearrangements are independent recurrent events, whereas point mutations may result from Founder effects." Am J Hum Genet 68(3): 617-626.

112. Peterson, D. A., C. Elliott, et al. (2009). "Probabilistic reversal learning is impaired in Parkinson's disease." Neuroscience 163(4): 1092-1101.

76

113. Polymeropoulos, M. H., J. J. Higgins, et al. (1996). "Mapping of a gene for Parkinson's disease to chromosome 4q21-q23." Science 274(5290): 1197-1199.

114. Potenza, M. N., V. Voon, et al. (2007). "Drug Insight: impulse control disorders and dopamine therapies in Parkinson's disease." Nat Clin Pract Neurol 3(12):

664-672.

115. Ratcliff, R., A. Thapar, et al. (2004). "A diffusion model analysis of the effects of aging on recognition memory." J Mem Lang 50(4): 408-424.

116. Reber, A. S. (1967). "Implicit learning of artificial grammars. ." Journal of Verbal Learning & Verbal behavior 6: 855-863.

117. Reese, J. P., Y. Winter, et al. (2011). "[Parkinson's disease: cost-of-illness in an outpatient cohort]." Gesundheitswesen 73(1): 22-29.

118. Rogers, R. D., B. J. Sahakian, et al. (1998). "Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson's disease." Brain 121 ( Pt 5): 815-842.

119. Rolls, E. T. (1999). "The functions of the orbitofrontal cortex. ." Neurocase 5:

301-312.

120. Sawaguchi, T., M. Matsumura, et al. (1988). "Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex." Neurosci Res 5(5): 465-473.

121. Schwartz, J. E., L. Jandorf, et al. (1993). "The measurement of fatigue: a new instrument." J Psychosom Res 37(7): 753-762.

122. Seeman, P., H. C. Guan, et al. (1993). "Dopamine D4 receptors elevated in schizophrenia." Nature 365(6445): 441-445.

123. Segawa, M. (2000). "Development of the nigrostriatal dopamine neuron and the pathways in the basal ganglia." Brain Dev 22 Suppl 1: S1-4.

124. Seger, C. A. (1994). "Implicit learning." Psychol Bull 115(2): 163-196.

125. Seger, C. A. (2006). "The basal ganglia in human learning." Neuroscientist 12(4): 285-290.

126. Shanks, D. R. a. S. J., M.F. (1994). "Characteristics of dissociable human learning systems. ." Behavioral and Brain Sciences 17: 367-395.

127. Shohamy, D., C. E. Myers, et al. (2005). "The role of dopamine in cognitive sequence learning: evidence from Parkinson's disease." Behav Brain Res 156(2): 191-199.

77

128. Shurman, B., W. P. Horan, et al. (2005). "Schizophrenia patients demonstrate a distinctive pattern of decision-making impairment on the Iowa Gambling Task." Schizophr Res 72(2-3): 215-224.

129. Siegert, R. J., K. D. Taylor, et al. (2006). "Is implicit sequence learning impaired in Parkinson's disease? A meta-analysis." Neuropsychology 20(4):

490-495.

130. Singer, T. P., N. Castagnoli, Jr., et al. (1987). "Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine." J Neurochem 49(1): 1-8.

131. Singleton, A. B., M. Farrer, et al. (2003). "alpha-Synuclein locus triplication causes Parkinson's disease." Science 302(5646): 841.

132. Smith, J., R. J. Siegert, et al. (2001). "Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson's disease." Brain Cogn 45(3): 378-391.

133. Starns, J. J. and R. Ratcliff (2010). "The effects of aging on the speed-accuracy compromise: Boundary optimality in the diffusion model." Psychol Aging 25(2): 377-390.

134. Strange, P. G. (1988). "The structure and mechanism of neurotransmitter receptors. Implications for the structure and function of the central nervous system." Biochem J 249(2): 309-318.

135. Strange, P. G. (1993). "Dopamine receptors in the basal ganglia: relevance to Parkinson's disease." Mov Disord 8(3): 263-270.

136. Swainson, R., R. D. Rogers, et al. (2000). "Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions:

possible adverse effects of dopaminergic medication." Neuropsychologia 38(5): 596-612.

137. Tseng, K. Y. and P. O'Donnell (2004). "Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms." J Neurosci 24(22): 5131-5139.

138. Twelves, D., K. S. Perkins, et al. (2003). "Systematic review of incidence studies of Parkinson's disease." Mov Disord 18(1): 19-31.

139. Utter, A. A. and M. A. Basso (2008). "The basal ganglia: an overview of circuits and function." Neurosci Biobehav Rev 32(3): 333-342.

78

140. Valente, E. M., P. M. Abou-Sleiman, et al. (2004). "Hereditary early-onset Parkinson's disease caused by mutations in PINK1." Science 304(5674):

1158-1160.

141. Verin, M., A. Partiot, et al. (1993). "Delayed response tasks and prefrontal lesions in man--evidence for self generated patterns of behaviour with poor environmental modulation." Neuropsychologia 31(12): 1379-1396.

142. Vermersch, P., A. Delacourte, et al. (1993). "Dementia in Parkinson's disease:

biochemical evidence for cortical involvement using the immunodetection of abnormal Tau proteins." Ann Neurol 33(5): 445-450.

143. Wade, D. N., P. T. Mearrick, et al. (1973). "Active transport of L-dopa in the intestine." Nature 242(5398): 463-465.

144. Wang, Y. and P. S. Goldman-Rakic (2004). "D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons." Proc Natl Acad Sci U S A 101(14): 5093-5098.

145. Westwater, H., J. McDowall, et al. (1998). "Implicit learning in Parkinson's disease: evidence from a verbal version of the serial reaction time task." J Clin Exp Neuropsychol 20(3): 413-418.

146. Williams, G. V. and P. S. Goldman-Rakic (1995). "Modulation of memory fields by dopamine D1 receptors in prefrontal cortex." Nature 376(6541): 572-575.

147. Wilson, F. A., S. P. Scalaidhe, et al. (1993). "Dissociation of object and spatial processing domains in primate prefrontal cortex." Science 260(5116): 1955-1958.

148. Wylie, S. A., J. C. Stout, et al. (2005). "Activation of conflicting responses in Parkinson's disease: evidence for degrading and facilitating effects on response time." Neuropsychologia 43(7): 1033-1043.

149. Zahrt, J., J. R. Taylor, et al. (1997). "Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance." J Neurosci 17(21): 8528-8535.

79

Curriculum vitae

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.

80

81

Publikation

Die Daten der vorliegenden Arbeit bildeten die Grundlage für die folgend genannte Publikation:

Marzinzik, F., Wotka, J., Wahl, M., Krugel, L.K., Kordsachia, C., Klostermann, F.:

Modulation of habit formation by levodopa in Parkinson's disease (PLoS One.

2011;6(11):e27695. Epub 2011 Nov 16.).

82

Danksagung

Mein Dank gilt als erstes allen Probanden, die an der Studie teilnahmen. Ein weiterer großer Dank geht an meinen Doktorvater PD Dr. Fabian Klostermann, der mich über die gesamte Dauer des Projekts mit großem persönlichem Engagement und viel Zeit unterstützt hat.

Weiterhin zu Dank verpflichtet bin ich den anderen Mitgliedern der Arbeitsgruppe

„Kognition und Motorik“ des CBF, insbesondere Dr. Frank Marzinzik, Dr. Michael Wahl und Catarina Kordsachia für die Hilfe bei der Erhebung und Auswertung der verwendeten Daten.

Als letztes möchte ich meinen Eltern, Irma und Hans - Erwin Wotka, für ihre großartige Unterstützung nicht nur bei der Entstehung dieser Arbeit, sondern über den Verlauf meines gesamten Medizinstudiums danken.