• Keine Ergebnisse gefunden

7. Conclusion and Outlook 105

7.2. Outlook

The performance of the MOPA system presented here pretty much meets the require-ments for coherent optical communication applications in space. However, the charac-teristics can further be improved as follows:

The output power in combination with the beam quality can be improved by opti-mizing amplifier geometries like section lengths or opening angle. The linewidth can be reduced by realizing master oscillators with even longer cavity lengths or higher facet re-flectivities. If the cavity length of a monolithic laser can not further be increased then an extended cavity laser could be used. The size of the MOPA system can be reduced by a redesign of the optical setup. It would further be advantageous to implement a fiber cou-pling within a space-qualified package. As mentioned before, the micro-isolator needs to be space qualified and if no external isolator is used a double-stage micro-isolator could further reduce feedback sensitivity.

Furthermore, the origin of the physical effects that determine the FWHM linewidth need to be discussed in more detail. In particular it should be investigated whether the semiconductor laser itself also contributes to the technical noise and thus to the FWHM linewidth.

Coupling 1 W of optical power through a single mode fiber reliably is considered to be challenging. Large mode field fibers might accept higher power levels, however, it remains to be investigated whether coupling over several thousand hours can be realized. Fiber coupling could be avoided by designing the LCT to emit into free space. However, in this case the signals phase modulation will have to be introduced on the micro-optical bench itself. Phase modulation can be realized by integrating aLiN bO3 crystal into the micro-optical bench. The preamplifier section of the amplifier might also be used for phase modulation, however, it remains uncertain if the desired modulation depth and modulation speed can be provided.

A micro-integrated narrow linewidth laser source for integration in a coherent optical communication system might be realized as depicted in fig. 7.1 (left). An electro-optic modulator (EOM) is providing a fast phase modulation on the micro-optical bench directly. The EOM is located after the isolator to avoid any optical feedback from the EOM to the master oscillator. This location also ensures that only relatively low power levels need to be modulated. The MOPA output is collimated by a macroscopic lens as can be seen in fig. 7.1 (right). The amplifier is followed by a slow axis (SAC) lens in order to correct the astigmatism of the power amplifier. The proper way to mount the macroscopic lens is not discussed here, however, it would have to be mounted in a

mechanically stable way.

MO

PA EOM isolator

SAC

MOPA system

macroscopic lens

Figure 7.1.: Outlook of a possible implementation of a semiconductor based laser source for the use in coherent optical communication.

A shortcoming of the MOPA system presented in chapter 6 is that the emission fre-quency can only be tuned by adjusting the temperature of the entire system, including the CCP. This tuning is slow, since the entire device needs to be heated. Furthermore the output power of the system depends on the mount temperature since the performance of the amplifier is temperature dependent. To increase the tuning speed and to decouple the system temperature from the emission frequency, heater section can be placed next to the grating as depicted in fig. 7.2 (left) and already presented in the literature [125].

First experimental results look promising as can be seen in fig. 7.2 (right). The heater consists of small electric stripes with widths of 30µm which are located next to the grating. The electric current flowing through the stripe heats up the adjacent area including the grating. The wavelength can be tuned by 2.5 nm by the heater section.

However, the tuning is not continuous so far, and a "smart" simultaneous tuning of the injection current, the mount temperature, and the current through the heater sections will most likely be required to obtain fast continuous tuning over a wide wavelength range.

The frequency noise spectra recorded by the method described in 4.2.3 are only valid for large carrier offset frequencies. However, for an application like spectroscopy the close-in phase-noise might be of more importance.

Some RF spectrum analyzer can be used to record I-Q data carrying time resolved instantaneous phase information. The Fourier transform of the instantaneous phase yields the frequency noise spectrum which is also valid at small carrier offset frequencies.

Further, amplitude and phase noise can be separated by this method.

2 heater sections

heater contacts

0 100 200 300 400 500

1061.5 1062.0 1062.5 1063.0 1063.5 1064.0 1064.5

wavelength[nm]

heater current [mA]

I = 200 mA

T = 25°C

Figure 7.2.: (left) DBR laser with heater section (not to scale). (right) First results of the tuning characteristics by the heater section. The emission wavelength as obtained by a wavemeter is plotted vs. the current through the heater section.

The following scientific publications have been prepared in connection with this thesis:

Articles

K. Paschke, S. Spießberger, C. Kaspari, D. Feise, C. Fiebig, G. Blume, H. Wenzel, A.

Wicht, and G. Erbert, “High-power distributed Bragg reflector ridge-waveguide diode laser with very small spectral linewidth”. Optics Letters, vol. 35, pp. 402-404, 2010.

S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm”. Journal of Lightwave Technology, vol. 28, pp. 2611-2616, 2010.

S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, G. Erbert, and G. Tränkle, “DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz”. Applied Physics B, vol. 104, pp. 813-818, 2011.

S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, A. Peters, G. Erbert, G. Tränkle, "Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz". Optics Express, vol. 19, pp. 7077-7083, 2011.

A. Bawamia, G. Blume, B. Eppich, A. Ginolas, S. Spießberger, M. Thomas, B. Sumpf, and G. Erbert, “Miniaturized tunable external cavity diode laser with single-mode oper-ation and a narrow linewidth at 633 nm”. IEEE Photonics Technology Letters, vol. 23, pp. 1041-1135, 2011.

Conference Contributions

S. Spießberger, M. Schiemangk, A. Wicht, and G. Erbert, "Compact narrow linewidth laser sources for coherent optical communication". Laser Optics Berlin, Berlin, 2010.

S. Spießberger, M. Schiemangk, A. Wicht, and G. Erbert, "Narrow linewidth DBR-RW lasers emitting near 1064 nm". Conference on Lasers and Electro-Optics (CLEO), OSA, CtuKK6, San Jose, 2010.

S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, J. Fricke, and G. Er-bert, "1 W semiconductor based laser module with a narrow linewidth emitting near 1064 nm". Photonics West, SPIE, 7953-36, San Francisco 2011.

S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, J. Fricke, G. Erbert, and G. Tränkle, "1 W narrow linewidth semiconductor-based laser module emitting near 1064 nm for coherent optical communication in space". IEEE International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, pp. 322-324, 2011.

E. Luvsandamdin, G. Mura, S. Spießberger, A. Wicht, A. Sahm, H. Wenzel, G. Erbert, and G. Tränkle, "Micro-integrated ECDLs for precision spectroscopy in space". IEEE International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, pp. 381-383, 2011.

S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, G. Erbert, and G. Trän-kle, "Narrow-linewidth high-power semiconductor-based laser module". Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, CB-P10, 2011.

C. Kürbis, A. Kohfeldt„ E. Luvsandamdin, M. Schiemangk, S. Spießberger, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, "Mikrointegrierte Lasersysteme für die höchstau-flösende Atomspektroskopie und die kohärente Nachrichtenübertragung im Weltraum".

60. Deutscher Luft- und Raumfahrtkongress, Bremen, 2011.

S. Spießberger, M. Schiemangk, A. Sahm, F. Bugge, J. Fricke, H. Wenzel, A. Wicht, G. Erbert, and G. Tränkle, "All-semiconcutor based, narrow linewidth, high power laser system for laser communication applications in space at 1060 nm". Photonics West, SPIE, 8246-18, San Francisco 2012.

A. Wicht, E. Luvsandamdin, A. Kohfeldt, M. Schiemangk, S. Spießberger, A. Sahm, F.

Bugge, J. Fricke, H. Wenzel, A. Peters, G. Erbert, and G. Tränkle, "Micro-integrated, high power, narrow linewidth diode lasers for precision quantum optics experiments in space". Photonics West, SPIE, 8265-21, San Francisco 2012.

B. Sumpf, A. Bawamia, G. Blume, B. Eppich, A. Ginolas, S. Spießberger, M. Thomas, and G. Erbert, "Continuously current-tunable, narrow line-width miniaturized external cavity diode laser at 633 nm". Photonics West, SPIE, 8277-40, San Francisco 2012.

A. Bawamia, B. Sumpf, G. Blume, B. Eppich, A. Ginolas, S. Spießberger, M. Thomas, and G. Erbert, "Miniaturized, current-tunable, external cavity diode laser with single-mode emission and a narrow line-width at 633 nm". Laser Optics Berlin, submitted, Berlin 2012.

In the following the dependence of the threshold gain and the mode discrimination of a DFB laser in dependence of the facet-grating phase of the rear facet will be presented.

The threshold gain and the detuning from the Bragg condition of three modes on either sides of the stop band are shown in fig. B.1 with κL (κ: coupling coefficient of the grating,L: length of the cavity) as a parameter. The simulations are carried out as described in [68]. Fig. B.1 (left) and (right) present simulation results for a DFB laser with a rear facet-grating phase ΦL= 0 andπ/2, respectively. For a given κL, the mode with the lowest threshold gain will start to oscillate (modes possible are marked for κL

= 0.2 and 0.4). ForΦL= 0 the mode m = -1 exhibits the lowest threshold gain and thus a single mode operation can be expected. In contrast, forΦL =π/2 the modes m = -1 and m = 1 have the same threshold gain and thus oscillation of both modes would be supported. Accordingly, depending on the facet-grating phase, DFB lasers with a high reflective coating on the rear side can either emit in a stable single mode or theoretically in two modes. Note, that well above threshold typically only one mode would lase for ΦL =π/2 as well, however, mode hops between the two modes are likely to happen.

-15 -10 -5 0 5 10 15

0.0 0.5 1.0 1.5 2.0 2.5 3.0

kL = 0.4 kL = 0.2 m=-3

m=-2

m=-1

m=+3

m=+2

L

detuning from Bragg condition L m=+1

-15 -10 -5 0 5 10 15

0.0 0.5 1.0 1.5 2.0 2.5 3.0

L

detuning from Bragg condition L kL = 0.4 kL = 0.2 m=-3

m=-2

m=-1

m=+3

m=+2

m=+1

Figure B.1.: Threshold gain and detuning from Bragg condition for three modes on each side of the stop band of DFB lasers with κL as a parameter. (left) DFB laser with RL = 0.95, R0 = 104,ΦL = 0,Φ0 = 0. (right) DFB laser with RL= 0.95, R0 = 104,ΦL=π/2,Φ0 = 0.

Pumped Solid State Laser

Current coherent LCT demonstrators in space make use of Nd:YAG NPRO laser sources.

In the following, the linewidth results of the MOPA systems presented in 6.3 are there-fore compared to commercially available free-running NPRO lasers (Lightwave 122 and Lightwave 124) that have been provided by the "AG Optische Metrologie, Humboldt Universität zu Berlin". Heterodyne linewidth measurement results with a "weak" lock are depicted in fig. C.1. For comparison, the results of the MOPA systems are also displayed. The negative feedback signal, required for the "weak" lock, was fed into the fast modulation port of the NPRO drivers.

The FWHM linewidth corresponds to 130 kHz and 6 kHz for the micro-integrated MOPA systems and the NPRO lasers, respectively as obtained by the linear plot (fig.

C.1 (left)) of the RF beat note spectrum (note that this is the linewidth of the beat note signal and not that of a single laser).

The logarithmic plot (fig. C.1 (right)) reveals pronounced peaks that most likely are caused by injection current noise.

-0.4 -0.2 0.0 0.2 0.4

0.0 0.2 0.4 0.6 0.8 1.0

beat note, MISER = 6 kHz

normalizedRFpower

detuning from carrier [MHz]

MOPA

MISER

beat note, DBR

= 130 kHz

-5 -4 -3 -2 -1 0 1 2 3 4 5

-80 -60 -40 -20 0

RFpower[dB]

detuning from carrier [MHz]

MOPA

MISER

Figure C.1.: Comparison of RF beat note spectra of optically pumped solid state lasers (NPRO) with the micro-integrated MOPA laser systems. (left) Linear scale.

(right) Logarithmic scale.

Even if the linewidth results presented within this work are, to our knowledge, the best that have been achieved for semiconductor lasers so far, the results presented in fig. C.1 show that optically pumped solid state lasers can still provide a narrower linewidth. However, as presented in table 2.1, these extremely narrow linewidths are not required for coherent optical communication. Furthermore, if required, the linewidth of

semiconductor lasers can be reduced by electrical feedback or by locking to an external cavity. In addition, semiconductor lasers provide a variety of other important advantages compared to NPRO lasers already mentioned in the introduction like compactness, high efficiency, mechanical stability, and direct modulation capability.

• 8 gRMS, all three axes, for 120 s:

20 Hz-400 Hz 0.0045 g2/Hz 400 Hz-600 Hz 0.0675 g2/Hz 600 Hz-1300 Hz 0.0045 g2/Hz 1300 Hz-2000 Hz 0.0675 g2/Hz

• 21 gRMS, all three axes, for 180 s:

20 Hz 0.11 g2/Hz 20 Hz-50 Hz +6 dB/oct 50 Hz-300 Hz 0.7 g2/Hz 300 Hz-500 Hz -7.4 dB/oct 500 Hz-1000 Hz 0.2 g2/Hz 1000 Hz-2000 Hz -6 dB/oct 2000 Hz 0.05 g2/Hz

• Pyro shocks, all three axes:

100 Hz 20 g 1500 Hz 1500 g 10000 Hz 1500 g

• 29 gRMS, all three axes, 180 s:

20 Hz-70 Hz +6 dB/oct 70 Hz-300 Hz 1.35 g2/Hz 300 Hz-406 Hz -12 dB/oct 500 Hz-1100 Hz 0.4 g2/Hz 1100 Hz-2000 Hz -12 dB/oct

The following abbreviations and symbols are widely used within this work:

Abbreviations

Al aluminum

As arsenide

BPSK binary phase shift keying COD catastrophical optical damage DBR distributed Bragg reflector DFB distributed feedback

DLR Deutsches Zentrum für Luft- und Raumfahrt e. V.

ECDL external (sometime also called extended) cavity diode laser ESA European space agency

FWHM full width at half maximum

Ga gallium

GEO geostationary orbit

In indium

LCT laser communication terminal LEO low earth orbit

MOPA master oscillator power amplifier NPRO nonplanar ring oscillator

PSK phase shift keying RF radio frequency

Symbols

α linewidth enhancement factor

αef f effective linewidth enhancement factor γ FWHM of Lorentzian signal power spectrum

∆f frequency detuning from carrier

∆ν spectral linewidth

∆νsp intrinsic spectral linewidth

∆νtechnical technical linewidth

κ coupling coefficient of the grating

λ wavelength

ν photon frequency

Φ phase of an optical field Φ0 front facet-grating phase ΦL rear facet-grating phase

ω angular frequency of an optical field c vacuum speed of light

f frequency

Fwhitenoise constant floor in frequency noise spectrum

h Plancks constant

I injection current

IM O injection current into master oscillator Iphot total number of photons in the laser mode

IP re injection current into the ridge waveguide preamplifier section IT A injection current into tapered amplifier section

k amount of 1/f noise

K longitudinal spontaneous emission enhancement factor L length of the cavity

ng group index

nsp spontaneous emission factor

P optical power

q elementary charge Rf reflectivity of front facet RL reflectivity of rear facet

Rsp rate of spontaneous emission into the lasing mode S0 amount of white noise

In the following, the FBH internal nomenclature of the devices used in this work are given.

Type length Rf Rr presented in figures charge testing bar diode field

DFB 1 mm AR 95% 5.3, 5.8 (left) C1421-6-1 06 18 08

DFB 1 mm AR 95% 5.3, 5.4 (left), 5.5 (left), C1421-6-1 06 18 09 5.6, 5.8 (left)

DFB 2 mm AR 95% 5.3, 5.7, 5.8 (right) C1421-6-1 06 16 08

DFB 2 mm AR 95% 5.3, 5.4 (right), 5.5 (right), C1421-6-1 06 16 09 5.7, 5.8 (right)

DBR 4 mm 1% AR 5.10, 5.11 (left), 5.12 (left), C1353-3 00 02 03 5.14, 5.15

DBR 4 mm 30% AR 5.10, 5.11 (right), 5.12 (right), C1353-3 00 01 01 5.13, 5.16, 5.17

DBR 4 mm 30% AR 5.10, 5.16, 5.17 C1353-3 00 01 02

MOPA 1 6.7, 6.8, 6.9, 6.10 (left), 6.10 (right)

MO: DBR 4 mm 30% AR 6.11, 6.12, 6.14, 6.15, C1353-3 00 01 03

PA: TA 4 mm AR AR 6.16, 6.17 (right), 6.18 C0385-3 04 05 18

MOPA 2

MO: DBR 4 mm 30% AR 6.11, 6.12, 6.16, 6.18 (right) C1353-3 00 03 02

PA: TA 4 mm AR AR B1072-3 04 01 18

MOPA 3

MO:DBR 4 mm 30% AR 6.5, 6.6, 6.13 C1353-3 00 03 09

PA: TA 4 mm AR AR B1072-3 04 08 19

Table F.1.: List of devices according to FBH nomenclature and their appearance in graphs.

[1] M. Gregory, F. Heine, H. Kämpfer, R. Meyer, R. Fields, and C. Lunde. “TESAT laser communication terminal performance results on 5.6 Gbit coherent inter satel-lite and satelsatel-lite to ground links”. ICSO 2010, 2010.

[2] R. Daddato, K. Schulz, and I. Zayer. “Deep space science downlinks via optical communication”. ICSOS 2011, pages 8–13, 2011.

[3] B. Smutny, H. Kämpfer, G. Mühlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinardth, A. Freier, R. Lange, K. Böhmer, T. Feldhaus, J. Müller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy.

“5.6 Gbps optical intersatellite communication link”. Proc. SPIE, 7199, 2009.

[4] C. Kaiser, P. Smith, and M. Shafi. “An improved optical heterodyne DPSK receiver to combat laser phase noise”. J. Lightwave Technol., 13:525–533, 1995.

[5] S. Savory and A. Hadjifotiou. “Laser linewidth requirements for optical DQPSK systems”. IEEE Photonic. Tech. L., 16:930–932, 2004.

[6] S. Norimatsu and K. Iwashita. “Linewidth requirements for optical synchronous detection systems with nonnegligible loop delay time”. J. Lightwave Technol., 10:341–349, 1992.

[7] J. Barry and J. Kahn. “Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying”. J. Lightwave Technol., 10:1939–

1951, 1992.

[8] E. Ip and M. Kahn. “Carrier synchronization for 3- and 4-bit-per-symbol optical transmission”. J. Lightwave Technol., 23:4110–4124, 2005.

[9] J. Kahn. “Modulation and detection techniques for optical communication sys-tems”. Optical Amplifiers and their applications/coherent optical technologies and applications, CThC1, 2006.

[10] S. Lambert and W. Casey. “Laser communication in space”. Artech House, Inc., 1995.

[11] D. Davis, R. Deadrick, and J. Stahlmann. “ALGS: Design and testing of an earth to satellite optical transceiver”. Proc. SPIE, 1866:107–115, 1993.

[12] D. Boronson. “An overview of Lincoln Laboratory development of lasercom tech-nologies for space”. Proc. SPIE, 1866:30–39, 1993.

[13] T. Nielsen and J-C. Guillen. “SILEX: The first European optical communication terminal in orbit”. ESA bulletin, 1998.

[14] B. Laurent. “SILEX: Overview on the European optical communications pro-gramme”. Acta Astronautica, 37:417–423, 1995.

[15] B. Smutny, R. Lange, H. Kämpfer, D. Dallmann, G. Mühlnikel, M. Reinhardt, K. Saucke, U. Sterr, and B. Wandernoth. “In-orbit verification of optical inter-satellite communication links based on homodyne BPSK”. Proc. SPIE, 6877, 2008.

[16] M. Gregory, F. Heine, H. Kämpfner, and R. Lange. “Coherent inter-satellite and satellite-ground laser links”. Proc. SPIE, 7923:792303–1, 2011.

[17] R. Fields, D. Kozlowski, H. Yura, R. Wong, J. Wicker, C. Lunde, M. Gregory, B. Wandermoth, and F. Heine. “5.625 Gbps biderectional laser communications measurements between the NFIRE satellite and an optical ground station”. ICSOS 2011, pages 44–53, 2011.

[18] M. Toyoshima. “Trends in laser communications in space”. Space Japan Rev., 70:1–6, 2010.

[19] Z. Sodnik, B. Furch, and H. Lutz. “Optical intersatellite communication”. IEEE J. Sel. Top. Quant., 16:1051–1057, 2010.

[20] A. Belmonte and J. Kahn. “Efficiency of complex modulation methods in coherent free-space optical links”. Opt. Express, 18:3928–3937, 2010.

[21] E. Ip, D. Büchter, C. Langrock, J. Kahn, H. Herrmann, W. Sohler, and M. Fejer.

“QPSK transmission over free-space link at 3.8µm using coherent detection with wavelength conversion”. Proc. of Euro. Conf. on Optical Comm., 2008.

[22] M. Puntoro and et. al. “The Einstein telescope: a third-generation gravitational wave observatory”. Class. and Quantum Grav., 27:194002, 2010.

[23] T. van Zoest and et. al. “Bose-Einstein condensation in microgravity”. Science, 328:1540–1543, 2010.

[24] M. Fleming and A. Mooradian. “Fundamental line broadening of single-mode (GaAl)As diode lasers”. Appl. Phys. Lett., 38:259–264, 1981.

[25] Y. Arakawa and A. Yariv. “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers”. IEEE J. Quantum Electron., 21:1666–

1674, 1985.

[26] S. Noda, K. Kojima, K. Kyuma, K. Hamanaka, and T. Nakayama. “Reduction of spectral linewidth in AlGaAs/GaAs distributed feedback lasers by a multiple quantum well structure”. Appl. Phys. Lett., 50:863–865, 1987.

[27] H. Bissessur, C. Starck, J-Y. Emery, F. Pommereau, C. Duchemin, J-G. Provost, J-L. Beylat, and B. Fernier. “Very narrow-linewidth (70 kHz) 1.55µstrained MQW DFB lasers”. Electron. Lett., 28:998–999, 1992.

[28] N. Dias, U. Reddy, A. Garg, J. Young, V. Verma, and J. Coleman. “Wide-stripe distributed Bragg grating lasers with very narrow spectral linewidth”. IEEE J.

Quantum Electron., 47:293–299, 2011.

[29] R. Mears, L. Reekie, I. Jauncey, and D. Payne. “Low-noise Erbium-doped fibre amplfier operating at 1.54µm”. Electron. Lett., 23:1026–1028, 1987.

[30] K. Kikuchi. “History of coherent optical communication and challenges for the future”. IEEE/LEOS Summer Topical Meetings, pages 107–108, 2008.

[31] A. Wilson, J. Sharpe, C. McKenzie, P. Manson, and D. Warrington. “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered am-plifier”. Appl. Optics, 37:4871–4875, 1998.

[32] K. Kojima, K. Hara, M. Kameya, and K. Kyuma. “Narrow-linewidth Al-GaAs/GaAs multiple quantum well distributed feedback lasers”. Electron. Lett., 25:240–241, 1989.

[33] M. Kitamura, H. Yamazaki, T. Sasaki, N. Kida, H. Hasumi, and I. Mito. “250 kHz spectral linewidth operation of 1.5µm multiple quantum well DFB-LD‘s”.Electron.

Lett., 25:240–241, 1988.

[34] Y. Matsui, T. Kunji, H. Horikawa, and T. Kamijoh. “Narrow-linewidth (<

200 kHz) operation of 1.5-µm butt-jointed multiple-quantum-well distributed Bragg reflector laser”. IEEE Photonic. Tech. L., 3:424–426, 1991.

[35] T. Kunii, Y. Ogawa, H. Wada, T. Nonaka, and Y. Kawai. “Narrow-spectral-linewidth, high-output-power operation, and FM response characteristics in 1.5µm butt-jointed DBR lasers”. IEEE Photonic. Tech. L., 3:424–426, 1991.

[36] M. Okai, M. Suzuki, and T. Taniwatari. “Strained mulitquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth”. Electron. Lett., 29:1696–1697, 1993.

[37] G. Smith, J. Hughes, R. Lammert, M. Osowski, G. Papen, J. Verdeyen, and J. Coleman. “Very narrow linewidth asymmetric cladding InGaAs-GaAs ridge waveguide distributed bragg reflector lasers”. IEEE Photonic. Tech. L., 8:476–478, 1996.

[38] R. Lammert, J. Hughes, S. Roh, M. Osowski, A. Jones, and J. Coleman. “Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings”. IEEE Photonic. Tech. L., 9:149–151, 1997.

[39] K. Takaki, T. Kise, K. Maruyama, N. Yamanaka, M. Funabashi, and A. Kasukawa.

“Spectral linewidth re-broadening and photon density distribution in 1550 nm high power CW-DFB lasers”. Semiconductor Laser Conference, 18:23–24, 2002.

[40] R. Price, J. Borchardt, V. Elarde, R. Swint, and J. Coleman. “Narrow-linewidth asymmetric cladding distributed Bragg reflector semiconductor lasers at 850 nm”.

IEEE Photonic. Tech. L., 18:97–99, 2006.

[41] P. Doussiere, C. Shieh, S. Demars, and K. Dzurko. “Very high power 1310 nm InP single mode distributed feed back laser diode with reduced linewidth”. Proc. SPIE, 6485:64850G, 2007.

[42] F-J. Vermersch, V. Ligeret, S. Bansropun, M. Lecomte, O. Parillaud, M. Calli-garo, M. Krakowski, and G. Giuliani. “High-power narrow linewidth distributed feedback lasers with an aluminium-free active region emitting at 852 nm”. IEEE Photonic. Tech. L., 20:1145–1147, 2008.

[43] V. Ligeret, D. Holleville, S. Perrin, S. Bansropun, M. Lecomte, O. Parillaud, M. Calligaro, M. Krakowski, and N. Dimarcq. “Demonstration of saturation spec-tra of caesium D2 line with a low linewidth distributed feedback laser diode”.

Electron. Lett., 44, 2008.

[44] K. Paschke, S. Spießberger, C. Kaspari, D. Feise, C. Fiebig, G. Blume, H. Wenzel, A. Wicht, and G. Erbert. “High-power distributed bragg reflector ridge-waveguide diode laser with very small spectral linewidth”. Opt. Lett., 35:402–404, 2010.

[45] S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert.

“Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm”. J. Light-wave Technol., 28:2611–2616, 2010.

[46] S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, G. Erbert, and G. Tränkle.

“DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz”. Appl. Phys. B, 104:813–818, 2011.

[47] S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, A. Peters, G. Er-bert, and G. Tränkle. “Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz”. Opt. Express, 19:7077–7083, 2011.

[48] J. Geng, C. Spiegelberg, and S. Jiang. “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry”. IEEE Photonic. Tech. L., 17:1827–1829, 2005.

[49] C. Spiegelberg, J. Geng, Y. Hu, Y Kaneda, S. Jiang, and N. Peyghambarian.

“Low-noise narrow-linewidth fiber lasers at 1550 nm (June 2003)”. J. Lightwave Technol., 22:57–62, 2004.

[50] S. Saliba and R. Scholten. “Linewidths below 100 kHz with external cavity diode lasers”. Appl. Optics, 48:6961–6966, 2009.

[51] J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. Hänsch. “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities”. Phys. Rev. A, 77:053809, 2008.

[52] A. Matveev, N. Kolachevsky, J. Alnis, and T. Hänsch. “Semiconductor laser with the subhertz linewidth”. Quantum Electron., 38:895–902, 2008.

[53] N. Uehara and K. Ueda. “193-mHz beat linewidth of frequency-stabilized- laser-diode-pumped Nd:YAG ring lasers”. Opt. Lett., 18:505–507, 1993.

[54] Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma. “Nd:YAG lasers at 1064 nm with 1-Hz linewidth”. Appl. Phys. B, 98:61–67, 2010.

[55] A. Einstein. “Zur Quantentheorie der Strahlung”. Physikalische Gesellschaft Zürich Mitteilungen, 18:47–62, 1916.

[56] A. Einstein. “A nuclear spin system at negative temperature”. Phys. Rev., 81:279–

280, 1951.

[57] J. Gordon, H. Zeiger, and C. Townes. “Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3”. Phys. Rev., 95:282–284, 1954.

[58] A. Schawlow and c. Townes. “Infrared and optical masers”. Phys. Rev., 112:1940–

1949, 1958.

[59] T. Maiman. “Stimulated optical radiation in ruby”. Nature, 187:493–494, 1960.

[60] J. Hecht. “Short history of laser development”. Optical Engineering, 49:091002, 2010.

[61] H. Round. “A note on carborundum”. Electrical World, 49:309, 1907.

[62] R. Hall, G. Fenner, J. Kingsley, T. Soltys, and R. Carlson. “Coherent light emission from GaAs junctions”. Phys. Rev. Lett., 9:366–368, 1962.

[63] J. Coleman. “Strained-layer InGaAs quantum-well heterostructure lasers”. IEEE J. Sel. Top. Quant., 6:1008–1013, 2000.

[64] J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina. “Narrow linewidth laterally-coupled 1.55µm DFB lasers fabricted using nanoimprint lithography”. Electron. Lett., 47:400–401, 2011.

[65] K. Haring, J. Viheriälä, M. Viljanen, J. Paajaste, R. Koskinen, S. Suomalainen, A. Laakso, K. Leinonen, T. Niemi, and M. Guina. “Laterally-coupled distributed feedback InGaSb/GaSb diode lasers fabricated by nanoimprint lithography”. Elec-tron. Lett., 46:1146–1147, 2010.

[66] H. Kogelnik and C. Shank. “Coupled-wave theory of distributed feedback lasers”.

J. Appl. Phys., 43 (5):2327–2335, 1972.