• Keine Ergebnisse gefunden

FAST HP SPS Grafitfolie

Grafit R7710

Fa. SGL Group

R7500 Fa. SGL

Group

G540 Fa. TOKAI

Carbon

Papyex N998 Fa. Le Carbone-

Lorraine, Dichte

[gcm-3] 1,88* 1,78* 1,85* n.a.

Wärmeleitfähigkeit

[Wm-1K-1] 100* 80* 93* 100-160*

Thermischer Ausdeh-nungskoeffizient [K-1*10

-6] 4,7* 3,7* 5,5* 25*

Spezifischer elektrischer

Widerstand [µΩm] 13* n.a. 15* 105*

Precursor Feinkorn* Feinkorn* Feinkorn* n.a.

* Angaben des Herstellers, eigene Messungen Tabelle 11.2-1 Spezifizierung des verwendeten Grafits

12 Literaturverzeichnis

1. Rahaman N.M.; Ceramic processing and sintering (Second Edition), Marcel Dekker Inc., ISBN: 0-8247-0988-8, 2003

2. Kang S.-J.L.; Sintering: Densification, grain growth & microstructure, Elsevier, ISBN:

07506-63855, 2005

3. Munir Z.A., Schmalzried H.; The effect of external field on mass transport and defect-related phenomena, J. Mat. Synth. Proces., 1(1):3-16, 1993

4. Coble R.L.; Diffusion models for hot pressing with surface energy and pressure effects as driving force, J. Appl. Phys., 41(12):4978-4807, 1970

5. Lange F.F; Densification of powder compacts: an unfinished story, J. Eur. Ceram. Soc., 28(7):1509-1576, 2008

6. Coble R.L.; Sintering crystalline solids. I. intermediate and final state diffusion models, J. Appl. Phys., 32(5):787-792, 1961

7. Herring C.; Effect of change of scale on sintering phenomena, J. Appl. Phys., 21(4):301-303, 1950

8. Hahn, H.; Microstructure and properties of nanostructured oxides, Nanostructured Materials, 2(3):251-265, 1993

9. Herring C.; Diffusional viscosity of a polycrystalline solid, J. Appl. Phys., 21(5):437-445, 1950

10. Coble R.L., Ellis J.S.; Hot-pressing alumina—mechanisms of material transport, J. Am.

Ceram. Soc., 46(9):438-441, 1963

11. Vieira J.M., Brook R.J.; Kinetics of hot-pressing: the semilogarithmic law, J. Am. Ce-ram. Soc., 67(4):245-249, 1984

12. Wang J., Raj R.; Activation energy for the sintering of two-phase alumina/zirconia ceramics, J. Am. Ceram. Soc., 74(8):1959-1964, 1991

13. Hillman S.H., German, R.M.; Constant heating rate analysis of simultaneous sintering mechanisms in alumina, J. Mat. Sci., 27(10):2641-2648, 1992

14. Atkins P.W.; Physikalische Chemie (2. Auflage), VCH, ISBN-10: 3527292756, 1996 15. Kanters J., Eisele U., Rödel J.; Effect of initial grain size on sintering trajectories, Acta

Mater., 48(6):1239-1246, 2000

16. Montes J.M., Cuevas F.G., Cintas J.; A new expression for the effective pressure on powders under compression, Mater. Sci., 3(3):329-337, 2006

17. McClelland J.D.; A plastic flow model of hot-pressing, J. Amer. Ceram. Soc., 44(10):526, 1961

18. Early J.G., Lenel F.V., Ansell G.S.; The material transport mechanism during sintering of copper-powder compacts at high temperatures, Trans. Met. Soc., 230:1641-1645, 1964

19. Spriggs R.M.; Functional Relation between creep rate and porosity for polycrystalline ceramics, J. Amer. Ceram. Soc., 47(1):47-48, 1964

20. Helle A.S., Easterling K.E., Ashby M.F.; Hot-isostatic pressing diagrams: new develop-ments, Acta Metall., 33(12):2163-2174, 1985

21. Montes J.M., Cuevas F.G., Cintas J.; Effective area in powder compacts under uniaxial compression, Mat. Sci. Eng. A, 395(1-2):208-213, 2005

22. Munir Z.A., Anselmi-Tamburini U., Ohyanagi M., The effect of electric field and pres-sure on the synthesis and consolidation of materials: A review of the spark plasma sin-tering method, J. Mat. Sci., 41(3):763-777, 2006

23. Olevsky E.A., Froyen L.; Constitutive modeling of spark-plasma sintering of conductive materials, Scr. Mat., 55(12):1175-1178

24. Chen W., Anselmi-Tamburini U., Garay J.E., Groza J.R., Munir Z.A.; Fundamental in-vestigations on the spark plasma sintering / synthesis process I: effect of dc pulsing on reactivity, Mat. Res. Eng: A, A394(1-2):132-139, 2005

25. Xie G., Ohashi O., Chiba K., Yamaguchi N., Song M., Furuya K., Noda T.; Frequency effect on pulse electric current sintering process of pure aluminum powder, Mat. Sci.

Eng.: A A384(1-2):384-390, 2003

,

26. Groza J.R., Garcia M., Schneider J.A.; Surface effects in field-assisted sintering, J. Mat.

Res., 16(1):286-292, 2000

27. Anselmi-Tamburini U., Garray J.E., Munir, Z.A.; Fundamental investigation on the spark plasma sintering / synthesis process III: current effect on reactivity, Mat. Sci.

Eng. A, A407(1-2), 24-30, 2005

28. Zavaliangos A., Zhang, J., Krammer, M., Groza, J.R.; Temperature evolution during field activated sintering, Mat. Sci. Eng. A, A379(1-2):218-228, 2004

29. Anselmi-Tamburini U., Gennari S., Garray J.E., Munir, Z.A.; Fundamental investiga-tions on the spark plasma sintering / synthesis process II: Modeling of current and temperature distribution, Mat. Sci. Eng. A, A394(1-2):139-148, 2005

30. Carney C.M., T.-I M.; Current isolation in spark plasma sintering of conductive and nonconductive ceramics, J. Am. Ceram. Soc., 31(10):3448-3450, 2008

31. Groza J.R., Zavaliangos, A.; Sintering activation by external electrical Field, Mat. Sci.

Eng. A, A287(1-2):171-177, 2000

32. Song X., Liu X., Zhang J.; Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering, J. Am. Ceram. Soc., 89(2):494-500, 2006

33. Nygren M., Shen Z.; Spark plasma sintering: possibilities and limitations, Key Eng.

Mat., 264-268:719-724, 2004

34. Gitzen W.H.; Alumina as a ceramic material, J. Am. Ceram. Soc., Special Publication No. 4, 1970

35. Yoshimura M., Bowen H.K.; Electrical breakdown strength of alumina at high tempera-tures, J. Am. Ceram. Soc., 64(7):404-410, 1981

36. Moulson A.J., Herbert J.M.; Electroceramics (Second Edition), John Wiley & Sons, ISBN: 9780471497479, 2003

37. Chaim R.; Densification mechanisms in spark plasma sintering of nanocrystalline ce-ramics, Mat. Sci. Eng. A, A443(1-2):25-32, 2007

38. Hulbert D. Anders A., Dudina D.V. Andersson J., Jiang D., Unuvar C., Anselmi-Tamburini U., Lavernia E.J., Mukherjee A.K.; The absence of plasma in spark plasma sintering, J. Appl. Phys. 104:033305-1-7, 2008

39. Hulbert D.M., Anders A., Andersson J., Laverniaa E.J., Mukherjeea A.K.; A discussion on the absence of plasma in spark plasma sintering, Acta Mater., 60(10):835-838, 2009

40. Vanmeensel K., Laptev A., Hennicke J., Vleugels J., Van der Biest O.; Modelling of the temperature distribution during field assisted sintering, Act. Mat., 53(16):4379-4388 41. Wang X., S.R. Casolco, G. Xu and J.E. Garay; Finite element modeling of electric

cur-rent-activated sintering: The effect of coupled electrical potential, temperature and stress, Scripta Mat., 55(10):3611-3622, 2007

42. Räthel J., Herrmann M., Beckert W.; Temperature distribution for electrically conduc-tive and non-conducconduc-tive materials during Field Assisted Sintering (FAST), J. Eur. Ce-ram. Soc.

43. Stanciu L.A., Kodashund V.Y., Groza J.R.; Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders, Met. Mat.

Trans. A, A32(10):2633-2638, 2001

44. Zhou Y., Hirao K., Yamauchi Y., Kanzaki S.; Effects of heating rate and particle size on pulse electric current sintering of alumina, Scripta Mater., 48(12):1631-1636, 2003 45. Olevsk E.A., Kandukuri S., Froyen L.; Consolidation enhancement in spark-plasma

sin-tering: Impact of high heating rates, J. App. Phys., 102(11):114913-114925, 2007 46. Dörre E., Hübner H.; Alumina, Springer Verlag, ISBN: 3540135766, 1984

47. Takeuchi T., Kondoh I., Tamari N., Balakrishnan N., Nomura K., Kageyama H., Take-dab Y.; Improvement of Mechanical Strength of 8 mol % Yttria-Stabilized Zirconia Ce-ramics by Spark-Plasma Sintering, J. Elec. Soc., 149(4):A455-A461, 2002

48. Yoshimura M.; Phase-Stability of Zirconia, Ceram. Bull., 67(12):1950-1955, 1988 49. Subbarao E.C.; Science and Technology of Zirconia I, Am. Ceram. Soc. Columbus

Ohio, Advances in Ceramics 3, 1981

50. Casselton R.E.W.; Low field DC conduction in yttria-stabilized zirconia, Phys. Stat.

Sol., A2(3):571-585, 1970

51. Takahashi T.; Physics of electrolytes, Academic Press London, Vol. 2:980, 1972

52. Choundhary C.B., Maiti H.S., Subbarao E.C.; Solid electrolytes and their applications / defect structures and transport properties, Plenum Press New York, 1-80, 1980

53. Gupta T.K.; Application of zinc oxide varistors, J. Am. Ceram. Soc., 73(7):1817-1840, 1990

54. Look D.C.; Recent advances in ZnO materials and devices, Mat. Sci. Eng. B, 80(1-3):383-387

55. Zhou Z., Kato K., Komaki T., Yoshimo H., Morinaga, M., Morita K.; Effects of dopants and hydrogen on electrical conductivity of ZnO, J. Eur. Ceram. Soc., 24(4):139-146, 2004

56. Miller P.H.Jr.; The electrical conductivity of zinc oxide, Phys. Rev., 60:890-895, 1941 57. Look D.C.; Electrical and optical properties of p-type ZnO, Semicond. Sci. Technol.,

20:S55-S61, 2005

58. Zhang D., Zhang. L., Guo J., Tuan W.H.; Direct evidence of temperature variation within ceramic powder compact during pulse electric current sintering, J. Am. Ceram.

Soc., 89(2):680-683, 2006

59. Lince, Version 2.31

[http://www1.Tu-Darmstadt.de/fb/ms/fg/naw/soft/f_soft.html]

60. Mendelson M.I.; Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52(8):443-446, 1968

61. ASTM E 112-95 Standard test method for determining average grain size, 1995

62. Brunauer S., Emmett P.H., Teller E.; Adsorption of gases in multimolecular layers, J.

Am. Chem. Soc., 60(2):309-319, 1938

63. DIN 66 131, Bestimmung der spezifischen Oberfläche von Feststoffen durch Gas-adsorption nach Brunauer, Emmett und Teller (BET), 1993

64. Landolt-Börnstein; Group IV Physical Chemistry, Pure Substances. Part 1: Elements and Compounds from AgBr to Ba3N2, Springer-Verlag, 19A1:3-4, 1999

65. Landolt-Börnstein; Group IV Physical Chemistry, Pure Substances Part 1: Elements and Compounds from AgBr to Ba3N2, Springer-Verlag, 19A1:35-36, 1999

66. Chinn R.E.; Cheramography, Preparation and analysis of ceramic microstructures, J.

Am. Ceram. Soc., 2002

67. ASTM C 20-92, Standard test method for apparent porosity, water adsorption, appar-ent specific gravity and bulk density of burned refractory brick and shapes by boiling water, 1992

68. Image J, National Institute of Health, Bethesda, Maryland USA, [http://rsbweb.nih.gov/ij/]

69. Ollagnier J.B.; Constraint and anisotropy during sintering of a LTCC material, TU-Darmstadt, 2008

70. ASTM D 4284 Pore volume distribution of catalyst by mercury intrusion porosimetry, 1992

71. Drake L.C., Ritter H.L.; Macropore-size distribution in some typical porous substances, Ind. Eng. Chem., 17(12):787-791, 1945

72. Ritter H.L., Drake L.C.; Pore-size distribution in porous materials pressure porosimeter and determination of complete macropore-size distribution, Ind. Eng. Chem., 17(12):782-786, 1945

73. IUPAC, Sing K.S., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemienwska T.; Reporting physisorption data for gas/solid systems with special refer-ence to the determination of surface area and porosity, Pure & Appl. Chem, 57(4):603-619, 1985

74. ASTM E1461 - 07 Standard test method for thermal diffusivity by the flash method, 2007

75. Hoffman R, Hahn O, Raether F, Mehling H, Fricke J; Determination of thermal diffu-sivity in diathermic materials by the laser-flash technique, J. High Temp. High Press., 29(6)703-710, 1997

76. Stanciu L.A., Quach D., Faconti C., Groza J.R.; Initial stages of sintering of alumina by thermo-optical measurements, J. Am. Ceram. Soc., 90(9):2716-2722, 2007

77. DIN-EN-843-2, Hochleistungskeramik, monolithische Keramik , mechanische Eigen-schaften bei Raumtemperatur – Teil 2: Bestimmung des Elastizitätsmoduls, Schub-moduls und der Poissonzahl; Deutsche Fassung prEN843-2, 2004

78. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D.; Handbook of x-ray photoelectron spectroscopy, Physical Electronics Inc., ISBN: 0-9648124-1-X, 1995

79. Schroder D.K.; Semiconductor material and device characterization (2nd Edition), John Wiley & Sons, New York, ISBN: 0-471-24139-3, 1998

80. An K., Ravichandran K.S., Dutton B.R.E., Semiatin S.L.; Microstructure, texture and thermal conductivity of single-layer and multilayer thermal barrier coatings of Y2O3 -stabilized ZrO2 and Al2O3 made by physical vapor deposition, J. Am. Ceram. Soc., 82(2), 1999

81. Morkoc H., Özgür Ü.; Zinc oxide, fundamentals, materials and device technology, Wi-ley-VCH Verlag GmbH & Co. KGaA, ISBN: 978-3-527-40813-9, 2009

82. Guillon O., Weiler L., Roedel J.; Anisotropic microstructural development during the constrained sintering of dip-coated alumina thin films, J. Am. Ceram. Soc., 90(5):1394-1400, 2007

83. Zuo R., Aulbach E., Jürgen R.; Experimental determination of sintering stresses and sintering viscosities, Acta Mat., 51(15):4563-5474, 2003

84. Langer J., Weiler L., Rödel J.; Elektrostatische Dispergierung von Zinkoxid-Pulvern und Herstellung von Schichten, TU-Darmstadt, 2006

85. Shen Z., Johnsson M., Zhao Z., Nyrgen M.; Spark plasma sintering of alumina, J. Am.

Ceram. Soc., 85(8):1921-1927, 2002

86. Oh S.T., Tajima K.I., Ando M., Ohji T.; Strengthening of porous alumina by pulse elec-tric current sintering and nanocomposite processing, J. Am. Ceram. Soc., 83(5):1314-1316, 2000

87. Jayaseelan D.D., Kondo N., Brito, M.E., Ohji, T.; High-strength porous alumina ceram-ics by the pulse electric current sintering technique, J. Am. Ceram. Soc., 85(1):267-269, 2002

88. Zhou Y., Hirao K., Yamauchi Y., Kanzaki S.; Densification and grain growth in pulse electric current sintering of alumina, J. Eur. Ceram. Soc., 24(12):3465-3470, 2004 89. Salamon D., Shen Z., Sajgalik P.; Rapid formation of α-sialon during spark plasma

sintering its origin and implications, J. Eur. Ceram. Soc., 27(6), 2007

90. Wang J., Raj R.; Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina, and alumina doped with zirconia or titania, J.

Am. Ceram. Soc., 73(5):1172-1175, 1990

91. Raether F., Schulze Horn P.; Investigation of sintering mechanisms of alumina using kinetic field and master sintering diagrams, J. Eur. Ceram. Soc., 29(11):2225-2234, 2009

92. Hammer M.P., Brook R.J.; The effect of MgO additions on the kinetics of hot pressing in Al2O3, J. Mat. Sci., 15(12):3017-3024, 1980

93. Chaim R., Marder-Jaeckel R., Shen J.Z., Transparent YAG ceramics by surface soften-ing of nanoparticles in spark plasma sintersoften-ing, Mat. Sci. Eng. A, A429(1-2):74-78, 2006

94. Bernard-Granger G., Guizard C.; Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification, Acta Mater., 55(10):349-3504, 2007

95. Mishra R.S., Risbud S.H., Mukherjee A.K.; Influence of initial crystal structure and electrical pulsing on densification of nanocrystalline alumina powder, J. Mat. Res., 13(1):86-89, 1998

96. Wang S.W., Chen L.D.; Densification of Al2O3 powder using spark plasma sintering, J.

Mater. Res., 15(4):982-987, 2000

97. Braginsky L., Shklover V., Witz G., Bossmann H.-P.; Thermal conductivity of porous structures, Phys. Rev. B, 75(9): 094301-1-10, 2007

98. Wang S.W., Chen L.D., Hirai T., Guo, J.; Formation of Al2O3 grains with different siz-es and morphologisiz-es during the pulse electric current sintering procsiz-ess, J. Mat. Rsiz-es., 16(12):3514-3517, 2001

99. Roy J.F., Descemond M., Brodhag C., Thevenot F.; Alumina microstructural behaviour under pressureless sintering and hot-pressing, J. Eur. Ceram. Soc., 11(4):352-333, 1993

100. Song H., Coble R.L.; Origin and growth kinetics of platelike abnormal grains in liquid-phase-sintered alumina, J. Am. Ceram. Soc., 73(7):2077-2085, 1993

101. Kim B.N., Hiraga K., Morita K., Yoshida H.; Spark plasma sintering of transparent alu-mina, Scripta Mat., 57(7):607-610, 2007

102. Angerer P., Yu L.G., Khor K.A., Krumpel G.; Spark-plasma-sintering (SPS) of nanos-tructured and submicron titanium oxide powders, Mat. Sci. Eng. A, A381(1-2):16-19, 2004

103. Kan Y., Wang P., Xu T., Zhang G., Yan D., Shen Z., Cheng Y.B.; spark plasma sintering of bismuth titanate ceramics, J. Am. Ceram. Soc., 88(6):1631-1634, 2005

104. Dahl P., Kaus I., Zhao Z., Johnsson M., Nygren M., Wiik K., Grande T., Einarsrud M.A.;

Densification and properties of zirconia prepared by three different sintering tech-niques, Ceram. Inter., 33(8):1603-1610, 2007

105. Jeong J.W., Han J.H.; Effect of electric filed on the migration of grain boundaries in alumina, J. Am. Ceram. Soc., 83(4):915-918, 2000

106. Choi J.I., Han J.H.; Effect of titania and lithia doping on the boundary migration of alumina under electric field, J. Am. Ceram. Soc., 86(2):347-350, 2003

107. Raghavan S., Wang H., Porter W.D., Dinwiddie R.B., Mayo M.J.; Thermal properties of zirconia co-doped with trivalent and pentavalent oxides, Acta Mater., 49(1):169-179, 2001

108. Vanmeensel K., Laptev A., Van der Biest O. Vleugels J.; The influence of percolation during pulsed electric current sintering of ZrO2–TiN powder compacts with varying TiN content, Acta. Mater. 55(5):1801-1811, 2007

109. Vanmeensel K., Huang S.G., Laptev A., Salehi S.A., Swarnakar A.K., Van der Biest O., Vleugels J., Pulsed electric current sintering of electrically conductive ceramics, J. Mat.

Sci., 43(19):6435-6440, 2008

110. Ashby M.F.; A first report on deformation-mechanism maps, Acta Metall., 20(7):887-897, 1972

111. Frost H.J., Ashby M.F.; Deformation mechanism maps,

[http://home.klebos.net/philip.sargent/deformationmaps/, 1981]

112. Chokshi A.H.; Diffusion, diffusion creep and grain growth characteristics of nanocrys-talline and fine-grained monoclinic, tetragonal and cubic zirconia, Scripta Mater., 48(6):791-796, 2003

113. Matsui K., Ohmichi N., Ohgai M., Sintering kinetics at constant rates of heating: effect of Al2O3 on the initial sintering stage of fine zirconia powder, J. Amer. Ceram. Soc., 88(12):3346-3352, 2005

114. Matsui K., Tanaka K., Yamakawa T., Uehara M., Enomoto N., Hojo J.; Sintering kinet-ics at isothermal shrinkage: II, effect of Y2O3 concentration on the initial sintering stage of fine zirconia powder, J. Am. Ceram. Soc., 90(2):443-447, 2007

115. Zhang T.S., Chan S.H., Wanga W., Hbaieb K., Kong L.B., Ma J.; Effect of Mn addition on the densification, grain growth and ionic conductivity of pure and SiO2-containing 8YSZ electrolytes, Solid State Ionics, 180(1):82-89, 2009

116. Xu J., Casolco S.R., Garay J.E.; Effect of varying displacement rates on the densifica-tion of nanostructured zirconia by current activadensifica-tion, J. Am. Ceram. Soc., 92(7):1506-1513, 2009

117. Bernard-Granger G., Monchalin N., Guizard C.; Comparisons of grain size-density tra-jectory during spark plasma sintering and hot-pressing of zirconia, Mat. Letters, 62(30):4555-4558, 2008

118. Ghosh S., Chokshi A.H., Lee P., Rajw R.; A Huge Effect of weak DC electrical fields on grain growth in zirconia, J. Am. Ceram. Soc., 92(8):1856-1859, 2009

119. Ingo G.M.; Origin of Darkening in 8 wt% Yttria-Zirconia Plasma-Sprayed Thermal Bar-rier Coatings, J. Am. Ceram. Soc., 74(2):381-386

120. Anselmi-Tamburini U., Garay J.E., Munir Z.A.; Spark plasma sintering and characteri-zation of bulk nanostructured fully stabilized zirconia: Part II. charactericharacteri-zation studies, J. Mater. Res, 19(11):3263-3269, 2004

121. Chen X.J., Khor K.A., Chan S.H., Yu L.G.; Preparation yttria-stabilized zirconia electro-lyte by spark-plasma sintering, Mat. Sci. Eng. A, 341A(1-2):43-48, 2003

122. Jaiwen J., Aimin C., Bangchao Y., Yikang Z.; Electrical property of 8 mol% yttria-stabilized zirconia electrolyte by spark-plasma sintering, Sci. Chi. Ser. E Eng. & Mat.

Sci., 47(5):569-576, 2004

123. Li Q., Zhang Y.F., Ma X.F., Meng J., Cao X.Q.; High-pressure sintered yttria stabilized zirconia ceramics, Ceram. Inter., 35(1):453-456, 2009

124. Gadzhiev G.G.; The thermal and elastic properties of zinc oxide-based ceramics at high temperatures, High. Temp., 41(6):778-782, 2003

125. Misawa T., Shikatani N., Kawakami Y., Enjoji T., Ohtsu Y., Fujita H.; Observation of internal pulsed current flow through the ZnO specimen in the spark plasma sintering method, J. Mat. Sci., 44:1641-1651, 2009

126. Ellmer K., Klein A., Rech B.; Transparent conductive zinc oxide: basics and applica-tions in thin film solar cells, Springer Series in Materials Science, ISBN: 978-3-540-73611-0, 2008

127. Jose J., Khadar M.A., Role of grain boundaries on the electrical conductivity of nano-phase zinc oxide, Mat. Sci. Eng. A, A304-306:810-813, 2001

128. Chen T., Nettleship I., McAfee R.J., Hinkliny T.R., Ewsuk G.; An experimental meas-urement of effective diffusion distance for the sintering of ceramics, J. Am. Ceram.

Soc., 92(7):1481-1486, 2009

129. Gupta T.K., Coble R.L.; Sintering of ZnO: I densification and grain growth, J. Am. Ce-ram. Soc., 51(9):521-525, 1968

130. Ewsuk K.G., Ellerbyz D.T.; Analysis of nanocrystalline and microcrystalline ZnO sinter-ing ussinter-ing master sintersinter-ing curves, J. Am. Ceram. Soc., 89(6):2003-2009, 2006

131. Hynes A.P., Doremus R.H., Siegel R.W.; Sintering and characterization of nanophase zinc oxide, J. Am. Ceram. Soc., 85(8):1979-1987, 2002

132. Tomlins G.W., Routbort J.L.; Oxygen Diffusion in Single-Crystal Zinc Oxide, J. Am.

Ceram. Soc., 81(4):869-876, 1998

133. Tomlins G.W., Routbort J.L., Mason T.O.; Zinc self-diffusion, electrical properties and defect structure of undoped single crystal zinc oxide, J. Appl. Phys., 87(1):117-123, 2000

134. Jin H.R., Yoon S.H., Lee J.H., Lee J.H., Hwang N.M., Kim D.Y., Han J.H.; Effect of ex-ternal electric field on the grain-growth behavior of barium titanate, J. Am. Ceram.

Soc., 87(9):1747-1752, 2004

135. Jin H.R., Yoon S.H., Lee J.H., Hwang N.M., Kim D.Y., Han J.H.; Effect of external elec-tric field on the grain growth of barium titanate in N2 atmosphere, J. Mater. Sci., 16(11-12):749-752, 2005

136. Lee J., Hwang J.-H., Mashek J.J., Mason T.O., Miller A.E., Siegel R.W.; Impedance spectroscopy of grain boundaries in nanophase ZnO, J.Mat. Res., 10(9):2295-2300, 1995

Lebenslauf

Jochen Langer

geboren am 12. August 1975 in Mannheim Im Klingenacker 26

69509 Weiher

jlanger75@googlemail.com

Ausbildung

Okt. 2000 - Okt. 2006: Studium an der Technischen Universität Darmstadt, Fach-richtung: Materialwissenschaften mit Abschluss Dipl.-Ing.;

Vertiefung: Keramiken, Metalle und Polymere

Aug. 1996 – Aug. 1999 Ausbildung zum Schreiner, Kreis Bergstraße, mit Abschluss Ge-selle

Sept. 1992 - Jun. 1995: Überwald Gymnasium, Wald-Michelbach, mit Abschluss Abitur

Berufliche Tätigkeiten und Praktika

Seit Januar 2007: Promotion an der Technischen Universität Darmstadt (TUD), Fachbereich Material- und Geowissenschaften, Nichtmetallisch-Anorganische Werkstoffe zum Thema „ Direkter Vergleich der Synthese mittels FAST, SPS und HP hergestellter

Oxid-keramiken“ Deutsche Forschungsgesellschaft (Emmy Noether Program GU993-1/1)

Zusätzlich: Betreuung von Studenten im Praktikum zum Thema Bruchzähigkeit und Bruchfestigkeit von Glas und Keramik März 2009 - Mai 2009: Forschungsaufenthalt an der University California Davis, CA,

USA; Thema: Synthese von Oxidkeramiken mittels SPS Nov. 2000 - Okt. 2006: Studentische Hilfskraft und wissenschaftlicher Mitarbeiter an

der TUD, Fachbereich Material- und Geowissenschaften, Nicht-metallisch-Anorganische Werkstoffe.

Tätigkeiten: Herstellung und Charakterisierung von kerami-schen Suspensionen, mechanische Charakterisierung von Kera-miken und Gläsern, Literaturrecherche, Mithilfe in der Lehre