• Keine Ergebnisse gefunden

Daten des FE-Modells

Die Tabellen C.1 und C.2 zeigen die in dem FE-Modell verwendeten drehzahlabh¨angigen Steifigkeits- und D¨ampfungsparameter der Lager (L1, L2) f¨ur die Drehkreisfrequenzen ΩR= 1080 rpm und ΩR = 1800 rpm.

Knoten Richtung ΩR= 1080 rpm ΩR= 1800 rpm Einheit L1 kyy 2,48·107 2,5417·107 kg/s2

kyz −3,01·107 −4,623·107 kg/s2 kzy 4,77·107 5,8944·107 kg/s2 kzz 1,76·107 1,5320·107 kg/s2 L2 kyy 11,0·107 11,482·107 kg/s2 kyz −1,33·107 −3,465·107 kg/s2 kzy 22,1·107 21,208·107 kg/s2 kzz 21,7·107 17,077·107 kg/s2 Tabelle C.1: Steifigkeitsparameter der Gleitlager

Knoten Richtung ΩR= 1080 rpm ΩR= 1800 rpm Einheit L1 dyy 6,01·105 5,2018·105 kg/s

dyz 2,21·105 1,3521·105 kg/s dzy 2,21·105 1,3521·105 kg/s dzz 7,76·105 5,9577·105 kg/s L2 dyy 10,1·105 7,7007·105 kg/s dyz 9,95·105 6,2006·105 kg/s dzy 9,95·105 6,2006·105 kg/s dzz 31,2·105 1,8478·105 kg/s Tabelle C.2: D¨ampfungsparameter der Lager

129

Weitere drehzahlunabh¨angige D¨ampfungsparameter, die an der Magnetkupplung, den bei-den Scheiben und am Driving Point verwendet wurbei-den, sind in der Tabelle C.3 aufgelistet.

Knoten Richtung drehzahlunabh¨angig Einheit

M dyy 500 kg/s

dyz 0 kg/s

dzy 0 kg/s

dzz 500 kg/s

S1 dyy 200 kg/s

dyz 0 kg/s

dzy 0 kg/s

dzz 200 kg/s

S2 dyy 400 kg/s

dyz 0 kg/s

dzy 0 kg/s

dzz 400 kg/s

DP dyy 500 kg/s

dyz 0 kg/s

dzy 0 kg/s

dzz 500 kg/s

Tabelle C.3: D¨ampfungsparameter der Kupplung, der Scheiben und am Driving-Point Die Materialdaten des FE-Modells sind in Tabelle C.4 angegeben:

E-Modul = 2.1 E+11 Pa

ν = 0.3 —

ρ = 7850 kg/m3

κ = 0.886 —

Tabelle C.4: Materialdaten des FE-Modells

[1] Adhikari, S. Rate of Change of Eigenvalues and Eigenvectors in Damped Dynamic System. AIAA, 37:1452–1458, 1999.

[2] Allemang, R.J., Brown, D.L. A Correlation Coefficient for Modal Vector Analysis.

In Proceedings of the 1st IMAC, International Modal Analysis Conference, pages 110–116, Orlando, Florida, 1982.

[3] Balmes, E. Experimental and Analytical Structural Dynamic Toolbox. Vision 3, for use with MATLAB. Scientific Software Group, 1997.

[4] Belz, J.Modalanalysegest¨utzte Unwuchtidentifikation elastischer Rotoren. PhD thesis, Universit¨at Kassel, 1997.

[5] Belz, J., Grimm, U., Hohlrieder, M. Irretier, H. FEROS-Finite Elemente Program for Rotors, Institut f¨ur Mechanik. Universit¨at Kassel, 1994.

[6] Bently, D.E., Muszynska, A., Olas, A. Identification of Modal Parameters by Per-turbation Testing of a Rotor with Strong Gyroscopic Effects. In Proceedings of the IFToMM, International Conference on Rotor Dynamics, page 189, Tokyo, Japan, 1986.

[7] Bucher, I., Ewins, D.J., Robb, D.A. Modal testing of an Operating Rotor System Using a Structural Dynamics Approach. In IMechI, page 539, 1996.

[8] Chen, G., Ewins, D.J. A Perspective on Model Updating Performance. InProceedings of the 18th IMAC, International Modal Analysis Conference, page 999, San Antonio, Texas, 2000.

[9] Christ, T. Entwicklung eines Berechnungsprogrammes zur Ermittlung der Steifigkeits- und D¨ampfungskoeffizienten von Gleitlagern. Technical Report Diplom-arbeit, Universit¨at Kassel, 1999.

[10] Christ, T., Lindemann, S. Eigenschaften der Frequenzgangmatrix diskreter Schwin-gungsmodelle. Studienarbeit, Universit¨at Kassel, 1998.

[11] Fox, R. L. and Kapoor, M. P. Rates of Change of Eigenvalues and Eigenvectors.

AIAA, 6:2426–2429, 1968.

[12] Friswell, M. I., Mottershead, J. E. Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers, Dordrecht/Boston/London, 1995.

131

[13] Gasch, R., Nordmann, H., Pf¨utzner, H. Rotordynamik, 2. Auflage. Springer-Verlag, Berlin/Heidelberg/New-York, 2002.

[14] G¨oge, D. Korrektur von Parameterfehlern in strukturdynamischen Finite Elemen-te Modellen mit Hilfe experimenElemen-teller Frequenzg¨ange. MasElemen-ter’s thesis, Universit¨at Kassel, 2000.

[15] Girard, A. and Chatelain, J. and Bugeat, L. P. Model Updating by Energy Approach for Rotating Shafts. In Proceedings of the 15th IMAC, International Modal Analysis Conference, pages 1419–1425, Orlando, 1997.

[16] Goege, D., Link, M. Parametric Updating of Finite Elemente Models by Minimizing Response Residuals at Resonances. InInternational Conference on Structural System Identification, pages 419–430, Kassel, Germany, 2001.

[17] Guyan, R.J. Reduction of Stifness and Mass Matrices. AIAA, 3, 1965.

[18] H¨ubner, K., Herzog, L. Identifikation der modalen Parameter an einem biegeelasti-schen Rotor. Technical Report Studienarbeit, Universit¨at Kassel, 2004.

[19] Irretier, H.Grundlagen der Schwingungstechnik 1, 1. Auflage. Vieweg Verlag, Braun-schweig/Wiesbaden, 2000.

[20] Irretier, H. Unbalance Identification of Flexible Rotors based on Experimental Modal Analysis. In Proceedings of the COST 2001, International Conference on Structural System Identification, pages 233–242, Kassel, 2001.

[21] Irretier, H. Experimentelle Modalanalyse, Teil I: Kapitel 1-4, 4. Auflage. Skript, Universit¨at Kassel, 2004.

[22] Jo, H.-K. and Park, S.-K. and Lee, I.-W. Simplified Algebraic Method for Computing Eigenpair Sensitivities of Damped Systems. In Proceedings of the ECOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, pages 1–17, Barcelona, 2000.

[23] Joh, Y.D., Lee, C.W. Excitation Methods and Modal Parameter Identification in Complex Modal Testing of Rotating Machinery. International Journal of Analytical and Experimental Modal Analysis, 8, No 3:179–203, 1993.

[24] Kreuzinger-Janik, T. Entwicklung eines Rotorpr¨ufstandes unter Verwendung experi-menteller und rechnerischer Modalanalyse. Master’s thesis, Universit¨at Kassel, 1997.

[25] Kreuzinger-Janik, T. Modalanalysegest¨utzte Unwuchtidentifikation an einem Rotor-versuchsstand. PhD thesis, Universit¨at Kassel, 2000.

[26] Lallement, G, Cogan, S. Reconciliation Between Measured and Calculated Dynamic Behaviors: Enlargement of the Knowledge Space. In Proceedings of the 10th IMAC, International Modal Analysis Conference, pages 487–493, San Diego, Kalifornien, 1992.

[27] Lallement, G., Piranda, J. Localisation Methods of Parameter Updating of Finite Element Models in Elastodynamics. In Proceedings of the 8th IMAC, International Modal Analysis Conference, pages 579–585, Orlando, Florida, 1990.

[28] Lee, I.-W. and Kim, D.-O. and Jung, G.-H. Natural Frequency and Mode Shape Sensitivities of Damped Systems: Part I, Distinct Natural Frequencies. Journal of Sound and Vibration, 1:1201–1205, 1999.

[29] Lindemann, S., Irretier, H. Model Updating an einem biegeelastischen Rotor mit Hilfe von Eigenwerten und Eigenvektoren. InVDI-Schwingungstagung 2004: Modalanalyse und Identifikation, VDI-Berichte 1825, pages 291–304, Wiesloch, Deutschland, 2004.

[30] Link, M. Updating of analytical models – basic procedures and extensions. In J. M. M. Silva and N. M. M. Maia, editors, Modal Analysis and Testing. Kluwer Academic Publishers, Netherlands, 1999.

[31] Link, M. Updating of Analytical Models - Preview of Numerical Procedures and Application. In D. J. Ewins and J. Inman, D., editors, Structural Dynamics 2000.

Research Studies Press Ltd., England, 2000.

[32] Link, M. and Flores Santiago, O. Updating and Localizing Structural Errors Based on Minimization of Equation Errors. In Proceedings of the esa SP-321, International confernce organised by the European Space Agency, pages 503–510, Noordwijk, 1991.

[33] Link, M., Boettcher, T. Zhang, L. Computational Model Updating of Structures with Non-Proportional Damping. In Proceedings of the 24th IMAC, International Modal Analysis Conference, Saint Louis, 2006.

[34] Mehlhorn, G. Der Ingenieurbau. Baustatik, Baudynamik. Ernst und Sohn, Berlin, 1996.

[35] Meyer, S. Modellbildung und Identifikation von lokalen nichtlinearen Steifigkeits- und D¨ampfungseigenschaften in komplexen strukturdynamischen Finite Elemente Model-len. PhD thesis, Universit¨at Kassel, 2003.

[36] Muszynska, A., Bently, D.E. Modal Testing of Rotor Bearing Systems. International Journal of Analytical and Experimental Modal Analysis, 1, No 3:15, 1986.

[37] Natke, H. G.Einf¨uhrung in die Theorie und Praxis der Zeitreihen- und Modalanalyse.

3. ¨uberarbeitete Auflage, Vieweg Verlag, Braunschweig, 1992.

[38] Nefske, D. J., Sung, H. J. Correlation of a Coarse-Mesh Finite Element Model using Structural System Identification and a Frequency Response Assurance Criterion. In Proceedings of the 14th IMAC, International Modal Analysis Conference, pages 597–

602, Dearborn, Michigan, 1996.

[39] Nelson, R. B. Simplified Calculation of Eigenvector Derivatives.AIAA, 14:1201–1205, 1976.