• Keine Ergebnisse gefunden

A. Appendix

A.1. Vectors

pBluescript

®

SK(-)

Figure A.2:Circular map and polylinker sequence of the pBluescript SK(-) phagemid.

pJET1.2/blunt

Figure A.3:Circular map and polylinker sequence of the pJET1.2/blunt plasmid.

pET-28a

Figure A.4:Circular map and polylinker sequence of the pET-28a plasmid.

Bibliography

Alamillo, J., Almoguera, C., Bartels, D. and Jordano, J. (1995). Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol Biol 29, 1093–1099.

Alpert, P.(2005). The limits and frontiers of desiccation-tolerant life. Integ Comp Biol 45, 685–695.

Alpert, P. (2006). Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209, 1575–1584.

Alsheikh, M., Svensson, J. and Randall, S. (2005). Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28, 1114.

Alsheikh, M. K., Heyen, B. J. and Randall, S. K.(2003). Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278, 40882–

40889.

Anderberg, R. J. and Walker-Simmons, M. K.(1992). Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci U S A 89, 10183–10187.

Arabidopsis-Genome-Initiative(2000). Analysis of the genome sequence of the flow-ering plant Arabidopsis thaliana. Nature 408, 796–815.

Assmann, S.(1994). Ins and outs of guard cell ABA receptors. Plant Cell 6, 1187–1190.

Bartels, D. and Salamini, F. (2001). Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127, 1346–1353.

Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D. and Salamini, F.

(1990). Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181, 27–34.

Bartels, D. and Sunkar, R. (2005). Drought and salt tolerance in plants. Crit Rev Plant Sci 24, 23–58.

Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L. L., Studholme, D. J., Yeats, C. and Eddy, S. R. (2004). The Pfam protein families database. Nucl Acids Res 32, D138–D141.

Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F. and Covarru-bias, A. A. (2008). The enigmatic lea proteins and other hydrophilins. Plant Physiol 148, 6–24.

Bianchi, G., Gamba, A., Murelli, C., Salamini, F. and Bartels, D.(1991). Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1, 355–359.

Billi, D. and Potts, M.(2002). Life and death of dried prokaryotes. Res Microbiol 153, 7–12.

Boudsocq, M., Barbier-Brygoo, H. and Lauriere, C.(2004). Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem279, 41758.

Bracken, C., Iakoucheva, L. M., Romero, P. R. and Dunker, A. K. (2004).

Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol 14, 570–576.

Bradford, M. M.(1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.

Bray, E. A.(1993). Molecular responses to water deficit. Plant Physiol 103, 1035–1040.

Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pages, M. and Masmoudi, K.

(2007). Functional characterization of DHN-5, a dehydrin showing a differential phos-phorylation pattern in two Tunisian durum wheat (Triticum durum desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172, 20–28.

Brown, C. J., Takayama, S., Campen, A. M., Vise, P., Marshall, T. W., Old-field, C. J., Williams, C. J. and Dunker, A. K. (2002). Evolutionary rate hetero-geneity in proteins with long disordered regions. J Mol Evol 55, 104–110.

Bru, C., Courcelle, E., Carrere, S., Beausse, Y., Dalmar, S. and Kahn, D.

(2005). The ProDom database of protein domain families: more emphasis on 3D. Nucl Acids Res 33, D212.

Buchanan, B., Gruissem, W. and Jones, R. (2000). Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, MD.

Buitink, J. and Leprince, O.(2004). Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiol 48, 215–228.

Bykova, N. V., Egsgaard, H. and Moller, I. M. (2003). Identification of 14 new phosphoproteins involved in important plant mitochondrial processes. FEBS Lett 540, 141–146.

Campbell, S. and Close, T.(1997). Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol , 61–74.

Ceccardi, T. L., Meyer, N. C. and Close, T. J. (1994). Purification of a maize dehydrin. Protein Expr Purif 5, 266–269.

Choi, H.-I., Park, H.-J., Park, J. H., Kim, S., Im, M.-Y., Seo, H.-H., Kim, Y.-W., Hwang, I. and Kim, S. Y.(2005).Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139, 1750–1761.

Close, T. (1996). Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97, 795–803.

Close, T.(1997). Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100, 291–296.

Cohen, C. and Parry, D. A. (1994). Alpha-helical coiled coils: more facts and better predictions. Science 263, 488–489.

Crowe, J. H., Hoekstra, F. A., Nguyen, K. H. and Crowe, L. M.(1996). Is vitrifi-cation involved in depression of the phase transition temperature in dry phospholipids?

Biochim Biophys Acta 1280, 187–196.

Cuming, A. (1999). LEA proteins. Seed Proteins. Kluwer Academic Publishers, Dor-drecht, The Netherlands , 753–780.

Cuming, A. C. and Lane, B. G.(1979). Protein synthesis in imbibing wheat embryos.

Eur J Biochem 99, 217–224.

de la Fuente van Bentem, S., Anrather, D., Dohnal, I., Roitinger, E., Csaszar, E., Joore, J., Buijnink, J., Carreri, A., Forzani, C., Lorkovic, Z. J., Barta, A., Lecourieux, D., Verhounig, A., Jonak, C. and Hirt, H.(2008). Site-specific phosphorylation profiling ofArabidopsis proteins by mass spectrometry and peptide chip analysis. J Proteome Res 7, 2458–2470.

Dgany, O., Gonzalez, A., Sofer, O., Wang, W., Zolotnitsky, G., Wolf, A., Shoham, Y., Altman, A., Wolf, S. G., Shoseyov, O. and Almog, O. (2004).

The structural basis of the thermostability of SP1, a novel plant (Populus tremula) boiling stable protein. J Biol Chem 279, 51516–51523.

Dosztányi, Z., Csizmók, V., Tompa, P. and Simon, I. (2005a). The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347, 827–839.

Dosztányi, Z., Csizmók, V., Tompa, P. and Simon, I.(2005b). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434.

Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M. and Obradovic, Z. (2002). Intrinsic disorder and protein function. Biochemistry 41, 6573–6582.

Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C. and Obradovic, Z. (2001).

Intrinsically disordered protein. J Mol Graph Model 19, 26–59.

Dure, L., Greenway, S. C. and Galau, G. A. (1981). Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20, 4162–

4168.

Dyson, H. J. and Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6, 197–208.

Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L. and Hubbell, S. P. (2007). Drought sensitivity shapes species distri-bution patterns in tropical forests. Nature 447, 80–82.

Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F. and White, F. M.(2002). Phosphoproteome analysis by mass spectrometry and its application to saccharomyces cerevisiae. Nat Biotechnol 20, 301–305.

Figueras, M., Pujal, J., Saleh, A., Savé, R. and Goday, A. (2004). Maize rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann App Biol 144, 251–257.

Fink, A. L.(2005). Natively unfolded proteins. Curr Opin Struct Biol 15, 35–41.

Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H.-R., Ceric, G., Forslund, K., Eddy, S. R., Sonnhammer, E. L. L. and Bateman, A. (2008). The Pfam protein families database. Nucl Acids Res 36, D281–D288.

Fischer, E. (1992). Systematik der afrikanischen Lindernieae (Scrophulariaceae). Trop.

Subtrop. Pflanzenwelt 81, 1–365.

Fischer, E. (1995). Revision of the Lindernieae (Scrophulariaceae) in Madagascar. I:

The generaLindernia All. andCrepidorhopalon. Bulletin du Muséum national d’histoire naturelle. Section B, Adansonia 17, 227–257.

Fischer, E. (2004). Scrophulariaceae. in ’The families and genera of vascular plants’. Springer Berlin.

Foyer, C. H. (1985). Stromal protein phosphorylation in spinach (Spinacia oleracea) chloroplasts. Biochem J 231, 97–103.

Frank, W., Munnik, T., Kerkmann, K., Salamini, F. and Bartels, D. (2000).

Water deficit triggers phospholipase d activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12, 111–124.

Frydman, J. (2001). Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70, 603–647.

Fuglsang, A. T., Guo, Y., Cuin, T. A., Qiu, Q., Song, C., Kristiansen, K. A., Bych, K., Schulz, A., Shabala, S., Schumaker, K. S., Palmgren, M. G. and Zhu, J.-K. (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19, 1617–1634.

Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006). Abscisic acid-dependent multisite phos-phorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103, 1988–1993.

Gaff, D. F. (1971). Desiccation-tolerant flowering plants in southern Africa. Science 174, 1033–1034.

Giarola, V.(2008). Expression study of Ls11-24, a dehydration-induced gene in Lindernia subracemosa (Linderniaceae). Master’s thesis, Universitá degli Studi di Verona.

Gobom, J., Schuerenberg, M., Mueller, M., Theiss, D., Lehrach, H. and Nord-hoff, E. (2001). Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation. a protocol for MALDI-MS peptide analysis in proteomics. Anal Chem 73, 434–438.

Gouzy, J., Corpet, F. and Kahn, D. (1999). Whole genome protein domain analysis using a new method for domain clustering. Comput Chem 23, 333–340.

Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J. and Tun-nacliffe, A. (2003). Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278, 12977–12984.

Goyal, K., Walton, L. J. and Tunnacliffe, A. (2005). Lea proteins prevent protein aggregation due to water stress. Biochem J 388, 151–157.

Guermeur, Y., Geourjon, C., Gallinari, P. and Deleage, G.(1999). Improved per-formance in protein secondary structure prediction by inhomogeneous score combination.

Bioinformatics 15, 413–421.

Harlow, E. and Lane, D.(1988). Antibodies. A laboratory manual. Cold Spring Harbor Laboratory.

Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature 381, 571–579.

Heyen, B. J., Alsheikh, M. K., Smith, E. A., Torvik, C. F., Seals, D. F. and Randall, S. K.(2002). The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130, 675–687.

Hirt, H. and Shinozaki, K. (2004). Plant responses to abiotic stress. Springer Verlag Berlin.

Hundertmark, M. and Hincha, D. K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9, 118.

Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Laugraud, A., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., Mistry, J., Mitchell, A., Mulder, N., Natale, D., Orengo, C., Quinn, A. F., Selengut, J. D., Sigrist, C. J. A., Thimma, M., Thomas, P. D., Valentin, F., Wilson, D., Wu, C. H. and Yeats, C. (2009). InterPro: the integrative protein signature database. Nucl Acids Res 37, D211–D215.

Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z. and Dunker, A. K. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucl Acids Res 32, 1037–1049.

Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. J Biochem 88, 1895–1898.

Irar, S., Oliveira, E., Pages, M. and Goday, A. (2006). Towards the identifica-tion of late-embryogenic-abundant phosphoproteome in Arabidopsis by 2-DE and MS.

Proteomics 6 Suppl 1, S175–S185.

Israelsson, M., Siegel, R. S., Young, J., Hashimoto, M., Iba, K. and Schroeder, J. I. (2006). Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9, 654–663.

Jensen, A. B., Goday, A., Figueras, M., Jessop, A. C. and Pages, M. (1998).

Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13, 691–697.

Jiang, X. and Wang, Y.(2004). Beta-elimination coupled with tandem mass spectrom-etry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein. Biochemistry 43, 15567–15576.

Johnson, L. N. and Lewis, R. J.(2001). Structural basis for control by phosphorylation.

Chem Rev 101, 2209–2242.

Jones, A. M. E., Bennett, M. H., Mansfield, J. W. and Grant, M. (2006).

Analysis of the defence phosphoproteome of Arabidopsis thalianausing differential mass tagging. Proteomics 6, 4155–4165.

Kaye, C., Neven, L., Hofig, A., Li, Q. B., Haskell, D. and Guy, C. (1998).

Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol 116, 1367–1377.

Kazuoka, T. and Oeda, K. (1994). Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol 35, 601.

Koag, M., Wilkens, S., Fenton, R., Resnik, J., Vo, E. and Close, T. (2009).

The-K segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150, 1503–1514.

Krishna, P. and Gloor, G.(2001). The Hsp90 family of proteins inArabidopsis thaliana. Cell Stress Chaperones 6, 238–246.

Krishna, R. G. and Wold, F.(1998). Proteins - Analysis and Design. Academic Press, San Diego.

Kuhn, A. (2009). Molekulare analysen von Phospholipase D (PLD) mutanten. Master’s thesis, Universität Bonn.

Kyo, M., Hattori, S., Yamaji, N., Pechan, P. and Fukui, H. (2003). Cloning and characterization of cDNAs associated with the embryogenic dedifferentiation of tobacco immature pollen grains. Plant Sci 164, 1057–1066.

Laemmli, U. K.(1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

Laugesen, S., Messinese, E., Hem, S., Pichereaux, C., Grat, S., Ranjeva, R., Rossignol, M. and Bono, J.-J. (2006). Phosphoproteins analysis in plants: a proteomic approach. Phytochemistry 67, 2208–2214.

Le, T. and McQueen-Mason, S. (2006). Desiccation-tolerant plants in dry environ-ments. Rev Environ Sci Biotechnol 5, 269–279.

Leung, J., Merlot, S. and Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759–771.

Leustek, T., Dalie, B., Amir-Shapira, D., Brot, N. and Weissbach, H. (1989).

A member of the Hsp70 family is localized in mitochondria and resembles Escherichia coli DnaK. Proc Natl Acad Sci U S A 86, 7805–7808.

Li, J. and Assmann, S. M.(1996). An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell 8, 2359–2368.

Li, J., Kinoshita, T., Pandey, S., Ng, C. K.-Y., Gygi, S. P., ichiro Shimazaki, K. and Assmann, S. M.(2002). Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 418, 793–797.

Li, W. H., Wu, C. I. and Luo, C. C.(1985). A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2, 150–174.

Liang, W., Warrick, H. M. and Spudich, J. A. (1999). A structural model for phosphorylation control of dictyostelium myosin ii thick filament assembly. J Cell Biol 147, 1039–1048.

Lisse, T., Bartels, D., Kalbitzer, H. R. and Jaenicke, R.(1996). The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plan-tagineum displays no defined three-dimensional structure in its native state. Biol Chem 377, 555–561.

Lorow, D. and Jessee, J.(1990). Max efficiency DH10B: a host for cloning methylated DNA. Focus 12, 19.

Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064.

Maniatis, T., Fritsch, E. and Sambrook, J.(1986). Molecular cloning. Cold Spring Harbor Laboratory Cold Spring Harbor, NY.

Manning, G., Whyte, D. B., Martinez, R., Hunter, T. and Sudarsanam, S.

(2002). The protein kinase complement of the human genome. Science 298, 1912–

1934.

Mason, J. and Arndt, K.(2004). Coiled coil domains: stability, specificity, and biolog-ical implications. ChemBioChem 5.

McCubbin, W., Kay, C. and Lane, B.(1985). Hydrodynamic and optical properties of the wheat germ Em protein. Biochem Cell Biol 63, 803–811.

Miemyk, J.(1997). The 70 kDa stress-related proteins as molecular chaperones. Trends Plant Sci 2, 180–187.

Miernyk, J. A., Duck, N. B., David, N. R. and Randall, D. D. (1992a). Au-tophosphorylation of the pea mitochondrial heat-shock protein homolog. Plant Physiol 100, 965–969.

Miernyk, J. A., Duck, N. B., Shatters, R. G. and Folk, W. R.(1992b). The 70-kilodalton heat shock cognate can act as a molecular chaperone during the membrane translocation of a plant secretory protein precursor. Plant Cell 4, 821–829.

Moes, D., Himmelbach, A., Korte, A., Haberer, G. and Grill, E.(2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Plant J 54, 806–819.

Mouillon, J.-M., Eriksson, S. K. and Harryson, P.(2008). Mimicking the plant cell interior under water stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiol 148, 1925–1937.

Mouillon, J.-M., Gustafsson, P. and Harryson, P. (2006). Structural investigation of disordered stress proteins. comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol 141, 638–650.

Nordin, K., Vahala, T. and Palva, E. T. (1993). Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 21, 641–653.

Oliver, M., Velten, J. and Mishler, B. (2005). Desiccation tolerance in bryophytes:

A reflection of the primitive strategy for plant survival in dehydrating habitats? Integ Comp Biol 45, 788–799.

O’Shea, E. K., Rutkowski, R. and Kim, P. S. (1989). Evidence that the leucine zipper is a coiled coil. Science 243, 538–542.

Pandey, S., Nelson, D. C. and Assmann, S. M. (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136–148.

Park, B., Liu, Z., Kanno, A. and Kameya, T. (2005). Genetic improvement of chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169, 553–558.

Park, M., Kang, C. Y. and Krishna, P.(1998). Brassica napus hsp90 can autophos-phorylate and phosautophos-phorylate other protein substrates. Mol Cell Biochem 185, 33–38.

Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.-F. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J.-K., Schroeder, J. I., Volkman, B. F. and Cutler, S. R.(2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.

Science 324, 1068–1071.

Parry, M. A. J., Andralojc, P. J., Mitchell, R. A. C., Madgwick, P. J. and Keys, A. J. (2003). Manipulation of Rubisco: the amount, activity, function and regulation.

J Exp Bot 54, 1321–1333.

Phillips, J. R., Fischer, E., Baron, M., van den Dries, N., Facchinelli, F., Kutzer, M., Rahmanzadeh, R., Remus, D. and Bartels, D.(2008).Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. Plant J 54, 938–948.

Phizicky, E. M. and Fields, S. (1995). Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59, 94–123.

Plana, M., Itarte, E., Eritja, R., Goday, A., Pagés, M. and Martínez, M. C.

(1991). Phosphorylation of maize RAB-17 protein by casein kinase 2. J Biol Chem266, 22510–22514.

Porembski, S. and Barthlott, W.(2000). Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecology 151, 19–28.

Postel, S. (1999). When the world’s wells run dry. World Watch 12, 30–38.

Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., Silman, I. and Sussman, J. L.(2005). FoldIndex: a simple tool

to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435–3438.

Queitsch, C., Sangster, T. A. and Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624.

Radhakrishnan, I., Perez-Alvarado, G. C., Parker, D., Dyson, H. J., Montminy, M. R. and Wright, P. E.(1997). Solution structure of the kix domain of cbp bound to the transactivation domain of creb: a model for activator:coactivator interactions.

Cell 91, 741–752.

Raggiaschi, R., Gotta, S. and Terstappen, G. C.(2005). Phosphoproteome analysis.

Biosci Rep 25, 33–44.

Rahmanzadeh, R., Müller, K., Fischer, E., Bartels, D. and Borsch, T. (2005).

The Linderniaceae and Gratiolaceae are further lineages distinct from the Scrophulari-aceae (Lamiales). Plant Biol 7, 67–78.

Rascio, N. and La Rocca, N. (2005). Resurrection plants: the puzzle of surviving extreme vegetative desiccation. Crit Rev Plant Sci 24, 209–225.

Richter, K. and Buchner, J. (2001). Hsp90: chaperoning signal transduction. J Cell Physiol 188, 281–290.

Roberts, J. K., DeSimone, N. A., Lingle, W. L. and Dure, L. (1993). Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. Plant Cell 5, 769–780.

Rock, C.(2000). Pathways to abscisic acid-regulated gene expression. New Phytol 148, 357–396.

Röhrig, H., Colby, T., Schmidt, J., Harzen, A., Facchinelli, F. and Bartels, D.

(2008). Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure.

Proteomics 8, 3548–3560.

Röhrig, H., Schmidt, J., Colby, T., Bräutigam, A., Hufnagel, P. and Bartels, D. (2006). Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ 29, 1606–1617.

Rutherford, S. L. and Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342.

Sanchez-Ballesta, M., Rodrigo, M., Lafuente, M., Granell, A. and Zacarias, L.

(2004). Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52, 1950–1957.

Schmidt, C., Schelle, I., Liao, Y. J. and Schroeder, J. I.(1995). Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci U S A92, 9535–9539.

Schuster-Böckler, B., Schultz, J. and Rahmann, S.(2004). HMM logos for visu-alization of protein families. BMC Bioinformatics 5, 7.

Schweighofer, A., Hirt, H. and Meskiene, I. (2004). Plant PP2C phosphatases:

emerging functions in stress signaling. Trends Plant Sci 9, 236–243.

Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. (2002). Monitoring the expression pattern of around 7,000 Arabidop-sis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2, 282–291.

Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carn-inci, P., Hayashizaki, Y. and Shinozaki, K.(2001). Monitoring the expression pat-tern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.

Seo, M. and Koshiba, T. (2002). Complex regulation of ABA biosynthesis in plants.

Trends Plant Sci 7, 41–48.

Sharp, R. E. (2002). Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress.Plant Cell Environ25, 211–222.

Sheen, J.(1996). Ca2+-dependent protein kinases and stress signal transduction in plants.

Science 274, 1900–1902.

Sheen, J.(1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci U S A 95, 975–980.

Silvertown, J.(2004). Plant coexistence and the niche. Trends Ecol Evol 19, 605–611.

Slovik, S., Daeter, W. and Hartung, W.(1995). Compartmental redistribution and long-distance transport of abscisic acid (ABA) in plants as influenced by environmental changes in the rhizosphere: a biomathematical model. J Exp Bot 46, 881–894.

Sokolovski, S., Hills, A., Gay, R., Garcia-Mata, C., Lamattina, L. and Blatt, M. R. (2005). Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J 43, 520–529.

Steinmetz, M. O., Jahnke, W., Towbin, H., García-Echeverría, C., Voshol, H., Müller, D. and van Oostrum, J. (2001). Phosphorylation disrupts the central helix in Op18/stathmin and suppresses binding to tubulin. EMBO Rep 2, 505–510.

Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M. and Ishi-hama, Y.(2007). Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Pro-teomics 6, 1103–1109.

Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K. and Ishihama, Y.(2008). Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4, 193.

Sun, W. and Leopold, A.(1993). The glassy state and accelerated aging of soybeans.

Physiol Plant 89, 767–774.

Svitkina, T. M., Shevelev, A. A., Bershadsky, A. D. and Gelfand, V. I.(1984).

Cytoskeleton of mouse embryo fibroblasts. Electron microscopy of platinum replicas. Eur J Cell Biol 34, 64–74.

Takhtajan, A. (1997). Diversity and classification of flowering plants. Columbia Univ Press.

Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596–

1599.

Tang, D., Qian, H., Yu, S., Cao, Y., Liao, Z., Zhao, L., Sun, X., Huang, D.

and Tang, K. (2004). cDNA cloning and characterization of a new stress-responsive gene BoRS1 from Brassica oleracea var. acephala. Physiol Plant 121, 578–585.

Testerink, C., Dekker, H. L., Lim, Z.-Y., Johns, M. K., Holmes, A. B., Koster, C. G., Ktistakis, N. T. and Munnik, T. (2004). Isolation and identification of phosphatidic acid targets from plants. Plant J 39, 527–536.

Tolleter, D., Jaquinod, M., Mangavel, C., Passirani, C., Saulnier, P., Manon, S., Teyssier, E., Payet, N., Avelange-Macherel, M.-H. and Macherel, D.

(2007). Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19, 1580–1589.

Tompa, P.(2002). Intrinsically unstructured proteins. Trends Biochem Sci 27, 527–533.

Tompa, P.(2005). The interplay between structure and function in intrinsically unstruc-tured proteins. FEBS Lett 579, 3346–3354.

Tompa, P., Szász, C. and Buday, L. (2005). Structural disorder throws new light on moonlighting. Trends Biochem Sci 30, 484–489.

Towbin, H., Staehelin, T. and Gordon, J.(1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc Natl Acad Sci U S A 76, 4350–4354.

Tucker, P. K. and Lundrigan, B. L. (1993). Rapid evolution of the sex determining locus in old world mice and rats. Nature 364, 715–717.

Tunnacliffe, A. and Wise, M. J. (2007). The continuing conundrum of the LEA proteins. Naturwissenschaften 94, 791–812.

Uversky, V. N., Gillespie, J. R. and Fink, A. L.(2000). Why are natively ‘unfolded’

proteins unstructured under physiologic conditions? Proteins 41, 415–427.

Valenzuela-Avendaño, J., Mota, I., Uc, G., Perera, R., Valenzuela-Soto, E.

and Aguilar, J. (2005). Use of a simple method to isolate intact RNA from partially hydrated Selaginella lepidophylla plants. Plant Mol Biol Rep 23, 199–200.

Velasco, R., Salamini, F. and Bartels, D. (1998). Gene structure and expression analysis of the drought- and abscisic acid-responsive CDeT11-24 gene family from the resurrection plant Craterostigma plantagineum Hochst. Planta 204, 459–471.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H., Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., Skupski, M., Subramanian, G., Thomas, P. D., Zhang, J., Miklos, G. L. G., Nelson, C., Broder, S., Clark, A. G., Nadeau, J., McKusick, V. A., Zinder, N., Levine, A. J., Roberts, R. J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Francesco, V. D., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A. E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T. J., Higgins, M. E., Ji, R. R., Ke, Z., Ketchum, K. A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G. V., Milshina, N., Moore, H. M., Naik, A. K., Narayan, V. A., Neelam, B., Nusskern, D., Rusch, D. B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M. L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D.,