• Keine Ergebnisse gefunden

Variation of lipid environment for Proteorhodopsin

C. Variation of lipid environment for Proteorhodopsin

1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 -0,6

Figure C.7.: Step-scan FTIR difference spectra of PR in DMPC (left) and PR in DSPC (right).

1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 -0,6

Figure C.8.: Step-scan FTIR difference spectra of PR in DOPC (left) and PR in DSPC (right).

Appendix

1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 -0,6

Figure C.9.: Step-scan FTIR difference spectra of PR in DMPG (left) and PR in DMPC/DMTAP 1:1 (right).

Figure C.10.: 3D structure of PR (protein data bank ID: 2L6X) with highlighted charged amino acids and surrounding negatively charged lipid headgroups (left) and positively charged lipid headgroups (right). Negatively charged amino acids are colored in blue and positively charged amino acids in red.

Bibliography

[1] U. Chawla, Y. Jiang, W. Zheng, L. Kuang, S. M. Perera, M. C. Pitman, M. F.

Brown, and H. Liang. A usual g-protein-coupled receptor in unusual membranes.

Angew. Chem., 55:588–92, 2016. 1

[2] J. L. Spudich, C. S. Yang, K. H. Jung, and E. N. Spudich. Retinylidene proteins:

structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol., 16:365–392, 2000. 2.1

[3] H. Kandori. Ion-pumping microbial rhodopsins. Front. Mol. Biosci., 2:52, 2015.

2.1

[4] S. Yokoyama, T. Tada, and T. Yamato. Modulation of the absorption maximum of rhodopsin by amino acids in the C-terminus. Photochem. Photobiol., 83:236–241, 2007. 2.1

[5] K. Stehfest and P. Hegemann. Evolution of the channelrhodopsin photocycle model.

ChemPhysChem, 11:1120–1126, 2010. 2.1

[6] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 8:1263–1268, 2005. 2.1

[7] A. K. Dioumaev and J. K. Lanyi. Bacteriorhodopsin photocycle at cryogenic temperatures reveals distributed barriers of conformational substates. Proc. Natl.

Acad. Sci. U.S.A., 104:9621–6, 2007. 2.1

[8] T. D. Lamb, R. M. Corless, and A. D. Pananos. The kinetics of regeneration of rhodopsin under enzyme-limited availability of 11-cis retinoid. Vision res., 110:23–33, 2015. 2.1

Bibliography

[9] J. Heberle, J. Fitter, H.J. Sass, and G. Buldt. Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys. Chem., 85:229–248, 2000. 2.1, 4.6, 5.1.1

[10] C. Bamann, E. Bamberg, J. Wachtveitl, and C. Glaubitz. Proteorhodopsin.Biochim.

Biophys. Acta, 1837:614–25, 2014. 2.3.1, 2.3.2, 4.7.1, 5.2.2, 5.2.4

[11] O.S. Mironova, R.G. Efremov, B. Person, J. Heberle, I.L. Budyak, G. Büldt, and R. Schlesinger. Functional characterization of sensory rhodopsin ii from halobacterium salinarum expressed in escherichia coli. Febs Letters, 579:3147 – 3151, 2005.

[12] V. A. Lorenz-Fonfria, T. Resler, N. Krause, M. Nack, M. Gossing, G. Fischer von Mollard, C. Bamann, E. Bamberg, R. Schlesinger, and J. Heberle. Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating.

Proc. Natl. Acad. Sci. U.S.A., 110:E1273–1281, 2013.

[13] Oliver P. Ernst, David T. Lodowski, Marcus Elstner, Peter Hegemann, Leonid Brown, and Hideki Kandori. Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem. Rev., 1:126–163, 2014. 2.1

[14] D. Oesterhelt and W. Stoeckenius. Functions of a new photoreceptor membrane.

Proc. Natl. Acad. Sci. U.S.A., 70:2853–2857, 1973. 2.2.1

[15] A. Danon and W. Stoeckenius. Photophosphorylation in halobacterium halobium.

Proc. Natl. Acad. Sci. U.S.A., 71:1234–1238, 1974. 2.2.1

[16] M. Kinoshita and T. Okada. Structural conservation among the rhodopsin-like and other g protein-coupled receptors. Sci. Rep., 5:9176, 2015. 2.2.2

[17] J. Heberle. Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim. Biophys. Acta, 1458:135–147, 2000. 2.2.2, 2.2.2, 4.6

[18] N.A. Dencher, K.D. Kohl, and M.P. Heyn. Photochemical cycle and light dark-adaptation of monomeric and aggregated bacteriorhodopsin in various lipid envi-ronments. Biochemistry, 22:1323–1334, 1983. 2.2.2

Bibliography

[19] I. Radu, M. Schleeger, C. Bolwien, and J. Heberle. Time-resolved methods in biophysics. 10. time-resolved ft-ir difference spectroscopy and the application to membrane proteins. Photochem. Photobiol., 8:1517–28, 2009. 2.3, 2.2.2, 2.4, 4.4, 4.5, 4.6, 4.7.1, 4.12, 4.7.1, 4.7.3, 5.1.1

[20] A. Corcelli, V.M.T. Lattanzio, G. Mascolo, P. Papadia, and F. Fanizzi. Lipid-protein stoichiometries in a crystalline biological membrane: Nmr quantitative analysis of the lipid extract of the purple membrane. J.Lipid Res., 43:132–140, 2002. 2.2.3, 2.6

[21] A.G. Lee. Lipid-protein interactions in biological membranes: a structural perspec-tive. Biochim. Biophys. Acta, 1612:1–40, 2003. 2.2.3, 2.5.1, 5.1.3

[22] H. Belrhali, P. Nollert, A. Royant, C. Menzel, J. P. Rosenbusch, E.M. Landau, and E. Pebay-Peyroula. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure, 7:909 – 917, 1999. 2.2.3

[23] J. Baudry, E. Tajkhorshid, F. Molnar, J. Phillips, and K. Schulten. Molecular dynamics study of bacteriorhodopsin and the purple membrane. J. Phys. Chem. B, 105:905–918, 2001. 2.5

[24] O. Beja, L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd, L. P. Nguyen, S. B.

Jovanovich, C. M. Gates, R. A. Feldman, J. L. Spudich, E. N. Spudich, and E. F.

DeLong. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea.

Science, 289:1902–6, 2000. 2.3.1

[25] S. Molloy. Sar86: streamlined for success. Nature Rev., 10:82, 2012. 2.3.1

[26] O. Belkin S. Finkel, O. M. Beja. Global abundance of microbial rhodopsins. The ISME J., pages 448–451, 2013. 2.3.1

[27] N. Yutin and E. V. Koonin. Proteorhodopsin genes in giant viruses. Biol. Direct, 7:34, 2012. 2.3.1

[28] D. Man, W. Wang, G. Sabehi, L. Aravind, A.F. Post, R. Massana, E.N. Spu-dich, J.L. SpuSpu-dich, and O. Beja. Diversification and spectral tuning in marine proteorhodopsins. The EMBO J., 22:1725–1731, 2003. 2.3.1

Bibliography

[29] A. Martinez, A. S. Bradley, J. R. Waldbauer, R. E. Summons, and E. F. DeLong.

Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl. Acad. Sci. U.S.A., 104:5590–5595, 2007. 2.3.1 [30] J.M. Walter, D. Greenfield, C. Bustamante, and J. Liphardt. Light-powering

escherichia coli with proteorhodopsin. Proc. Natl. Acad. Sci. U.S.A., 104:2408–

2412, 2007. 2.3.1

[31] E.F. DeLong and O. Beja. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLOS Biol., 8:1–5, 04 2010. 2.3.1, 2.7 [32] S. Reckel, D. Gottstein, J. Stehle, F. Lohr, M.K. Verhoefen, M. Takeda, R. Silvers,

M. Kainosho, C. Glaubitz, J. Wachtveitl, F. Bernhard, H. Schwalbe, P. Guntert, and V. Dotsch. Solution nmr structure of proteorhodopsin.Angew. Chem., 50:11942–

11946, 2011. 2.3.2

[33] J. Maciejko, M. Mehler, J. Kaur, T. Lieblein, N. Morgner, O. Ouari, P. Tordo, J. Becker-Baldus, and C. Glaubitz. Visualizing specific cross-protomer interactions in the homo-oligomeric membrane protein proteorhodopsin by dynamic-nuclear-polarization-enhanced solid-state nmr. J. Am. Chem. Soc., 137:9032–43, 2015.

2.3.2, 2.5.2

[34] A.L. Klyszejko, S. Shastri, S.A. Mari, H. Grubmuller, D.J. Muller, and C. Glaubitz.

Folding and assembly of proteorhodopsin. J. Mol. Biol., 376:35–41, 2008. 2.3.2 [35] F. Hempelmann, S. Holper, M.K. Verhoefen, A.C. Woerner, T. Kohler, N. Fiedler,

S.A .and Pfleger, J. Wachtveitl, and C. Glaubitz. His75-asp97 cluster in green proteorhodopsin. J. Am. Chem. Soc., 133:4645–4654, 2011. 2.3.2

[36] T. Friedrich, S. Geibel, R. Kalmbach, I. Chizhov, K. Ataka, J. Heberle, M. En-gelhard, and E. Bamberg. Proteorhodopsin is a light-driven proton pump with variable vectoriality. J. Mol. Biol., 321:821–38, 2002. 2.3.3, 4.6, 5.2.1, 5.30, 5.2.1, 5.2.5, 5.2.7

[37] A.K. Dioumaev, J.M. Wang, Z. Balint, G. Varo, and J.K. Lanyi. Proton transport by proteorhodopsin requires that the retinal schiff base counterion asp-97 be anionic.

Biochemistry, 42:6582–6587, 2003. 2.3.3

Bibliography

[38] E. Lorinczi, M. K. Verhoefen, J. Wachtveitl, A. C. Woerner, C. Glaubitz, M. En-gelhard, E. Bamberg, and T. Friedrich. Voltage- and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mutant proteorhodopsins upon expression in Xenopus oocytes. J. Mol. Biol., 393:320–341, 2009. 2.3.3 [39] N. Pfleger, A.C. Worner, J. Yang, S. Shastri, U.A. Hellmich, L. Aslimovska, M.S.M.

Maier, and C. Glaubitz. Solid-state nmr and functional studies on proteorhodopsin.

Biochim. Biophys. Acta, 1787:697–705, 2009. 2.3.3

[40] Philip L. Yeagle. The Membranes of Cells. Academic Press,Inc., 2nd edition, 1993.

2.4.1

[41] Ole G. Mouritsen. Life-As a matter of fat. Springer Verlag Berlin Heidelberg, 2005.

2.4.1, 2.4.2

[42] A. Blume. Apparent molar heat capacities of phospholipids in aqueous dispersion.

effects of chain length and head group structure. Biochemistry, 22:5436–5442, 1983.

2.12

[43] H. Hauser, I. Pascher, R.H. Pearson, and S. Sundell. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim.

Biophys. Acta, 650:21 – 51, 1981. 2.4.2

[44] Robert B. Gennis. Biomembranes. Molecular Structure and Function. Springer Verlag New York Inc., 1989. 2.4.2, 2.13

[45] R. N. McElhaney. Differential scanning calorimetric studies of lipid-protein inter-actions in model membrane systems. Biochim. Biophys. Acta, 864:361–421, 1986.

2.4.2

[46] H.H. Mantsch. Biological applications of fouriertransform infraredspectroscopy -a study of ph-ase-tr-ansitions in biomembr-anes. J. Mol. Struct., 113:201–212, 1984.

2.4.2

[47] H. H. Mantsch and R. N. McElhaney. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem. Phys. Lipids, 57:213–26, 1991. 2.4.2

Bibliography

[48] John E. Rouck, John E. Krapf, Jahnabi Roy, Hannah C. Huff, and Aditi Das.

Recent advances in nanodisc technology for membrane protein studies (2012-2017).

Febs Letters, 591:2057–2088, 2017. 2.4.3

[49] S. J. Singer and G. L. Nicolson. The fluid mosaic model of the structure of cell membranes. Science, 17:720–731, 1972. 2.5.1

[50] M.O. Jensen and O.G. Mouritsen. Lipids do influence protein function - the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta, 1666:205–226, 2004. 2.5.1, 2.15

[51] M. F. Brown. Soft Matter in Lipid-Protein Interactions. Annu. Rev. Biophys., 46:379–410, 2017. 2.5.1

[52] A.G. Lee. How lipids affect the activities of integral membrane proteins. Biochim.

Biophys. Acta, 1666:62–87, 2004.

[53] R. Phillips, T. Ursell, P. Wiggins, and P. Sens. Emerging roles for lipids in shaping membrane-protein function. Nature, 459:379–385, 2009. 2.5.1

[54] E. Sackmann. Physical basis for trigger processes and membrane structures in D.

Chapman (Ed.), Biological Membranes, volume 5. Academic Press, London, 1984.

2.5.1

[55] G. B. Warren, P. A. Toon, N. J. Birdsall, A. G. Lee, and J. C. Metcalfe. Reversible lipid titrations of the activity of pure adenosine triphosphatase-lipid complexes.

Biochemistry, 13:5501–5507, 1974. 2.5.1, 2.5.1

[56] A. G. Lee. How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim. Biophys. Acta, 1376:381–90, 1998. 2.5.1

[57] D. C. Mitchell, M. Straume, J. L. Miller, and B. J. Litman. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Bio-chemistry, 29:9143–9149, 1990. 2.5.1

[58] M.F. Brown and Gibson N.J. Lipid-protein interactions mediate the photochemical function of rhodopsin in visual excitation. Faseb J., 6:A9–A9, 1992.

Bibliography

[59] N.J. Gibson and M.F. Brown. Rhodopsin function is modulated by properties of the membrane lipid bilayer. Biophys. J., 64:A20–A20, 1993. 2.5.1

[60] H. Nakamura, R. L. Jilka, R. Boland, and A. N. Martonosi. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids. J. Biol. Chem., 251:5414–5423, 1976. 2.5.1

[61] A. P. Starling, J. M. East, and A. G. Lee. Effects of gel phase phospholipid on the ca2+-atpase. Biochemistry, 34:3084–3091, 1995. 2.5.1

[62] O. Soubias, W. E. Teague, K. G. Hines, and K. Gawrisch. Rhodopsin/lipid hydropho-bic matching-rhodopsin oligomerization and function. Biophys. J., 108:1125–32, 2015. 2.5.1

[63] B. Jastrzebska, A. Debinski, S. Filipek, and K. Palczewski. Role of membrane integrity on g protein-coupled receptors: Rhodopsin stability and function. Prog.

Lip. Res., 50:267–77, 2011. 2.5.1

[64] A. Albert, D. Alexander, and K. Boesze-Battaglia. Cholesterol in the rod outer segment: A complex role in a "simple" system. Chem. Phys. Lipids, 199:94–105, 2016. 2.5.1, 5.2.3

[65] M. Beck, F. Siebert, and T.P. Sakmar. Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin ii. Febs Letters, 436:304–308, 1998. 2.5.2

[66] Z. Wang, J. Bai, and Y. Xu. The effect of charged lipids on bacteriorhodopsin membrane reconstitution and its photochemical activities. Biochem. Biophys. Res.

Commun., 371:814–7, 2008. 2.5.2, 5.1.3

[67] T. Y. Lee, V. Yeh, J. Chuang, J. C. Chung Chan, L. K. Chu, and T. Y. Yu.

Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs. Biophys.

J., 109:1899–906, 2015. 2.5.2, 5.1.3, 5.1.3, 5.2.2

[68] L. Lindholm, C. Ariöz, M. Jawurek, J. Liebau, L. Mäler, Å. Wieslander, C. von Ballmoos, and A. Barth. Effect of lipid bilayer properties on the photocycle of green proteorhodopsin. Biochim. Biophys. Acta, 1847:698–708, 2015. 2.5.2, 5.2.2

Bibliography

[69] M.J. Ranaghan, C.T. Schwall, N.N. Alder, and R.R. Birge. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J. Am. Chem. Soc., 133:18318–18327, 2011. 2.5.2, 5.2.2

[70] D. Oesterhelt and W. Stoeckenius. Isolation of the cell membrane of halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol., 31:667–78, 1974. 4.1.1, 4.2

[71] E.L. Karjalainen and A. Barth. Vibrational coupling between helices influences the amide i infrared absorption of proteins: Application to bacteriorhodopsin and rhodopsin. J. Phys. Chem. B, 116:4448–4456, 2012. 4.1.2, 4.5

[72] Y. Kagawa and E. Racker. Partial resolution of the enzymes catalyzing oxidative phosphorylation. J. Biol. Chem., 246:5477–5487, 1971. 4.2

[73] J. L. Rigaud, B. Pitard, and D. Levy. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim. Biophys.

Acta, 1231:223–46, 1995. 4.2

[74] J.L. Rigaud and D. Levy. Reconstitution of membrane proteins into liposomes.

Methods Enzymol., 372:65 – 86, 2003. 4.4

[75] A. Barth and C. Zscherp. What vibrations tell about proteins. Quarterly Rev.

Biophys., 35:369–430, 2002. 4.9, 4.4

[76] A. Popp, L. Wu, T.A. Keiderling, and K. Hauser. Effect of hydrophobic interactions on the folding mechanism of β-hairpins. J. Phys. Chem. B, 118:14234–14242, 2014.

4.4

[77] A. Barth. The infrared absorption of amino acid side chains. Progr. Biophys. Mol.

Biol., 74:141 – 173, 2000. 4.5

[78] S. Krimm and J. Bandekar. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem., 38:181–364, 1986. 4.2, 5.1.4 [79] L.K. Tamm and S.A. Tatulian. Infrared spectroscopy of proteins and peptides in

lipid bilayers. Quarterly Rev. Biophys., 30:365–429, 1997. 4.2, 4.3

Bibliography

[80] J.L.R. Arrondo and F.M. Goni. Infrared studies of protein-induced perturbation of lipids in lipoproteins and membranes. Chem. Phys. Lipids, 96:53–68, 1998. 4.3 [81] F. Siebert, W. Mäntele, and W. Kreutz. Evidence for the protonation of 2 internal

carboxylic groups during the photocycle of bacteriorhodopsin - investigation by kinetic infrared spectroscopy. Febs Letters, 141:82–87, 1982. 4.6

[82] K. Gerwert, G. Souvignier, and B. Hess. Simultaneous monitoring of light-induced-changes in protein side-group protonation, chromophore isomerization, and back-bone motion of bacteriorhodopsin by time-resolved fourier transform infrared spectroscopy. Proc. Natl. Acad. Sci. U.S.A., 87:9774–9778, 1990. 5.1.1, 5.2.1 [83] K. J. Rothschild. Ftir difference spectroscopy of bacteriorhodopsin: toward a

molecular model. J. Bioenerg. Biomembr., 24:147–67, 1992.

[84] A. Maeda. Application of ftir spectroscopy to the structural study on the function of bacteriorhodopsin. Isr. J. Chem., 35:387–400, 1995. 4.6

[85] B. Aton, A. G. Doukas, R. H. Callender, B. Becher, and T. G. Ebrey. Resonance raman studies of the purple membrane. Biochemistry, 16:2995–9, 1977. 4.6 [86] S510 Step scan Option User Manual 04. edition, publication date October 2015

Bruker Optics GmbH. 4.7.3

[87] V. A. Lorenz-Fonfria and J. Heberle. Proton transfer and protein conformation dynamics in photosensitive proteins by time-resolved step-scan fourier-transform infrared spectroscopy. J. Vis. Exp., page e51622, 2014. 4.7.5, 4.7.6, 5.1.1, 5.1.1, 5.1.4

[88] C. Rodig and F. Siebert. Errors and artifacts in time-resolved step-scan ft-ir spectroscopy. Appl. Spectrosc., 53:893–901, 1999. 4.7.5, 5.1.6, 5.1.6

[89] K. Fahmy, O. Weidlich, M. Engelhard, H. Sigrist, and F. Siebert. Aspartic acid-212 of bacteriorhodopsin is ionized in the m and n photocycle intermediates - an ftir study on specifically c-13-labeled reconstituted purple membranes. Biochemistry, 32:5862–5869, 1993. 4.8

Bibliography

[90] W. Uhmann, A. Becker, C. Taran, and F. Siebert. Time-resolved ft-ir absorption-spectroscopy using a step-scan interferometer. Appl. Spectrosc., 45:390–397, 1991.

5.1.1

[91] J. Riesle, D. Oesterhelt, N.A. Dencher, and J. Heberle. D38 is an essential part of the proton translocation pathway in bacteriorhodopsin.Biochemistry, 35:6635–6643, 1996.

[92] R. Rammelsberg, G. Huhn, M. Lubben, and K. Gerwert. Bacteriorhodopsin’s intramolecular proton-release pathway consists of a hydrogen-bonded network.

Biochemistry, 37:5001–5009, 1998. 5.1.1

[93] C. Rodig, I. Chizhov, O. Weidlich, and F. Siebert. Time-resolved step-scan fourier transform infrared spectroscopy reveals differences between early and late m intermediates of bacteriorhodopsin. Biophys. J., 76:2687–2701, 1999.

[94] O. Weidlich, C. Rodig, and F. Siebert. Time-resolved step-scan ftir investigations on the m-1 -> m-2 transition in the light-driven proton pump bacteriorhodopsin.

Laser Chem., 19:179–185, 1999. 5.1.8

[95] E. Freier, S. Wolf, and K. Gerwert. Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl. Acad. Sci. U.S.A., 108:11435–

11439, 2011.

[96] C. Zscherp and J. Heberle. Infrared difference spectra of the intermediates l, m, n, and o of the bacteriorhodopsin photoreaction obtained by time-resolved attenuated total reflection spectroscopy. J. Phys. Chem. B, 101:10542–10547, 1997. 5.1.1 [97] M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, and K. J.

Roth-schild. Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212.

Biochemistry, 27:8516–8520, 1988. 5.1.1

[98] V. A. Lorenz-Fonfria, H. Kandori, and E. Padros. Probing specific molecular pro-cesses and intermediates by time-resolved fourier transform infrared spectroscopy:

application to the bacteriorhodopsin photocycle. J. Phys. Chem. B, 115:7972–85, 2011. 5.1.1, 5.1.4, 5.2.1, 5.2.5

Bibliography

[99] M. Jawurek, C. Glaubitz, and K. Hauser. Impact of the lipid environment on the protonation dynamics of bacteriorhodopsin studied with time-resolved step-scan ftir spectroscopy. Biomed. Spectrosc. and Imag., 5:167–174, 2016. 5.1.1, 5.1.2 [100] S. Ballweg and R. Ernst. Control of membrane fluidity: the OLE pathway in focus.

Biol. Chem., 398:215–228, 2017. 5.1.3

[101] A.N. Bondar, J. C. Smith, and S. Fischer. Structural and energetic determinants of primary proton transfer in bacteriorhodopsin. Photochem. Photobiol., 5:547–552, 2006. 5.1.5

[102] M. Cortijo, A. Alonso, J.C. Gomez-Fernandez, and D. Chapman. Intrinsic protein-lipid interactions. J. Mol. Biol., 157:597 – 618, 1982. 5.1.5

[103] T. Kluge, J. Olejnik, L. Smilowitz, and K.J. Rothschild. Conformational changes in the core structure of bacteriorhodopsin. Biochemistry, 37:10279–10285, 1998. 5.1.6 [104] J. Szakacs, M. Lakatos, C. Ganea, and G. Varo. Kinetic isotope effects in the photochemical reaction cycle of ion transporting retinal proteins. Photochem.

Photobiol., 79:145–150, 2005. 5.1.6

[105] L. S. Brown, R. Needleman, and J. K. Lanyi. Origins of deuterium kinetic isotope effects on the proton transfers of the bacteriorhodopsin photocycle. Biochemistry, 39:938–945, 2000. 5.1.6

[106] A. Rupenyan, I. H. van Stokkum, J. C. Arents, R. van Grondelle, K. Hellingwerf, and M. L. Groot. Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy. Biophys. J., 94:4020–4030, 2008. 5.2.1

[107] Y. Xiao, R. Partha, R. Krebs, and M. Braiman. Time-resolved ftir spectroscopy of the photointermediates involved in fast transient h+ release by proteorhodopsin. J.

Phys. Chem. B, 109:634–41, 2005. 5.2.1, 5.30, 5.2.1, 5.2.5, 5.2.7

[108] A. K. Dioumaev, L. S. Brown, J. Shih, E. N. Spudich, J. L. Spudich, and J. K.

Lanyi. Proton transfers in the photochemical reaction cycle of proteorhodopsin.

Biochemistry, 41:5348–58, 2002. 5.2.1

Bibliography

[109] G. Pluschke and P. Overath. Function of phospholipids in Escherichia coli. Influence of changes in polar head group composition on the lipid phase transition and characterization of a mutant containing only saturated phospholipid acyl chains. J.

Biol. Chem., 256:3207–3212, 1981. 5.2.2

[110] R. Tunuguntla, M. Bangar, K. Kim, P. Stroeve, C.M. Ajo-Franklin, and A. Noy.

Lipid bilayer composition can influence the orientation of proteorhodopsin in artificial membranes. Biophys. J., 105:1388–1396, 2013. 5.2.2

[111] T. P. McMullen, R. N. Lewis, and R. N. McElhaney. Calorimetric and spectro-scopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. Biochim. Biophys. Acta, 1788:345–357, 2009. 5.2.3

[112] F. de Meyer and B. Smit. Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. U.S.A., 106:3654–3658, 2009. 5.2.3

[113] F. Cornelius. Modulation of na,k-atpase and na-atpase activity by phospholipids and cholesterol. i. steady-state kinetics. Biochemistry, 40:8842–51, 2001. 5.2.3 [114] J. L. Rubenstein, B. A. Smith, and H. M. McConnell. Lateral diffusion in binary

mixtures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. U.S.A., 76:15–18, 1979. 5.2.3

[115] M. Andersson, E. Malmerberg, S. Westenhoff, G. Katona, M. Cammarata, A.B.

Wohri, L.C. Johansson, F. Ewald, M. Eklund, M. Wulff, J. Davidsson, and R. Neutze.

Structural dynamics of light-driven proton pumps. Structure, 17:1265–1275, 2009.

5.2.4

[116] H.J. Steinhoff, R. Mollaaghababa, C. Altenbach, K. Hideg, M. Krebs, H.G. Khorana, and W.L. Hubbell. Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science, 266:105–107, 1994. 5.3 [117] J. Yang, L. Aslimovska, and C. Glaubitz. Molecular dynamics of proteorhodopsin

in lipid bilayers by solid-state nmr. J. Am. Chem. Soc., 133:4874–4881, 2011. 5.3