• Keine Ergebnisse gefunden

Treatment of low and intermediate radioactive waste (ion-exchange resins, liquid

5. Appendix A

5.1. Treatment of low and intermediate radioactive waste (ion-exchange resins, liquid

Data Value Unit

Treatment for ion-exchange resins - Electricity demand for drying 800 kWh/drum Treatment for ion-exchange resins - Electricity demand for bituminization in drum 450 kWh/drum Treatment for ion-exchange resins - Demand for bitumen per drum 116 kg/drum Treatment for ion-exchange resins - Demand for nitrogen per drum unknown kg/drum Treatment for ion-exchange resins - kg of ion-exchange resin per batch treatment with nitrogen 180 kg/batch Treatment for ion-exchange resins - kg of ion-exchange resin per drum 67 kg/drum Treatment for liquid concentrate - Chemical requirement - Sulfuric acid (Schwefelsäure) 657 kg/a Treatment for liquid concentrate - Chemical requirement - Caustic soda (Natronlauge) 3600 kg/a Treatment for liquid concentrate - Chemical requirement - EDTA 25 kg/a Treatment for liquid concentrate - Chemical requirement - Antifoam (Antischaum) 5 kg/a Treatment for liquid concentrate - Bitumen requirement per drum 136 kg/drum Treatment for liquid concentrate - Bitumen requirement per year 4.9 ton/a

Treatment for liquid concentrate - Cement requirement 83.7 kg/drum

Treatment for liquid concentrate - Electricity demand for drying 800 kWh/drum Treatment for liquid concentrate - Electricity demand for bituminization in drum 450 kWh/drum

Treatment for filter and activated metals - Cement per drum 83.7 kg/drum

69 5.2. Reference data year of PWR (KKG)

5.3. Scaled environmental impacts of electricity production in UK, US (WECC), Netherlands and Germany

before operation 1979 …. 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 … 2029

Uranium Mining Uranium Conversion Uranium Enrichment

Fuel and Control Rod Assembly Fabrication Nuclear Power Production

Annual electricity production Nuclear power plant construction Nuclear power plant decommission Electricity consumption during outage Fuel assembly consumption

Chemical consumption Emissions

Waste Generation and Disposal Hazardous waste, non-radiactive Non-hazardous waste

Spent fuel

Low and intermediate radioactive waste Low radioactive waste for incineration Low radioactive waste for conditioning

70

Note: based on medium-voltage electricity production from country market in ecoinvent version 3.3; scaled by dividing the absolute impact by maximum impact of each impact category; worst-performed country is equal to 1.

5.4. Absolute environmental impact of electricity generation technologies

Nuclear PV slanted rood inst. Wind, onshore Hydro Natural

Gas

Freshwater ecotoxicity CTUe 4.1E-01 7.6E-01 9.8E+00 9.8E+00 7.1E-01 2.6E+00 6.4E-02 5.5E-02 3.1E-01 1.8E+00

Land use kg C deficit 2.5E-02 2.2E-02 1.1E-01 1.2E-01 1.9E-01 2.7E-01 9.2E-03 -2.4E-02 2.9E-01 3.7E-01

71 5.5. Contribution analysis of uranium mining and milling (Functional unit: 1 kg of uranium in yellowcake mined and milled)

0.0E+00 5.0E+01 1.0E+02 1.5E+02 2.0E+02 2.5E+02 3.0E+02 3.5E+02

Russia Canada Australia Global ISL CO2eq/kg of uranium mined and milled, in yellowcake

Talling Treatment

Mine Infrastructure Underground Uranium Mill Construction Chemical Consumption Transport

Water

Energy_Electricity Energy_Hard Coal Energy_Heat

Energy_Peteroleum Products Uranium Mining

Climate Change

72 kBq U235 eq/kg of uranium mined and milled, in yellowcake

Talling Treatment kg PM2.5 eq/kg of uranium mined and milled, in yellowcake

Talling Treatment

73 CTUh/kg of uranium mined and milled, in yellowcake

Talling Treatment CTUh/kg of uranium mined and milled, in yellowcake

Talling Treatment

74 CTUe/kg of uranium mined and milled, in yellowcake

Talling Treatment kg of C deficit/kg of uranium mined and milled, in yellowcake

Talling Treatment

75

0.0E+00 5.0E-01 1.0E+00 1.5E+00 2.0E+00 2.5E+00 3.0E+00 3.5E+00

Russia Canada Australia Global ISL molc H+ eq/kg of uranium mined and milled, in yellowcake

Talling Treatment

Mine Infrastructure Underground Uranium Mill Construction Chemical Consumption Transport

Water

Energy_Electricity Energy_Hard Coal Energy_Heat

Energy_Peteroleum Products Uranium Mining

Acidification

76

6. References

Annual Compliance Monitoring and Operational Performance Report Blind River Refinery. (2014). Retrieved from

Annual Compliance Monitoring and Operational Performance Report Port Hope Conversion Facility. (2014). Retrieved from

Areva. (2010). Comurhex II: Investing for The Future.

Areva. (2012). Enrichement: Increasing the Proportion of U235.

Bauer, C., Frischknecht, R., Eckle, P., Flury, K., Neal, T., Papp, K., Treyer, K. (2012).

Umweltauswirkungen der Stromerzeugung in der Schweiz, Bundesamt für Energie

BFE. (2014). Schweizerische Gesamtenergiestatistik. Retrieved from Mühlestrasse 4, CH-3063 Ittigen, 3003 Bern:

http://www.bfe.admin.ch/themen/00526/00541/00542/00631/index.html?lang=de

&dossier_id=00763

Cartier, F., Habegger, R., & Leupin, A. (2014). 8.1 Überwachung der Kernanlagen:

Emissionen und Immissionen, Umweltradioaktivität und Strahlendosen in der Schweiz Ergebnisse 2014. Retrieved from

http://www.bag.admin.ch/themen/strahlung/00043/00065/02239/index.html?lang=

de&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1acy4Zn4Z2qZpnO2Yuq2Z6gpJ CLfYN5fWym162epYbg2c_JjKbNoKSn6A--

Doka, G. (2011). Life Cycle Inventory of Generic Uranium in-situ Leaching. Retrieved from

Dones, R., Bauer, C., & Doka, G. (2009). Kernenergie. Retrieved from

Dreicer, M., Tort, V., & Manen, P. (1995). ExternE, Externalities of Energy. Retrieved from

Earles, J. M., & Halog, A. (2011). Consequential life cycle assessment: a review. The International Journal of Life Cycle Assessment, 16(5), 445-453.

doi:10.1007/s11367-011-0275-9

ecoinvent. (2010). ecoinvent version 2.2 , allocation, cut-off by classification system model. Retrieved from http://www.ecoinvent.org/database/older-versions/ecoinvent-version-2/ecoinvent-version-2.html

77

ecoinvent. (2014). ecoinvent version 3.1, allocation, cut-off by classification system model. Retrieved from http://www.ecoinvent.org/database/older-versions/ecoinvent-31/ecoinvent-31.html

ecoinvent. (2016). ecoinvent version 3.2, allocation, cut-off by classification system model. Retrieved from http://www.ecoinvent.org/database/older-versions/ecoinvent-31/ecoinvent-31.html

ecoinvent. (2016). ecoinvent version 3.3, allocation, cut-off by classification system model. Retrieved from http://www.ecoinvent.org/database/older-versions/ecoinvent-33/ecoinvent-33.html

European Commission, E. (2010). International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance.

Retrieved from Luxembourg:

Fave, L., Puhrer, A., & Bauer, C. (2014). Life cycle assessment of deep geological repositories for radioactive waste disposal. Retrieved from

Frischknecht, R., Braunschweig, A., Hofstetter, P., & Suter, P. (2000). Human health damages due to ionising radiation in life cycle impact assessment. Environmental Impact Assessment Review, 20(2), 159-189. doi:http://dx.doi.org/10.1016/S0195-9255(99)00042-6

Gaseous and Liquid Releases, Environmental Monitoring Data at COMURHEX Pierrelatte. (2012). Retrieved from http://www.areva.com/EN/operations-2894/gazeous-and-liquid-releases.html

Greco, S. L., Wilson, A. M., Spengler, J. D., & Levy, J. I. (2007). Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmospheric Environment, 41(5), 1011-1025.

doi:http://dx.doi.org/10.1016/j.atmosenv.2006.09.025

Hachenberger, C., Trugenberger-Schnabel, A., Löbke-Reinl, A., & Peter, J. (2013).

Umweltradioaktivität und Strahlenbelastung Jahresbericht. Retrieved from

Hausschild, M., Goedkoop, M., Guinee, J., Heijungs, R., Huijbregts, M., Jolliet, O., . . . Schryver, A. D. (2011). Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook) (P. O. o. t. E. Union Ed. First Edition ed.): European Commission-Joint Research Centre - Institute for Environment and Sustainability.

IPCC, T. I. P. o. C. C. (2007). Climate Change 2007: The Physical Science Basis.

Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (S. Solomon, D. Qin, M. Manning,

78

Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller Ed.): Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

KKG. (2014). KKG Geschäftsbericht 2014.

KKG (2014-2017). [Personal Communication with KKG].

KKG. (2015). KKG Geschäftsbericht 2015.

KKL. (2014a). Facts and figures on Leibstadt Nuclear Power Plant. Retrieved from https://www.kkl.ch/fileadmin/seiteninhalt/dateien/publikationen/2014_Faktenblatt_

e.pdf

KKL. (2014b). KKL Geschäftsbericht 2014.

KKL (2014c). [Personal Communication with KKL].

Milà i Canals, L., Chenoweth, J., Chapagain, A., Orr, S., Antón, A., & Clift, R. (2009).

Assessing freshwater use impacts in LCA: Part I—inventory modelling and characterisation factors for the main impact pathways. The International Journal of Life Cycle Assessment, 14(1), 28-42. doi:10.1007/s11367-008-0030-z

Posch, M., Seppälä, J., Hettelingh, J.-P., Johansson, M., Margni, M., & Jolliet, O.

(2008). The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. The International Journal of Life Cycle Assessment, 13(6), 477-486. doi:10.1007/s11367-008-0025-9

PRé. (2014). SimaPro 8.0.4.30 Multi user. Retrieved from PRé Consultants bv, Stationsplein 121, 3818 LE Amersfoort, The Netherlands:

Rabl, A. a. S., J.V. (2004). The RiskPoll software, version 1.0551 (dated August 2004).

Retrieved from www.arirabl.com

Rosenbaum, R. K., Bachmann, T. M., Gold, L. S., Huijbregts, M. A. J., Jolliet, O., Juraske, R., . . . Hauschild, M. Z. (2008). USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. The International Journal of Life Cycle Assessment, 13(7), 532-546. doi:10.1007/s11367-008-0038-4

Seppälä, J., Posch, M., Johansson, M., & Hettelingh, J.-P. (2006). Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator (14 pp). The International Journal of Life Cycle Assessment, 11(6), 403-416.

doi:10.1065/lca2005.06.215

Stein, M. (2014). Arbeitsbericht NAB 14-104 Erläuterungen zur Verpackung radioaktiver Abfälle im Endlagerbehälter. Retrieved from

79

Steubing, B., Wernet, G., Reinhard, J., Bauer, C., & Moreno-Ruiz, E. (2016). The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2. The International Journal of Life Cycle Assessment, 1-13.

doi:10.1007/s11367-016-1109-6

Todd, H. (2014). Nuclear 101: Uranium Conversion.

TÜV. (2012a). Stellungnahme für die technische Überprufung der Kostenstudie zur Steilllegung der Kernanlage Gösgen in der Schweiz (Stand 2011). Retrieved from http://static.ensi.ch/1351860954/stellungnahme-kkg_neu_geschwaerzt.pdf TÜV. (2012b). Stellungnahme für die technische Überprufung der Kostenstudie zur

Steilllegung der Kernanlage Leibstadt in der Schweiz (Stand 2011). Retrieved from http://static.ensi.ch/1351860957/stellungnahme-kkl_neu_geschwaerzt.pdf Umwelterklärung URENCO Deutschland GmbH Urananreicherungsanlage Gronau.

(2013). Retrieved from http://www.urenco.com/_/uploads/content-files/Environmental_Statement_UD_Gronau_2013.pdf

URENCO. (2014). Company Structure.

URENCO. (2016a). Centrifuge Cascade. Retrieved from

http://www.urenco.com/about-us/business-activity/nuclear-fuel-supply-chain/centrifuge-cascade/

URENCO. (2016b). Enrichment Process. Retrieved from

http://www.urenco.com/about-us/business-activity/nuclear-fuel-supply-chain/enrichment-process/

Warner, E. S., & Heath, G. A. (2012). Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation. Journal of Industrial Ecology, 16, S73-S92.

doi:10.1111/j.1530-9290.2012.00472.x

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B.

(2016). The ecoinvent database version 3 (part I): overview and methodology.

The International Journal of Life Cycle Assessment, 1-13. doi:10.1007/s11367-016-1087-8

World Nuclear Association, W. (2014). Conversion and deconversion

World Nuclear Association, W. (2015). Nuclear Power in France. Retrieved from http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/france.aspx

World Nuclear Association, W. (2016). Uranim Enrichment. Retrieved from http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/conversion-enrichment-and-fabrication/uranium-enrichment.aspx

80

Zamagni, A., Guinée, J., Heijungs, R., Masoni, P., & Raggi, A. (2012). Lights and shadows in consequential LCA. The International Journal of Life Cycle Assessment, 17(7), 904-918. doi:10.1007/s11367-012-0423-x

комбинат, S. С. х. (2012-2013). ГОДОВОЙ ОТЧЕТ по результатам работы за

2012/2013 год. Retrieved from

http://www.atomsib.ru/files/2013/annual_report2013_SHK.pdf

http://www.atomsib.ru/files/2012/annual_report2012.pdf

Открытое акционерное общество «Сибирский химический комбинат» ОТЧЕТ по экологической безопасности за 2013 год. (2013). Retrieved from http://www.atomsib.ru/files/2013/ecology_report2013.pdf