• Keine Ergebnisse gefunden

Transit time for different film thicknesses

6.2 Mobility calculations

6.2.3 Transit time for different film thicknesses

The transit time also depends on the He-film thickness and the roughness of the sub-strate. As we can see from Fig. 6.11) a) and b), for sample No.3, as expected the time needed for the electrons to pass through the channel is shorter when the film thickness

Figure 6.10: Schematically the transport mechanism of the electrons through the channel.

The red spot represents the electrons which will go back to the source because for pulse widths<400nsthe time is not enough for the electrons to cross at least more than L/2.

The green spot represents the electrons which will pass through the channel to the drain because for pulse widths400nsthe time is enough for the electrons to cross more than L/2.

is thicker. That is may be due to the roughness of the substrate which is become more important when we go to thinner helium films.

Figure 6.11: Forsample No.3: a) The number of passed electrons as a function of pulse width for a film thickness of 30nm. b) The number of passed electrons as a function of pulse width for a film thickness of 40nm. Here the channel is short (2µm) andVs−d= 1V.

Wigner crystal observations

In the experiments of the determination of saved electrons we obserevd different be-haviour in the pick-up current when we go to high numbers of saved electrons. From this different behaviour of the pick-up current we consider that the Wigner crystal regime is reached. Because when the gate was partially opened, a sharp peak was ex-pected but as we can see in Fig. 7.1. a) and b), the rate of passed electrons remain constant for some time and then decreases gradually until zero current again. There is an indication that, the Wigner crystal start melting after opening the gate partially.

After that, we see the peaks as expected because the crystal is already melted. So we have two regions in our graph the first one for Wigner crystal regime and the other for the classical gas regime. Furthermore the height of the pick-up current depends on the intial saved electrons at the source as expected from our electrons distribution model.

The time needed for the total saved electrons to go through the channel in this case is relatively long time compared to what observed before and depends on the intial saved electrons at the source namely when we go from low electron density (in classical regime) to relatively high electron density (in Wigner crystal regime), see Fig. 7.2. We interpret this behaviouras the localization of the electrons which forms in this case a Wigner crystal and so the mobility is very low.

Figure 7.1: Forsample No.5: Pick-up current (Ip) as a function of time during saving electrons measurements which shows the Wigner crystal and classical gas regimes. a) for 20 minutes charging time. b) for 60 minutes charging time.

Zusammenfassung

In dieser Arbeit wurden Untersuchungen zum Transport von Elektronen auf fl¨ussigen Heliumfilmen durch enge Kan¨ale gezeigt, die auf einem Siliziumwafer hergestellt wur-den und die Feldeffekt Transistoren (He-FET) darstellen. Die Probe hat ”source” und

”drain” Gebiete, die durch eine ”gate” Struktur getrennt sind, welche aus zwei Gold-elektroden mit einer engen L¨ucke besteht, durch die der Elektronentransport statt-findet. Die Elektronendichte auf ”source” und ”drain” werden mir einer elektronischen Methode direkt bestimmt. F¨ur zeitaufgel¨oste Messungen wird zuerst ein Puls von Elektronen von einem kleinen Filament im ”source” Gebiet gesammelt, und dann wird der Fluss dieses Pulses durch den Kanal des ”split gates” hin zum ”drain” betrachtet.

Das erlaubt die Be-stimmung des Elektronentransports von Oberfl¨achenelektronen in Kan¨alen verschiedener Gr¨osse und f¨ur einen breiten Bereich von Elektronendichten.

Die Untersuchung von m¨oglichen Potentialverl¨aufen auf den He-FET Proben resultiert in einem neuen Model f¨ur die Anzahl der verbleibenden Elektronen in Abh¨angigkeit der

”gate” Spannung. Deshalb hilft dieses Modell sehr um die gesamte zwei-dimensinale Elektronendichte mit Hilfe eines He-FET zu verstehen und erleichtert es, den Elek-tronentransport einer solchen Probe zu untersuchen. Diese Arbeit kann in folgenden Punkten zusammengefasst werden:

a) Einige Verbesserungen im experimentellen Aufbau wurden durchgef¨uhrt, so zum Beispiel der Schrittmotor, der zusammen mit dem Zylinderkondensator zur Be-stimmung des Heliumlevels benutzt wurde. Diese Arbeit wurde daher unter besser definierten Bedingungen durchgef¨uhrt als sie zuvor gegeben waren.

b) Wir haben die maximale Elektronendichte im ”source” Gebiet verbessert, indem neue und besser strukturierte Proben benutzt wurden.

c) Wir haben zeitaufgel¨oste Messungen durchgef¨uhrt, die Aufschluss ¨uber die Po-tentialverteilung in den Proben gegeben haben.

d) Wir haben die Potentialverteilung auf den Proben genauer untersucht, welche sowohl in unseren als auch in ¨alteren Experimenten Anwendung gefunden haben.

e) Diese Untersuchungen der Potentialverteilung nutzend, haben wir ein neues Mod-ell f¨ur die verbleibenden Elektronen entwickelt, das als Funktion der ”gate” Bar-riere als grundlegendes Modell verwendet werden kann um den Transport von SSE zu untersuchen.

f) Wir haben eine neue Methode zur Untersuchung des Elektronentransports auf fl¨ussigen Heliumfilmen genutzt indem wir das ”gate” pulsweise betrieben haben (das ”gate” wurde f¨ur eine kurze Zeit ge¨offnet).

Wir erhalten also einen tieferen Einblick in das System des Elektronentransports auf Heliumflimen in solch einer Geometrie.

[AGP81] L.G. Ilchenko A.M. Gabovich and E.A. Pashitskii. Sov. Phys. JETP, 54:1089, 1981. 21

[AL87] U. Albrecht and P. Leiderer. Multielectron bubbles in liquid helium. EPL (Europhysics Letters), 3:705, 1987. 2

[And84] E.Y. Andrei. Observation of the polaronic transition in a two-dimensional electron system. Physical review letters, 52(16):1449–1452, 1984. vi, 23, 26, 27

[And97] E.Y. Andrei. Two-dimensional electron systems on helium and other cryo-genic substrates. Kluwer Academic Pub, 1997. 1

[BD66] DJ BenDaniel and CB Duke. Space-charge effects on electron tunneling.

Physical Review, 152(2):683–692, 1966. 8

[BD67] DJ BenDaniel and CB Duke. Conductance anomalies due to space-charge-induced localized states. Physical Review, 160(3):679–685, 1967. 8

[BM77] L. Bonsall and AA Maradudin. Some static and dynamical properties of a two-dimensional Wigner crystal. Physical Review B, 15(4):1959, 1977. 18 [CC88] E. Cheng and M.W. Cole. Retardation and many-body effects in

multilayer-film adsorption. Physical Review B, 38(2):987, 1988. 21

[CDL87] D. Cieslikowski, AJ Dahm, and P. Leiderer. Investigation of thin helium films with surface-bound electrons. Physical review letters, 58(17):1751–

1754, 1987. 2

[Col70] M.W. Cole. Properties of image-potential-induced surface states of insula-tors. Physical Review B, 2(10):4239–4252, 1970. v, 8, 9

[Col74] M.W. Cole. Electronic surface states of liquid helium. Reviews of Modern Physics, 46(3):451–464, 1974. 1

[CW72] RS Crandall and R. Williams. Properties of electron surface states on liquid helium. Physical Review A, 5(5):2183–2190, 1972. 11

[Doi04a] I. Doicescu. dc-measurements in 2 dimensional electron system on liquid 4He. Diploma thesis, 2004. 2

[Doi04b] I. Doicescu. dc-measurements in 2 dimensional electron system on liquid 4he. phd thesis, 2004. vi, vii, 2, 27, 28, 33, 35, 36, 39, 43, 47

[EGIL84] H. Etz, W. Gombert, W. Idstein, and P. Leiderer. Stability of Chargedˆ{4}

He Films. Physical Review Letters, 53(27):2567–2570, 1984. 2, 20, 23 [EH00] C. Enss and S. Hunklinger. Tieftemperaturphysik. Springer, 2000. v, 5 [Fau04] A. Faustein. Low-dimensional electron systems in quantum films. Diploma

thesis, 2004. v, 6

[GA79] CC Grimes and G. Adams. Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Physical Review Letters, 42(12):795–798, 1979. 1, 7, 17

[GAD+85] DC Glattli, EY Andrei, G. Deville, J. Poitrenaud, and FIB Williams. Dy-namical Hall effect in a two-dimensional classical plasma. Physical review letters, 54(15):1710–1713, 1985. 17

[GB74] CC Grimes and TR Brown. Direct spectroscopic observation of electrons in image-potential states outside liquid helium. Physical Review Letters, 32(6):280–283, 1974. v, 10

[GCC79] RC Gann, S. Chakravarty, and GV Chester. Monte Carlo simulation of the classical two-dimensional one-component plasma. Physical Review B, 20(1):326, 1979. 17

[GDF+01] P. Glasson, V. Dotsenko, P. Fozooni, MJ Lea, W. Bailey, G. Papageorgiou, SE Andresen, and A. Kristensen. Observation of dynamical ordering in a confined wigner crystal. Physical Review Letters, 87(17):176802, 2001. 35 [GMM+83] CJ Guo, DB Mast, R. Mehrotra, Y.Z. Ruan, MA Stan, and AJ Dahm.

Evidence in support of dislocation-mediated melting of a two-dimensional electron lattice. Physical review letters, 51(16):1461–1464, 1983. 17 [Gri78] CC Grimes. Electrons in surface states on liquid helium. Surface Science,

73:379–395, 1978. 1, 7

[HD90] XL Hu and AJ Dahm. Stability of charged thin helium films. Physical review. B, Condensed matter, 42(4):2010–2013, 1990. 20

[HN78] BI Halperin and D.R. Nelson. Theory of two-dimensional melting.Physical Review Letters, 41(2):121–124, 1978. 18

[HPP03] M. Haque, I. Paul, and S. Pankov. Structural transition of a Wigner crystal on a liquid substrate. Physical Review B, 68(4):045427, 2003. 18

[IAK09] H. Ikegami, H. Akimoto, and K. Kono. Nonlinear transport of the wigner solid on superfluidˆ{4} he in a channel geometry. Physical review letters, 102(4):46807, 2009. 2

[IAK10] H. Ikegami, H. Akimoto, and K. Kono. Melting of a quasi-one-dimensional wigner crystal: Electrons on superfluidˆ{4}he in a narrow channel. Phys-ical Review B, 82(20):201104, 2010. 2

[IK07] H. Ikegami and K. Kono. Nonlinear transport of wigner solid on superfluid 3 he–a. Journal of Low Temperature Physics, 148(5):489–493, 2007. 2 [IP81] H. Ikezi and PM Platzman. Stability of helium films charged with electrons.

Physical Review B, 23(3):1145–1148, 1981. 2, 20, 22

[JKRC65] J. Jortner, N.R. Kestner, S.A. Rice, and M.H. Cohen. Study of the Prop-erties of an Excess Electron in Liquid Helium. I. The Nature of the Elec-tronHelium Interactions. The Journal of Chemical Physics, 43:2614, 1965.

v, 4, 6

[JP81] SA Jackson and PM Platzman. Polaronic aspects of two-dimensional elec-trons on films of liquid He. Physical Review B, 24(1):499, 1981. 25

[JSD88] H.W. Jiang, MA Stan, and AJ Dahm. Phase diagrams and melting in a screened two-dimensional system: Electrons on helium films. Surface Science, 196(1-3):1–7, 1988. 26

[KAL91] K. Kono, U. Albrecht, and P. Leiderer. Surface-state electrons on a hydro-gen film. 1. Annealing of the film. Journal of Low Temperature Physics, 82(5):279–293, 1991. 26

[KDL00] J. Klier, I. Doicescu, and P. Leiderer. First dc measurements of electrons on liquid helium: the helium-FET. Journal of Low Temperature Physics, 121(5):603–608, 2000. 2, 27

[KGW+01] J. Klier, T. G¨unzler, A. W¨url, P. Leiderer, G. Mistura, E. Teske, P. Wyder, and V. Shikin. Two-fraction electron system on a thin helium film.Journal of low temperature physics, 122(3):451–458, 2001. 26

[KKM79] T. Kailath, S.Y. Kung, and M. Morf. Displacement ranks of matrices and linear equations* 1. Journal of Mathematical Analysis and Applications, 68(2):395–407, 1979. 17

[KT72] JM Kosterlitz and DJ Thouless. Long range order and metastability in two dimensional solids and superfluids.(Application of dislocation theory).

Journal of Physics C: Solid State Physics, 5:L124, 1972. 18

[Las06] M. Lasch. Transport phenomena in low dimensional electron systems in quantum wells. Diploma thesis, 2006. 41

[Lei92] P. Leiderer. Electrons at the surface of quantum systems. Journal of Low Temperature Physics, 87(3):247–278, 1992. v, vi, 13, 16, 23, 24

[LES82] P. Leiderer, W. Ebner, and VB Shikin. Macroscopic electron dimples on the surface of liquid helium. Surface Science, 113(1-3):405–411, 1982. 2 [Lin10] F. Lindeman. Thermalmelting law. Phys. Z, 11:609–611, 1910. 17

[L.P] D.M.Chernikova L.P.Gorkov. hallo. JETP, 18(68). 16

[LPW77] P. Leiderer, H. Poisel, and M. Wanner. Interfacial tension near the tricrit-ical point in 3 He-4 He mixtures. Journal of Low Temperature Physics, 28(1):167–173, 1977. 15

[MAKL93] Y.P. Monarkha, U. Albrecht, K. Kono, and P. Leiderer. Helium-film-induced retrapping transition in the two-dimensional electron system above an uneven solid-hydrogen surface. Physical Review B, 47(20):13812, 1993.

26

[MGNL97] G. Mistura, T. G¨unzler, S. Neser, and P. Leiderer. Microwave study of screened two-dimensional electron crystals on helium films.Physical Review B, 56(13):8360–8366, 1997. 2

[MI78] K. Mima and H. Ikezi. Propagation of nonlinear waves on an electron-charged surface of liquid helium.Physical Review B, 17(9):3567–3575, 1978.

16

[MISK97] Y.P. Monarkha, S. Ito, K. Shirahama, and K. Kono. Inelastic Quantum Magnetotransport in a Highly Correlated Two-Dimensional Electron Liq-uid. Physical Review Letters, 78(12):2445–2448, 1997. 13

[MK04] I.U.P. Monarkha and K. Kono. Two-dimensional Coulomb liquids and solids. Springer Verlag, 2004. 1

[ML93] F. Mugele and P. Leiderer. Wigner crystallization of two-dimensional elec-tron systems on solid H2-films. Le Journal de Physique IV, 3(C2):2–2, 1993. 2

[Mot61] NF Mott. The transition to the metallic state. Philosophical Magazine, 6:287, 1961. 17

[MV90] CJ Mellor and WF Vinen. Experimental observation of crystallization and ripplon generation in a two-dimensional pool of helium ions. Surface Science, 229(1-3):368–370, 1990. 17

[MW66] ND Mermin and H. Wagner. Absence of ferromagnetism or antiferromag-netism in one-or two-dimensional isotropic Heisenberg models. Physical Review Letters, 17(22):1133–1136, 1966. 17

[Onn13] H.K. Onnes. Investigations into the properties of substances at low temper-atures, which have led, amongst other things, to the preparation of liquid helium. Nobel Lecture, 1913. 4

[PD99] PM Platzman and MI Dykman. Quantum computing with electrons float-ing on liquid helium. Science, 284(5422):1967, 1999. 2

[Pee84] FM Peeters. Two-dimensional Wigner crystal of electrons on a helium film:

Static and dynamical properties. Physical review. B, Condensed matter, 30(1):159–165, 1984. vi, 17, 18

[Pee87] FM Peeters. Physics of the tow dimensional electron gas. Summerschool Proceedings, 1987. 21

[Pei79] S.R.E. Peierls. Surprises in theoretical physics. Princeton Univ Pr, 1979.

17

[PJ85] FM Peeters and SA Jackson. Frequency-dependent response of an electron on a liquid-helium film. Physical Review B, 31(11):7098, 1985. 23

[PP83] FM Peeters and PM Platzman. Electrons on films of helium: a quan-tum mechanical two-dimensional fermion system. Physical review letters, 50(25):2021–2023, 1983. 20, 21, 23

[RD99] NA Rubin and AJ Dahm. Comment on Observation of 2D Polarons and Magnetopolarons on Superfluid Helium Films. Physical review letters, 82(9):2004–2004, 1999. 26

[RK10] D. Rees and K. Kono. Transport of Electrons on Liquid Helium Across a Tunable Potential Barrier in a Point Contact-like Geometry. Journal of Low Temperature Physics, 158(1):301–306, 2010. vi, 2, 28, 29, 71

[RKY07] S. Yamanaka1 T. Arai R. Kobayashi, I. B. Berkutov and H. Yayama.

Charge Transport in Quasi-One-Dimensional Electron System on Liquid Helium. The Physical Society of Japan, 76:196–197, 2007. 2

[San75] L.M. Sander. Electron localization on a liquid-helium surface. Physical Review B, 11(11):4350, 1975. 26

[Sch07] M. Schmid. Electron transport on liquid helium in confined geometry. PhD thesis, Bibliothek der Universit¨at Konstanz, 2007. vi, vii, 2, 22, 33, 34, 39, 43, 47, 49

[Shi70] VB Shikin. Motion of helium ions near a vapor-liquid surface. Soviet Journal of Experimental and Theoretical Physics, 31:936, 1970. 1, 26

[Shi71] VB Shikin. Some properties of surface electrons on liquid helium. Soviet Journal of Experimental and Theoretical Physics, 33:387, 1971. 26

[SHS95] S.S. Sokolov, G.Q. Hai, and N. Studart. Mobility of electrons in a quasi-one-dimensional conducting channel on the liquid-helium surface. Physical Review B, 51(9):5977–5988, 1995. 2

[SK95] K. Shirahama and K. Kono. Dynamical Transition in the Wigner Solid on a Liquid Helium Surface. Physical review letters, 74(5):781–784, 1995. 17 [Ska06] Ivan Skachko. Phase Diagram of a 2-DES on the surface of liqiud

he-lium,PhD thesis, 2006. vi, 25

[SKD+01] V. Shikin, J. Klier, I. Doicescu, A. W¨url, and P. Leiderer. Dip prob-lem of the electron mobility on a thin helium film. Physical Review B, 64(7):073401, 2001. 26

[Som64] WT Sommer. Liquid helium as a barrier to electrons. Physical Review Letters, 12(11):271–273, 1964. 1, 5, 7

[SP99] D.V. Schroeder and J.K. Pribram. An introduction to thermal physics.

American Journal of Physics, 67:1284, 1999. 4

[ST71] WT Sommer and D.J. Tanner. Mobility of Electrons on the Surface of Liquidˆ{4}He. Physical Review Letters, 27(20):1345–1349, 1971. v, 14 [TMP+96] O. Tress, Y.P. Monarkha, FC Penning, H. Bluyssen, and P. Wyder.

Ob-servation of 2D polarons and magnetopolarons on superfluid helium films.

Physical review letters, 77(12):2511–2513, 1996. 26

[W¨06] A. W¨url. Hochfrequenzuntersuchungen an zweidimensionalen Elektronen-systemen auf d¨unnen Heliumfilmen. PhD thesis, Bibliothek der Universit¨at Konstanz, 2006. 52

[WF68] J. Wilks and H.A. Fairbank. The properties of liquid and solid helium.

American Journal of Physics, 36:764, 1968. 4

[Whi63] ET Whittaker. GN Watson A course of modern analysis, 1963. 9

[Wig34] E. Wigner. On the interaction of electrons in metals. Physical Review, 46(11):1002, 1934. 17

[Wil82] FIB Williams. Collective aspects of charged-particle systems at helium interfaces. Surface Science, 113(1-3):371–388, 1982. vi, 19

[WKLS03] A. W¨url, J. Klier, P. Leiderer, and V. Shikin. Cyclotron resonance for 2d electrons on helium films above rough substrates. Physica E: Low-dimensional Systems and Nanostructures, 18(1-3):184–185, 2003. 52

[WL79] M. Wanner and P. Leiderer. Charge-Induced Ripplon Softening and Dim-ple Crystallization at the Interface ofˆ{3} He-ˆ{4} He Mixtures. Physical Review Letters, 42(5):315–317, 1979. vi, 14, 15

[Wr06] Andreas Wrl. Hochfrequenzuntersuchungen an zweidimensionalen Elektro-nensystemen auf dnnen Heliumfilmen,PhD thesis, 2006. vi, 21

[You79] AP Young. Melting and the vector Coulomb gas in two dimensions. Phys-ical Review B, 19(4):1855, 1979. 18

I herewith declare that I have produced this thesis without the prohibited assistance of third parties and without making use of aids other than those specified; notions taken over directly or indirectly from other sources have been identified as such. This thesis has not previously been presented in identical or similar form to any other German or foreign examination board.

The thesis work was conducted from January 2008 to September 2011 under the supervision of Paul Leiderer at University of Konstanz.

M Ashari,