• Keine Ergebnisse gefunden

Figure 50: left: Transient UVvis difference spectra of 4 in THF at selected pump-probe delays (pump wavelength: 530 nm). The black line shows the scaled linear absorption spectrum. right: Time-dependence of the integrated absolute absorption changes (red line is a bi-exponential fit withτ1= 1.8 ps andτ2= 11.1 ps).

Figure 51: left: Transient UVvis difference spectra of 4 in THF at selected pump-probe delays (pump wavelength: 475 nm). The black line shows the scaled linear absorption spectrum. right: Time-dependence of the integrated absolute absorption changes (red line is a bi-exponential fit withτ1= 1.5 ps andτ2= 9.2 ps).

Figure 52: left: Transient UVvis difference spectra of 4 in THF at selected pump-probe delays (pump wavelength: 380 nm). The black line shows the scaled linear absorption spectrum. right: Time-dependence of the integrated absolute absorption changes (red line is a bi-exponential fit withτ1= 1.1 ps andτ2= 8.3 ps).

Figure 53: left: Transient UVvis difference spectra of 4 in THF at selected pump-probe delays (pump wavelength: 330 nm). The black line shows the scaled linear absorption spectrum. right: Time-dependence of the integrated absolute absorption changes (red line is a bi-exponential fit withτ1= 1.3 ps andτ2= 9.9 ps).

Figure 54: Transient IR difference spectra of4 in THF at selected pump-probe delays (pump wavelength: 400 nm).

W Cl

r.t. Room Temperature BDE Bond dissoziation energy BDFE Bond dissoziation free energy equiv. Equivalents

FMO Frontier Molecular Orbitals HER Hydrogen Evolution Reaction NRR Nitrogen Reduction Reaction HOMO Highest Occupied Molecule Orbital LUMO Lowest Unoccupied Molecule Orbital MO Molecular Orbital

PCET Proton Coupled Electron Transfer SOMO Single Occupied Molecule Orbital

15-cr-5 15-crown-5 (1,4,7,10,13-Pentaoxacyclopentadecane) [BArF24] Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate

[Fc] Ferrocen

HPNP bis(2-(di-tert-butylphosphanyl)ethyl)amin,HN(CH2CH2PtBu2)2

Pr iso-Propyl

LutH 2.6-lutidinum, 2.6-Me2-C5H3NH+

Np Neopentyl

[PPN]+ µ-nitrido-bis(triphenylphosphan), [(Ph3P)2N]+

tBu tert-Butyl

TrenTIPS N(CH2CH2NSiiPr3)3

NMR Nuclear Magnetic Resonance COSY Correlation Spectroscopy

HMBC Heteronuclear Multiple Bond Correlation HSQC Heteronuclear Single Quantum Coherence

s Singulett

d Duplett

t Triplett

q Quartett

qu Quintett

sex Sextett

hpt Heptett

m Multiplett

br broad

RE Reference Electrode WE Working Electrode

EPR Electron Paramagnetic Resonance HFI Hyperfine Interaction

MS Massenspectrometry ESI Electrospray Ionisation

LIFDI Liquid Field Desorption Ionisation UVvis Ultraviolett / visibile

SQUID Superconducting Quantum Interference Device TIP Temperature Independent Paramagnetism PI Paramagnetic Impurity

IC Internal Conversion ISC Inter System Crossing

IVR Intramolecular vibrational redistribution LMCT Ligand to Metal Charge Transfer

LLCT Ligand to Ligand Charge Transfer MLCT Metal to Ligand Charge Transfer MMCT Metal to Metal Charge Transfer VC Vibrational Cooling

6.1 Spectroscopic Results

6.1.1 [WCl3(PNP)] (5)

a ap sa sap fa fap ta tap [a [ap pa pap ]a ]ap Ca Cap Da Dap -a -ap s a

55

aDf

Cas]5]]

-ast

is[[

is[s istD istp

55

ist-ap

Figure 55: 1H NMR Spectrum of 5in C6D6 at r.t.

o

Parts of this work have been published in:

-"Selectivity of tungsten mediated dinitrogen splittingvs.proton reduction", B. Schluschaß, J. Abbenseth, S. Demeshko, M. Finger, A. Franke, C. Herwig, C. Würtele, I. Ivanovic-Burmazovic, C. Limberg, J. Telser, S.

Schneider,Chemical Science,2019,10, 10275-10282.

-N.A. Maciulis "Exploring redox properties of bis(tetrazinyl)pyridine (btzp) complexes of group VI metals, tetrazine and phosphine assisted reduction of H2O, and dinitrogen cleavage and functionalization"Ph.D.

Thesis, Indiana University Bloomington,2019.

-P.-M. Padonou "Reaktivität dimerer N2-verbrückter Wolfram-PNP-Pinzetten Komplexe"Bachelor Thesis, Georg-August-Universität Göttingen,2018.

-J. Schneider "Synthese und Funktionalisierung von Wolfram-PNP-Nitrid Komplexen"Bachelor Thesis, Georg-August Universität Göttingen,2019.

6.1.2 [(N2){WCl(PNP)}2](1)

tsH ts-[s[

[s]

[s8 [sH [s-ps[

ps]

ps8 psH ps-]s[

]s]

]s8 ]sH

77

[s[[[s[4[s[8[s[F[sp-[s]8[s8][s8H

[sH][sHF

pspF

ps]F

]s84]s8F7F]sTT

Figure 56: 1H NMR Spectrum of 1in THF−d8 at r.t.

tf t.

[f [.

pf p.

]f ].

.f ..

9f 9.

f . f

55

pf tpfptpt ptp[ fp[ tp 9pp p

]

Figure 57:13C{1H} NMR Spectrum of 1in THF−d8at r.t.

s]

s].[

s]][

s][[

sp[

sp[

sp.[

sp][

sp[[

s[

s[

s.[

s][

[ ][

.[

[ [ p[[

p][

p.[

p[

6 6

3pfp

Figure 58:15N{1H} NMR Spectrum of 15N-1in THF−d8 at r.t.

] fs f]

ts t]

[s []

ps p]

]s ]]

As A]

(s (]

ds d]

)s )]

fss fs]

00 0ch

)tl) cfp(l]h

0ch d(ld cfp(lph

d(lpddl[)tl])[lp

Figure 59: 31P{1H} NMR Spectrum of 1in THF−d8at r.t.

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 -0.016

-0.012 -0.008 -0.004 0.000 0.004 0.008 0.012 0.016

current[mA]

potential vs Fc +

/Fc [V]

100 mV/s

200 mV/s

400 mV/s

600 mV/s

800 mV/s

1000 mV/s

Figure 60: CV of 1in 0.1 M solution of [nBu4N][PF6] in THF (WE = GC, RE = Ag/Ag+, CE = Pt) at different scan rates.

800 1000 1200 1400 1600 1800 2000 2200 2400 1347

[cm -1

] 15

N

14

N

THF-d 8

1300 1350 1400 1450

1392

Figure 61: rRaman Spectrum (457 nm) of 14N/15N-1in frozen THF−d .

6.1.3 [(N2){WCl(PNP)}2]+(2)

] p p5 p7 pp pt [ [5 [7 [p [t 5

7 p t p 7 5

00

p9s7

p.st5

ppst5

[7s[7

.s5t

ps]ps.[ps]s[]7s]9

Figure 62: 1H NMR Spectrum of 2-[BPh4] in THF−d8at r.t.

800 1000 1200 1400 1600 1800 2000 2200 2400

[cm -1

] 14

N

15

N

THF-d 8

1350 1400 1450

1360

1414

Figure 63: rRaman Spectrum (457 nm) of 14N/15N-2-[BPh4] in frozen THF−d8.

1.88 1.90 1.92 1.94 1.96 1.98

g 14

N

15

N

sim

g = 1.93

A(

183

W )= 220 MHz

A ( 31

P) = 56 MHz

Figure 64: Comparison of the EPR-Spectra of 14N/15N-2, both in THF at r.t.

0 50 100 150 200 250 300

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

exp

sim

M

Tcm

3 mol

-1 K

T [K]

Figure 65: χMT vs. T plot for 2-[BArF24]. The open circles are the observed suscepti-bility, the red solid line corresponds to the best fit with the parameters g = 1.82 and TIP =120·10−6 cm3mol1(TIP: temperature independent paramagnetism).

6.1.4 [(N2){WCl(PNP)}2]2+ (3)

97 9t 77 7t .7 .t ]7 ]t p7 pt [7 [t 7 t 7

55

9pst[

79s78

.9st

]pst8

ss[ 8st]

[s79[s8]]s.]s7]s8.s[.s]p

Figure 66: 1H NMR Spectrum of 3-[Al(OC(CF3)3)4]2 in THF−d8at r.t.

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1356

cm -1 14

N

15

N

THF-d 8

1400

1300 1350 1400 1450

Figure 67: rRaman Spectrum (514.5 nm) of 14N/15N-3-[Al(OC(CF3)3)4]2 in THF−d8 at -100C.

0 50 100 150 200 250 300 0.0

0.1 0.2 0.3 0.4 0.5 0.6

J = -59 cm -1 exp

sim

PI (0.6 %)

M

Tcm

3 mol

-1 K

T [K]

Figure 68: χMT vs. T plot for 2-[Al(OC(CF3)3)4]2. The open circles are the ob-served susceptibility, the red solid line corresponds to the best fit with the param-eters g = 1.90, J = –59 cm−1, TIP =230·10−6 cm3mol1and PI = 0.6% (S= 1, the blue broken line, PI: paramagnetic impurity).

6.1.5 [W(N)Cl(HPNP)]+ (11)

1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99

g mes

sim

g = 1.93

A(

183

W )= 220 MHz

A ( 31

P) = 56 MHz

Figure 69: EPR-Spectrum of 11in THF at r.t.

4000 3500 3000 2500 2000 1500 1000 500

3079

[cm -1

] 14

N

15

N 1058

1080 10601040 10201000

Figure 70: ATR-IR-Spectrum14N/15N-11.

6.1.6 in situ[(HPNP)ClW-(N2)-WCl(PNP)]+ (12)

flN

fl

6.1.7 in situ[{(HPNP)ClW}(μ−N2)]2+ (13)

aHs aT]

aTs a.]

a.s a]]

a]s ap]

aps a[]

a[s at]

ats af]

afs a]

s ] fs f]

ts t]

[s []

ps p]

]s

00

aTplH[

a[slHt

atpl]p

aHlTs

flTp[l]H0aH

f.lF.

tTlf.

p]lt.

Figure 77:1H NMR Spectrum of 13-(OTf)2 in THF−d8 at -65C.

6.1.8 [(N2){WCl(CO)(PNP)}2]( 8)

tst tsp ts9 ts ts [st [sp [s9 [s [s pst psp ps9 ps ps ]st ]sp ]s9 ]s ]s 9st 9sp

22

[sp[s][[s]][s9[[s9][s95[s5[[s5][s55[s5[st[sp[s

ps9p

]sp

]s55

Figure 78: 1H NMR Spectrum of 8in C6D6 at r.t.

]t [t [t ]t 4t Ct Dt [[t []t [4t [Ct [Dt p[t p]t p4t pCt pDt

00

p4s.p4sC][st][s[][s]][s.]Csp]Cs6]6s]]6s64Dsp4Ds.

[p6s[088

p8]s[

Figure 79: 13C{1H} NMR Spectrum of 8in C6D6 at r.t.

s99 s9[

s69 s6[

s.9 s.[

s]9 s][

sp9 sp[

s9 [ 9 p[

p9 ][

]9 .[

.9 6[

69 9[

99

0 0

s[f

Figure 80: 15N{1H} NMR Spectrum of 8in C6D6 at r.t.

s][

sp[

sp[

sp.[

sp][

sp[[

s[

s[

s.[

s][

[ ][

.[

[ [ p[[

p][

p.[

p[

p[

][[

0 0

9f[

Figure 81:31P{1H} NMR Spectrum of 8in C6D6 at r.t.

fl]

fl7 flP tlf tl[

tl]

tl7 tlP [lf [l[

[l]

[l7 [lP plf pl[

pl]

pl7 plP ]lf

t 444

75l9]

75l97 75l9P 75lPf 75lP[

75lP]

75lP7 75lPP 75l{f 75l{[

75l{]

75l{7 75l{P 77lff 77lf[

77lf]

pt44

tl7fi75l{f tl]pi75l{f tlpti75l{f tl5[i75l{f

Figure 82: 1H-31P-HMBC NMR Spectrum of 8 in C6D6 at r.t. showing a cross-peak for all fourtBu-groups to only one31P-signal.

800 1000 1200 1400 1600 1800 2000 2200 2400

1394

[cm -1

] 14

N

15

N

THF-d 8

1300 1350 1400 1450 1500 1437

Figure 83: rRaman Spectrum (457 nm) of 14N/15N-8in frozen THF−d8.

4000 3500 3000 2500 2000 1500 1000 500 1883

1887

1867

1867

[cm -1

] 1883

1867 1925 1900 1875 1850

15

N

14

N

Figure 84: ATR-IR Spectrum of 8.

-2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -0.020

-0.018 -0.016 -0.014 -0.012 -0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0.008

100 mV/s

200 mV/s

400 mV/s

600 mV/s

800 mV/s

1000 mV/s

current[mA]

potential vs Fc +

/Fc [V]

-2.2 -2.0 -1.8 -1.6

Figure 85: CV of 8 in 0.1 M solution of [nBu4N][PF6] in THF (WE = GC, RE = Ag/Ag+, CE = Pt) at different scan rates.

6.1.9 [(N2){W(CO)(PNP)}2](4)

spD sp7 sp3 sp]

sp[

sD s7 s3 s]

[ ] 3 7 D p[

p]

p3 p7

8 8

sp7f[]

sp3f.7

s]f5D

.f5.

3f537f.D7f35Cfp7877Cf]5CfC9

p]fD5p.f7]p3f7[

1H NMR Spectrum of 4 in C6D6at r.t.

800 1000 1200 1400 1600 1800 2000 2200 2400

[cm -1

] 14

N

15

N

THF-d 8

1589

1540

1475 1500 1525 1550 1575 1600 1625 1650

4000 3600 3200 2800 2400 2000 1600 1200 800 400 (Nitride)

1883

1785

1745 1741

1785

[cm -1

] 1785

1741 1850 1800 1750 1700 1650

14

N

15

N

Figure 87: ATR-IR Spectrum 4.

0 50 100 150 200 250 300

0.0 0.1 0.2 0.3 0.4 0.5 0.6

sim

exp

PI (8.3 %)

M

Tcm

3 mol

-1 K

T [K]

D = 406.6 cm -1

Figure 88: χMT vs. T plot for 4. The open circles are the observed susceptibil-ity, the red solid line corresponds to the best fit with the parameters g = 1.74 and D = 406.6 cm1(TIP: temperature independent paramagnetism).

6.1.10 [W(N)(CO)(PNP)] (16)

lf [ f f f [ f ] f 5 f t f t [ t ] t 5 t [ f [ [ [ ] [ 5 [ p f p [ p ] p 5 p ] f ] [

..

fffft

t ]t 9ft 9tt 95t 7

p 75

p

Figure 89:1H NMR Spectrum of 16in C6D6 at r.t.

] [t [t ]t .t 8t t [[t []t [.t [8t [t p[t p]t p.t p8t pt ][t ]t

00

p4s.ps[ps]].st].s[

66sp

p]s4

Figure 90: 13C{1H} NMR Spectrum of 16in C6D6at r.t.

[.s [s [s [s pss pfs pts p[s pps p]s p.s ps ps ps ]ss ]fs ]ts ][s

00

ppls

Figure 91: 15N{1H} NMR Spectrum of 16in C6D6at r.t.

ip p s sp f fp t tp [ [p p pp ] ]p . .p p p s s p ss ssp sf

00

s[a[

Figure 92: 31P{1H} NMR Spectrum of16in C6D6 at r.t.

4000 3500 3000 2500 2000 1500 1000 500 1885

1883

[cm -1

] 14

N

15

N

1883 998

973

10201000 980 960 1925190018751850

Figure 93: ATR-IR Spectrum of16.

6.1.11 [W(N)(CO)(HPNP)]+(20)

sls sl]

fls fl]

tls tl]

[ls [l]

pls pl]

]ls ]l]

9ls 9l]

Cls Cl]

Dls

55

slC]slCDslDsflfpflf9flfDfl9p

tltD

tl][

[lpls]

]l[

Clf9599

Figure 94: 1H NMR Spectrum of 20in C6D6at r.t.

.t pt t pt .t Ct 7t [tt [pt [.t [Ct [7t ptt ppt p.t pCt p7t ]tt ]pt ].t

00

p]stp7stp7s.].sC]5s5

57s5

[p7s[0CC

pD7s7

Figure 95: 13C{1H} NMR Spectrum of 20in C6D6 at r.t.

[s [s [s pss pfs pts p[s pps p]s p.s ps ps ps ]ss ]fs ]ts

00

pp]lf

Figure 96:15N{1H} NMR Spectrum of 20in C6D6 at r.t.

s][

sp[

sp[

sp3[

sp][

sp[[

s[

s[

s3[

s][

[ ][

3[

[ [ p[[

p][

p3[

p[

p[

][[

0 0

9fp3

Figure 97:31P{1H} NMR Spectrum of 20in C6D6 at r.t.

4000 3500 3000 2500 2000 1500 1000 500

[cm -1

] 14

N

15

N

3118

1928 1048

1014

1075105010251000

Figure 98: ATR-IR Spectrum of 20.

6.1.12 [W(CO)3(HPNP)] (9)

f 6 f f t t t p t 6 t t [ t [ p [ 6 [ [ p t p p p 6 p p ] t ] p

55

t ppt p]t p8t pt pt 66

[ ][

[ 6p

p ]p 6]

Figure 99:1H NMR Spectrum of 9in CD2Cl2 at r.t.

is s f t [ p ] . C D s ss sf st s[

sp s]

s.

sC sD f fs ff ft f[

00

fpa[ta[ta]t.attCa.

p[a 0ffpCa

ff[afff]a[

Figure 100: 13C{1H} NMR Spectrum of 9in CD2Cl2at r.t.

ip p s sp f fp t tp [ [p p pp ] ]p . .p p p s s p

00

ap

Figure 101:31P{1H} NMR Spectrum of 9in CD2Cl2 at r.t.

4000 3500 3000 2500 2000 1500 1000 500

[cm -1

] 1896

1773

1753 3227

Figure 102: ATR-IR Spectrum of 9.

6.1.13 [WI(CO)2(PNP)] (18)

asl sls sl]

fls fl]

tls tl]

[ls [l]

pls pl]

]ls ]l]

9ls 9l]

Cls Cl]

..

flffflf[flf]fl[Cfl[flpf

flptls9tlp]tlCC

Clf9.99

Figure 103: 1H NMR Spectrum of 18in C6D6at r.t.

p .p 3p Cp 5p ]pp ].p ]3p ]Cp ]5p .pp ..p .3p .Cp

44

.CtD7pt37]t575tD7t.

CDt.

].5t]4CC

.3Dt9.97t3

Figure 104: 13C{1H} NMR Spectrum of 18in C6D6 at r.t.