• Keine Ergebnisse gefunden

As Fig. 9.6d-f shows the the spectra recorded at𝑡≈0.1−1 ps delay and𝑡≈1−1.9 ns, Fig. 9.13 shows the respective kinetics integrated over a spectral range of 590 to 610 nm.

This range covers the 0-0 vibronic transition of ordered and aggregated (i.e. crystalline) P3HT.

Figure 9.13: TA kinetics integrated over a spectral range of 590 to 610 nm for all three block copolymers before (black) and after (red) annealing.

Bibliography

[1] C. Park, J. Yoon, and E.L. Thomas,Enabling nanotechnology with self assembled block copolymer patterns, Polymer 44, 6725 (2003).

[2] C. Tang, E.M. Lennon, G.H. Fredrickson, E.J. Kramer, and C.J. Hawker, Evo-lution of block coplmyer lithography to highly ordered square arrays, Science 322, 429 (2008).

[3] S. Park, D.H. Lee, J. Xu, B. Kim, S.W. Hong, U. Jeong, T. Xu, and T.P. Russell, Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order, Science 323, 1030 (2009).

[4] B. Crone, A. Dodabalapur, Y. Lin, R. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. Katz, and W. Li,Large-scale complementary integrated circuits based on organic transistors, Nature 403, 521 (2000).

[5] J. Cornil, J.-L. Brédas, J. Zaumseil, and H. Sirringhaus, Ambipolar transport in organic conjugated materials, Adv. Mater. 19, 1791 (2007).

[6] C. Rost, S. Karg, and W. Riess,Ambipolar light-emitting organic field-effect tran-sistor, Appl. Phys. Let.85, 1613 (2004).

[7] M.A. Loi, C. Rost-Bietsch, M. Murgia, S. Karg, W. Riess, and M. Muccini,Tuning optoelectronic properties of ambipolar organic light-emitting transistors using a bulk-heterojunction approach, Adv. Funct. Mater. 16, 41 (2007).

[8] T.T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X.-H. Zhang, A. Grant, S. Ellinger, S.A. Odom, D.l Sweat, D.B. Tanner, A.G. Rinzler, S. Barlow, J.-L. Brédas, B. Kippelen, S.R. Marder, and J.R. Reynolds, A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer, J. Am. Chem.

Soc.131, 2824 (2009).

[9] F. S. Kim, X. Huo, M. D. Watson, and S. A. Jenekhe, High-mobility ambipolar transistors and high-gain inverters from a donor-acceptor copolymer semiconduc-tor, Adv. Mater. 21, (2009).

[10] Th. B. Singh, S. Günes, N. Marjanovic, N. S. Sariciftci, and R. Menon,Correlation between morphology and ambipolar transport in organic field-effect transistors, J.

Appl. Phys.97, 114508 (2005).

[11] Antonio Cravino and N.S. Sariciftci, Molecules as bipolar conductors, Nature Mater. 2, 360 (2003).

[12] F.S. Bates and G.H. Fredrickson, Block copolymer thermodynamics: theory and experiment, Annu. Rev. Phys. Chem. 41, 525 (1990).

[13] Bradley D. Olsen and Rachel A. Segalman, Self-assembly of rod-coil block copoly-mers, Mater. Sci. and Eng. 62, 37 (2008).

Tunable Charge Transport using Supramolecular Self-assembly of Nanostructured Crystalline Block Copolymers

[14] I.W. Hamley, J.P.A. Fairclough, A. Ryan, F.S. Bates, and E. Towns-Andrews, Crystallization of nanoscale-confined diblock copolymer chains, Polymer 37, 4425 (1996).

[15] Shuichi Nojima, Kazunori Kato, Satoru Yamamoto, and Tamaichi Ashida, Crys-tallization of block copolymers. 1. Small-angle x-ray scattering study of a .epsilon.-caprolactone-butadiene diblock copolymer, Macromol. 25, 2237 (1992).

[16] Y.-L. Loo, R.A. Register, and A.J. Ryan, Modes of crystallization in block copoly-mer microdomains: breakout, templated, and confined, Macromol.35, 2365 (2002).

[17] M. Sommer, A. S. Lang, and M. Thelakkat, Crystalline-crystalline donor-acceptor block copolymers, Angew. Chem. Int. Ed. 47, 7901 (2008).

[18] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W.

Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw,Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature 401, 685 (1999).

[19] J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Sölling, M. Giles, I. McCul-loch, and H. Sirringhaus, Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents, Chem. Mater.16, 4772 (2004).

[20] S. Hugger, R. Thomann, T. Heinzel, and T. Thurn-Albrecht, Semicrystalline morphology in thin films of poly(3-hexylthiophene), Colloid. Polym. Sci. 282, 932 (2004).

[21] Z. Wu, A. Petzold, T. Henze, T. Thurn-Albrecht, R.H. Lohwasser, M. Sommer, and M. Thelakkat, Temperature and molecular weight dependent hierarchical equi-librium structures in semiconducting poly(3-hexylthiophene), Macromolecules 43, 4646 (2010).

[22] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. daSilva Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, and C. D. Frisbie, Organic thin film transistors based on n-alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature, Phys. Chem. B 108, 19281 (2004).

[23] S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, High mobility n-type thin-film tranisotrs based on N,N’-ditridecyl perylene diimide with thermal treat-ments, Appl. Phys. Let. 89, 112108 (2006).

[24] H. Langhals, S. Demmig, and H. Huber,Rotational barriers in perylene fluorescent dyes, Spectrochim. Acta Part A 44A, 1189 (1988).

[25] F. Würthner, C. Thalacker, S. Diele, and C. Tschierske, Fluorescent J-type ag-gregates and thermotropic columnar mesophases of perylene bisimide dyes, Chem.

Eur. J. 10, 2245 (2001).

[26] F. Würthner, Z. Chen, V. Dehm, and V. Stepanenko, One-dimensional lumines-cent nanoaggregates of perylene bisimides, Chem. Comm.11, 1188 (2006).

[27] S. Hüttner, M. Sommer, and M. Thelakkat, n-type organic field effect transistors from perylene bisimide block copolymers and homopolymers, Appl. Phys. Lett.92, 093302 (2008).

[28] Shunji Ito, Mike Wehmeier, J. Diedrich Brand, Christian Kübel, Rebekka Epsch, J. P. Rabe, and Klaus Müllen,Synthesis and self-assembly of functionalized hexa-peri-hexabenzocoronenes, Chem. Eur. J. 6, 4327 (2001).

[29] K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai, and K. Yoshino, Structure and thermochromic solid-state phase transition of poly(3-alkylthiophene), J. of Polym. Sci: Part B: Polym. Phy. 29, 1223 (1991).

[30] M. Sommer, S. Hüttner, U. Steiner, and M. Thelakkat, Influence of molecular weight on the solar cell performance of double-crystalline donor-acceptor block copolymers, Appl. Phys. Lett. 95, 183308 (2009).

[31] R. Joseph Kline, Michael D. McGehee, Ekaterina N. Kadnikova, Jinsong Liu, Jean M. J. Fréchet, , and Michael F. Toney, Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight, Macromol. 38, 3312 (2005).

[32] A. Zen, M. Saphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, and G. Wegner, Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene), Macromol. 39, 2162 (2006).

[33] S.M. Lindner, N. Kaufmann, and M. Thelakkat, Nanostructured semiconductor block copolymers: 𝜋−𝜋 stacking, optical and electrochemical properties, Organic Electronics 8, 69 (2007).

[34] M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V.M. Agranovich, and K. Leo, The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: application to MePTCDI and PTCDA crystals, Chem. Phys. 258, 73 (2000).

[35] Frank C. Spano,Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly(3-hexylthiophene) thin films, J. Chem. Phys. 122, 234701 (2005).

[36] J. Clark, C. Silva, R.H. Friend, and F.C. Spano, Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene, Phys. Rev. Let. 98, 206406 (2007).

[37] Tomoaki Yago, Yoshiaki Tamaki, Akihiro Furube, and Ryuzi Katoh,Self-trapping limited exciton diffusion in a monomeric perylene crystal as revealed by femtosec-ond transient absorption microscopy, Phys. Chem. Chem. Phys. 10, 4435 (2008).

[38] S. Hüttner, J. Hodgkiss, M. Sommer, R.H. Friend, U. Steiner, and M. The-lakkat,Charge dynamics in donor-acceptor block coplymers based on poly(perylene bisimide acrylate) and poly thiophene, submitted .

Tunable Charge Transport using Supramolecular Self-assembly of Nanostructured Crystalline Block Copolymers

[39] A.R. Campbell, J.M. Hodgkiss, S. Westenhoff, I.A. Howard, R.A. Marsh, C.R.

McNeill, R.H. Friend, and N.C. Greenham, Low-temperature control of nanoscale morphology for high performance polymer photovoltaics, Nanolett.8, 3942 (2008).

[40] S. Westenhoff, I.A. Howard, and R.H. Friend, Probing the morphology and energy landscape of blends of conjugated polymers with sub-10 nm resolution, Phys. Rev.

Lett. 101, 016102 (2008).

[41] S. Hüttner, M. Sommer, A. Chiche, G. Krausch, U. Steiner, and M. Thelakkat, Controlled solvent vapour annealing for polymer electronics, Soft Matter 5, 4206 (2009).

[42] S. Westenhoff, I.A. Howard, J.M. Hodgkiss, K.R. Kirov, H.A. Bronstein, C.K.

Williams, N.C. Greenham, and R.H. Friend,Charge recombination in organic pho-tovoltaic devices with high open-circuit voltages, J. Am. Chem. Soc. 130, 13653 (2008).

[43] J.M. Hodgkiss, G. Tu, S. Albert-Seifried, W.T.S. Huck, and R.H. Friend, Ion-induced formation of charge-transfer states in conjugated polyelectrolytes, J. Am.

Chem. Soc. 131, 8913 (2009).

[44] F. Laquai, A.K. Mishra, K.Müllen, and R.H. Friend, Amplified spontaneous emis-sion of poly(ladder-type phenylene)s - The influence of photophysical properties on ASE thresholds, Adv. Funct. Mater. 18, 3265 (2008).

[45] U. Steiner, J. Klein, E. Eiser, A. Budkowski, and L.J. Fetters, Complete wetting from polymer mixtures, Science 13, 1126 (1992).

Influence of Molecular Weight on the Solar

Cell Performance of Double-Crystalline