• Keine Ergebnisse gefunden

The redundant divergence equations and the charge balance

1.5 The redundant divergence equations and the charge balance

In this section we shall discuss in what sense the divergence equations (0.5) hold for a weak solution of (VM) in the sense of Definition 1.1.1. The weak formulation of (0.5) is

0=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ€๐ธยท๐œ•๐‘ฅ๐œ‘+4๐œ‹๐œŒ๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘ก,

(1.5.1a) 0=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ‡๐ปยท๐œ•๐‘ฅ๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘ก (1.5.1b)

for all๐œ‘โˆˆ ๐ถโˆž๐‘ ]0, ๐‘‡โ€ข[ ร—R3

. Obviously, this is equivalent to (0.5) on]0, ๐‘‡โ€ข[ ร—R3in the sense of distributions.

For (0.5) should propagate in time, we have to demand that (0.5) holds initially as a constraint on the initial data, that is to say,

div ๐œ€๐ธหš

=4๐œ‹๐œŒหš, div ๐œ‡๐ปหš

=0 onR3in the sense of distributions, or, equivalently,

0=

โˆซ

R3

๐œ€๐ธหšยท๐œ•๐‘ฅ๐œ‰+4๐œ‹๐œŒ๐œ‰หš

๐‘‘๐‘ฅ, (1.5.2a)

0=

โˆซ

R3

๐œ‡๐ปหš ยท๐œ•๐‘ฅ๐œ‰๐‘‘๐‘ฅ (1.5.2b)

for all๐œ‰โˆˆ๐ถโˆž๐‘ R3 . Now let ๐‘“๐›ผ, ๐‘“๐›ผ +

๐›ผ, ๐ธ, ๐ป, ๐‘—

be a weak solution of (VM) on the time interval๐ผ๐‘‡

โ€ขwith external current๐‘ข. It is easy to see that (1.5.1b) holds: Define

๐œ—:๐ผ๐‘‡

โ€ข ร—R3 โ†’R3, ๐œ—(๐‘ก, ๐‘ฅ)=โˆ’

โˆซ ๐‘‡โ€ข

๐‘ก ๐œ•๐‘ฅ๐œ‘(๐‘ , ๐‘ฅ)๐‘‘๐‘ .

Clearly,๐œ—โˆˆฮ˜๐‘‡โ€ข. Hence, (1.1.3b) and๐œ‰=โˆซ๐‘‡โ€ข

0 ๐œ‘(๐‘ ,ยท)๐‘‘๐‘ โˆˆ๐ถโˆž๐‘ R3

in (1.5.2b) yields 0=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ‡๐ปยท๐œ•๐‘ก๐œ—+๐ธยทcurl๐‘ฅ๐œ—๐‘‘๐‘ฅ๐‘‘๐‘ก+

โˆซ

R3

๐œ‡๐ปหš ยท๐œ—(0)๐‘‘๐‘ฅ

=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ‡๐ปยท๐œ•๐‘ฅ๐œ‘โˆ’๐ธยท

โˆซ ๐‘‡โ€ข

๐‘ก curl๐‘ฅ๐œ•๐‘ฅ๐œ‘(๐‘ , ๐‘ฅ)๐‘‘๐‘ 

๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’

โˆซ

R3

๐œ‡๐ปหš ยท๐œ•๐‘ฅ๐œ‰๐‘‘๐‘ฅ

=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ‡๐ปยท๐œ•๐‘ฅ๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘ก and we are done.

As for (1.5.1a), we have to exploit local conservation of charge and have to determine what๐œŒis. Therefore, we have to make use of (1.1.2) in order to put the internal charge density into play. However, the test functions there have to satisfy๐œ“ โˆˆฮจ๐‘‡โ€ข but a test function of (1.5.1a) does not depend on๐‘ฃ. Consequently, we, on the one hand, have to consider a cut-off in momentum space, and, on the other hand, have to show that (1.1.2) also holds if the support of๐œ“is not away from๐›พ๐‘‡0โ€ขor{0} ร—๐œ•ฮฉร—R3. To this end, the following technical lemma is useful. There and throughout the rest of this section, we assume thatฮฉโŠ‚R3is a bounded domain such that๐œ•ฮฉis a๐ถ1โˆฉ๐‘Š2,โˆž-submanifold of R3. Here, ๐œ•ฮฉ being of class ๐ถ1โˆฉ๐‘Š2,โˆž means that it is of class๐ถ1 and all local flattenings are locally of class๐‘Š2,โˆž.

Lemma 1.5.1. Let1โ‰ค๐‘ <2and๐œ“ โˆˆ๐ถ1 ๐ผ๐‘‡

โ€ขร—R3ร—R3

withsupp๐œ“ โŠ‚ [0, ๐‘‡โ€ข[ ร—R3ร—R3 compact. Then there is a sequence ๐œ“๐‘˜โŠ‚

ฮจ๐‘‡โ€ขsuch that

๐œ“๐‘˜โˆ’๐œ“

๐‘Š1,๐‘๐‘ก2๐‘ฅ1๐‘ฃ(]

0,๐‘‡โ€ข[ร—ฮฉร—R3)

โ†’0 (1.5.3)

for๐‘˜โ†’ โˆžand there is0<๐‘Ÿ<โˆžsuch that๐œ“and all๐œ“๐‘˜vanish for๐‘ก โ‰ฅ๐‘Ÿ. Here,

kโ„Žk๐‘Š1,๐‘๐‘ก2๐‘ฅ1๐‘ฃ(]

0,๐‘‡โ€ข[ร—ฮฉร—R3)Bยฉ

ยญ

ยซ

โˆซ ๐‘‡โ€ข 0

โˆซ

ฮฉ

โˆซ

R3

(|โ„Ž| + |๐œ•๐‘กโ„Ž| + |๐œ•๐‘ฅโ„Ž| + |๐œ•๐‘ฃโ„Ž|)๐‘‘๐‘ฃ 2

๐‘‘๐‘ฅ

!

๐‘ 2

๐‘‘๐‘กยช

ยฎ

ยฌ

1๐‘

.

Proof. First, we extend๐œ“to a๐ถ1-function onRร—R3ร—R3such that supp๐œ“ โŠ‚ ]โˆ’๐‘‡โ€ข, ๐‘‡โ€ข[ ร— R3ร—R3is compact (which can be achieved since the hyperplane where๐‘ก=0 is smooth).

By assumption about๐œ•ฮฉ, for each๐‘ฅ โˆˆ๐œ•ฮฉthere exist open sets๐‘ˆหœ๐‘ฅ,๐‘ˆหœ0๐‘ฅ โŠ‚R3with๐‘ฅ โˆˆ ๐‘ˆหœ๐‘ฅand a๐ถ1-diffeomorphism๐น๐‘ฅ:๐‘ˆหœ๐‘ฅ โ†’ หœ๐‘ˆ0๐‘ฅ, that has the property๐น๐‘ฅ โˆˆ๐‘Š2,โˆž

loc

๐‘ˆหœ๐‘ฅ;๐‘ˆหœ0๐‘ฅ , such that ๐น๐‘ฅ

๐‘ˆหœ๐‘ฅโˆฉ๐œ•ฮฉ

= ๐‘ˆหœ๐‘ฅ0 โˆฉ R2ร— {0}

. For any ๐‘ฅ โˆˆ ๐œ•ฮฉwe choose an open set ๐‘ˆ๐‘ฅ โŠ‚ R3 such that ๐‘ฅ โˆˆ ๐‘ˆ๐‘ฅ and๐‘ˆ๐‘ฅ โŠ‚โŠ‚ หœ๐‘ˆ๐‘ฅ (here and in the following, ๐ด โŠ‚โŠ‚ ๐ต is shorthand for โ€œ๐ดbounded and๐ด โŠ‚ ๐ตโ€). Then, ๐œ•ฮฉ โŠ‚ ร

๐‘ฅโˆˆ๐œ•ฮฉ๐‘ˆ๐‘ฅ, whence there are a finite number of points, say, ๐‘ฅ๐‘– โˆˆ ๐œ•ฮฉ,๐‘– = 1, . . . ๐‘š, such that๐œ•ฮฉ โŠ‚ ร๐‘š

๐‘–=1๐‘ˆ๐‘–, since

๐œ•ฮฉ is compact. Here and in the following, we write ๐‘ˆ๐‘– B ๐‘ˆ๐‘ฅ๐‘–, ๐‘ˆหœ๐‘– B ๐‘ˆหœ๐‘ฅ๐‘–, and ๐น๐‘– B๐น๐‘ฅ๐‘–. Since it holds thatฮฉ\ร๐‘š

๐‘–=1๐‘ˆ๐‘– โŠ‚โŠ‚ฮฉ, there is an open set๐‘ˆ0 โŠ‚R3satisfying ฮฉ\ร๐‘š

๐‘–=1๐‘ˆ๐‘– โŠ‚โŠ‚๐‘ˆ0 โŠ‚โŠ‚ ฮฉ. Therefore, we haveฮฉ โŠ‚ ร๐‘š

๐‘–=0๐‘ˆ๐‘–. Finally, we choose an open set๐‘€โŠ‚R3such thatฮฉโŠ‚๐‘€โŠ‚โŠ‚ร๐‘š

๐‘–=0๐‘ˆ๐‘–.

Now let๐œ๐‘–,๐‘–=0, . . . , ๐‘š, be a partition of unity on๐‘€subordinate to๐‘ˆ๐‘–,๐‘–=0, . . . , ๐‘š, i.e.,๐œ๐‘– โˆˆ๐ถโˆž๐‘ R3

, 0โ‰ค๐œ๐‘– โ‰ค1, supp๐œ๐‘– โŠ‚๐‘ˆ๐‘–, andร๐‘š

๐‘–=0๐œ๐‘– =1 on๐‘€(and hence onฮฉ, in particular). Furthermore, let๐œ‚โˆˆ๐ถโˆž(R)such that 0โ‰ค๐œ‚โ‰ค1,๐œ‚ ๐‘ฆ

=0 for ๐‘ฆ

โ‰ค 12, and ๐œ‚ ๐‘ฆ

=1 for ๐‘ฆ

โ‰ฅ1.

Next, for ๐‘– = 1, . . . , ๐‘šdefine๐บ๐‘–:๐‘ˆ๐‘–ร—R3 โ†’ R6,๐บ๐‘–(๐‘ฅ, ๐‘ฃ)= ๐น๐‘–(๐‘ฅ), ๐ด๐‘–(๐‘ฅ)๐‘ฃ

, where the rows๐ด๐‘–๐‘—(๐‘ฅ),๐‘—=1,2,3, of๐ด๐‘–(๐‘ฅ)are given by

๐ด๐‘–

1(๐‘ฅ)=

โˆ‡๐น๐‘–

1(๐‘ฅ) ร— โˆ‡๐น๐‘–

3(๐‘ฅ)

โˆ‡๐น

๐‘–

1(๐‘ฅ) ร— โˆ‡๐น๐‘–

3(๐‘ฅ)

, ๐ด๐‘–

2(๐‘ฅ)=

โˆ‡๐น๐‘–

3(๐‘ฅ) ร— โˆ‡๐น๐‘–

1(๐‘ฅ) ร— โˆ‡๐น๐‘–

3(๐‘ฅ)

โˆ‡๐น

๐‘–

3(๐‘ฅ) ร— โˆ‡๐น๐‘–

1(๐‘ฅ) ร— โˆ‡๐น๐‘–

3(๐‘ฅ) , ๐ด๐‘–

3(๐‘ฅ)=

โˆ‡๐น๐‘–

3(๐‘ฅ) โˆ‡๐น

๐‘– 3(๐‘ฅ)

.

1.5 The redundant divergence equations and the charge balance 59 Note that the rows are orthogonal and have length one, and that ๐ด๐‘– is of class๐ถโˆฉ ๐‘Š1,โˆž on๐‘ˆ๐‘– since๐น๐‘– is of class๐ถ1โˆฉ๐‘Š2,โˆžon๐‘ˆ๐‘–, det๐ท๐น๐‘– โ‰  0 on๐‘ˆหœ๐‘–, and hence the denominators in ๐ด๐‘–(๐‘ฅ) are bounded away from zero on ๐‘ˆ๐‘– because of ๐‘ˆ๐‘– โŠ‚โŠ‚ ๐‘ˆหœ๐‘–. Therefore,๐บ๐‘–is of class๐ถโˆฉ๐‘Š1,โˆžon๐‘ˆ๐‘–ร—๐ต๐‘…for any๐‘…>0.

The key idea is that, for any(๐‘ฅ, ๐‘ฃ) โˆˆ๐‘ˆ๐‘–ร—R3,๐‘ฅ โˆˆ ๐œ•ฮฉis equivalent to๐บ๐‘–

3(๐‘ฅ, ๐‘ฃ)=0 and, moreover, (๐‘ฅ, ๐‘ฃ) โˆˆ หœ๐›พ0 is equivalent to๐บ๐‘–

3(๐‘ฅ, ๐‘ฃ) = ๐บ๐‘–

6(๐‘ฅ, ๐‘ฃ) = 0, since ๐‘›(๐‘ฅ)and

โˆ‡๐น๐‘–

3(๐‘ฅ)are parallel (and both nonzero). Thus, since the supports of the approximating functions๐œ“๐‘˜ shall be away from๐›พ๐‘‡0โ€ข and{0} ร—๐œ•ฮฉร—R3, it is natural to consider the following๐ถโˆž-function in the variables(๐‘ก, ๐บ), that cuts off a region near the two sets where๐บ3=๐บ6=0 and where๐‘ก=๐บ3 =0:

๐œ‚๐‘˜:Rร—R6โ†’R, ๐œ‚๐‘˜(๐‘ก, ๐บ)=๐œ‚ ๐‘˜2 ๐บ2

3+๐บ2

6 ๐œ‚ ๐‘˜2 ๐‘ก2+๐บ2

3 . For๐‘˜โˆˆNwe then define

๐œ“หœ๐‘˜:Rร—R3ร—R3โ†’R, ๐œ“หœ๐‘˜(๐‘ก, ๐‘ฅ, ๐‘ฃ)=๐œ0(๐‘ฅ)๐œ“(๐‘ก, ๐‘ฅ, ๐‘ฃ) +

๐‘š

ร•

๐‘–=1

๐œ๐‘–(๐‘ฅ)๐œ“(๐‘ก, ๐‘ฅ, ๐‘ฃ)๐œ‚๐บ๐‘˜๐‘–(๐‘ก, ๐‘ฅ, ๐‘ฃ)

where

๐œ‚๐บ๐‘˜๐‘–:Rร—๐‘ˆ๐‘–ร—R3โ†’R, ๐œ‚๐บ๐‘˜๐‘–(๐‘ก, ๐‘ฅ, ๐‘ฃ)=๐œ‚๐‘˜ ๐‘ก, ๐บ๐‘–(๐‘ฅ, ๐‘ฃ).

We should mention that, according to supp๐œ๐‘– โŠ‚๐‘ˆ๐‘–,๐‘– =0, . . . , ๐‘š, the๐‘–-th summand is (by definition) zero if๐‘ฅ โˆ‰๐‘ˆ๐‘–. Note that we can apply the chain rule for๐œ‚๐บ๐‘˜๐‘– since๐œ‚๐‘˜is smooth and๐บ๐‘– โˆˆ๐‘Š1,1 ๐‘ˆ๐‘–ร—๐ต๐‘…;R6

for any๐‘…>0. Therefore,๐œ“หœ๐‘˜is of class๐ถโˆฉ๐‘Š1,โˆž. First we show that (1.5.3) holds for๐œ“หœ๐‘˜(instead of๐œ“๐‘˜). Byร๐‘š

๐‘–=0๐œ๐‘–=1 onฮฉwe have

๐œ“หœ๐‘˜โˆ’๐œ“

๐‘Š1,๐‘๐‘ก2๐‘ฅ1๐‘ฃ(]

0,๐‘‡โ€ข[ร—ฮฉร—R3)

โ‰ค

๐‘š

ร•

๐‘–=1

๐œ๐‘–๐œ“

๐œ‚๐บ๐‘˜๐‘– โˆ’1

๐‘Š1,๐‘๐‘ก2๐‘ฅ1๐‘ฃ(]

0,๐‘…[ร—๐‘ˆ๐‘–ร—๐ต๐‘…)

โ‰ค๐ถ

๐‘š

ร•

๐‘–=1

๐œ‚

๐บ๐‘– ๐‘˜ โˆ’1

๐‘Š1,๐‘๐‘ก2๐‘ฅ1๐‘ฃ(]0,๐‘…[ร—๐‘ˆ๐‘–ร—๐ต๐‘…)

, (1.5.4)

where ๐ถ > 0 depends on the (finite) ๐ถ1

๐‘-norms of ๐œ“ (and ๐œ๐‘–) and where ๐‘… > 0 is chosen such that ๐œ“ vanishes if ๐‘ก โ‰ฅ ๐‘… or |๐‘ฃ| โ‰ฅ ๐‘…. For fixed ๐‘– โˆˆ {1, . . . , ๐‘š} and (๐‘ก, ๐‘ฅ, ๐‘ฃ) โˆˆRร—๐‘ˆ๐‘–ร—R3the implications

๐œ‚๐บ๐‘˜๐‘–(๐‘ก, ๐‘ฅ, ๐‘ฃ)โ‰ 1โ‡’๐‘˜2 ๐บ๐‘–

3(๐‘ฅ, ๐‘ฃ)2+๐บ๐‘–

6(๐‘ฅ, ๐‘ฃ)2

โ‰ค1โˆจ๐‘˜2 ๐‘ก2+๐บ๐‘–

3(๐‘ฅ, ๐‘ฃ)2

โ‰ค1

โ‡’ ๐น

๐‘– 3(๐‘ฅ)

โ‰ค๐‘˜

โˆ’1โˆง ๐บ

๐‘– 6(๐‘ฅ, ๐‘ฃ)

โ‰ค๐‘˜

โˆ’1โˆจ |๐‘ก| โ‰ค ๐‘˜โˆ’1 hold. Therefore, we have, recalling that 0โ‰ค๐œ‚โ‰ค1,

ยฉ

ยญ

ยซ

โˆซ ๐‘…

0

โˆซ

๐‘ˆ๐‘–

โˆซ

๐ต๐‘…

๐œ‚

๐บ๐‘– ๐‘˜ โˆ’1

๐‘‘๐‘ฃ

2

๐‘‘๐‘ฅ

!

๐‘ 2

๐‘‘๐‘กยช

ยฎ

ยฌ

1๐‘

โ‰คยฉ

In the following, we will heavily make use of the facts that๐ด๐‘–(๐‘ฅ)is orthonormal for any๐‘ฅ โˆˆ๐‘ˆ๐‘–, for๐‘˜โ†’ โˆž. Here and in the following,๐ถdenotes a positive, finite constant that may depend on๐‘,๐‘…, and๐น๐‘–, and that may change in each step. Similarly,

for๐‘˜โ†’ โˆž. Next we turn to the derivatives and start with the๐‘ก-derivative. By

๐œ•๐‘ก๐œ‚๐บ๐‘˜๐‘–(๐‘ก, ๐‘ฅ, ๐‘ฃ)=2๐‘˜2๐‘ก๐œ‚

1.5 The redundant divergence equations and the charge balance 61

โ‰ฅ1, the first summand vanishes and (1.5.5), on the one hand, implies

and (1.5.5), on the other hand, implies Combing these two cases we conclude

ยฉ

+๐ถ ๐‘˜2ยฉ

for๐‘˜โ†’ โˆžagain by๐‘ <2. Finally, consider the๐‘ฃ-derivatives and compute

๐œ•๐‘ฃ๐‘—๐œ‚๐บ๐‘˜๐‘–(๐‘ก, ๐‘ฅ, ๐‘ฃ)=๐‘˜2๐œ‚0

for๐‘˜โ†’ โˆžas before. Altogether, we have shown that

๐‘˜โ†’โˆžlim

1.5 The redundant divergence equations and the charge balance 63 for any๐‘–=1, . . . , ๐‘šand thus

๐‘˜โ†’โˆžlim

๐œ“หœ๐‘˜โˆ’๐œ“

๐‘Š1,๐‘๐‘ก2๐‘ฅ1๐‘ฃ(]

0,๐‘‡โ€ข[ร—ฮฉร—R3)=0 (1.5.6) by (1.5.4).

The next step is to show that, for each ๐‘˜ โˆˆ N, the support of ๐œ“หœ๐‘˜ is away from ๐›พ๐‘‡0โ€ข and{0} ร—๐œ•ฮฉร—R3. As for๐›พ๐‘‡0โ€ข, assume the contrary, i.e., dist

supp๐œ“หœ๐‘˜,๐›พ๐‘‡0โ€ข

=0.

Then we find sequences ๐‘กหœ๐‘™,๐‘ฅหœ๐‘™,๐‘ฃหœ๐‘™ โŠ‚ ๐›พ๐‘‡0โ€ข and((๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)) โŠ‚ Rร—R3ร—R3 such that ๐œ“หœ๐‘˜(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)โ‰ 0 for all๐‘™ โˆˆNand

๐‘™โ†’โˆžlim

๐‘กหœ๐‘™,๐‘ฅหœ๐‘™,๐‘ฃหœ๐‘™โˆ’ (๐‘ก

๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™) =0.

By compactness of supp๐œ“หœ๐‘˜ โŠ‚supp๐œ“, both sequences are bounded, whence we may assume without loss of generality that both sequences converge to the same limit, say, (๐‘ก, ๐‘ฅ, ๐‘ฃ) โˆˆRร—R3ร—R3. Since ๐›พหœ0 is closed andหœ๐‘ก๐‘™ โ‰ฅ 0 for ๐‘™ โˆˆ N, we have(๐‘ฅ, ๐‘ฃ) โˆˆ หœ๐›พ0 and๐‘ก โ‰ฅ 0. By dist(๐‘ฅ, ๐‘ˆ0)>0 and sinceร๐‘š

๐‘–=1๐‘ˆ๐‘– is an open cover of๐œ•ฮฉ, we may also assume that

๐‘ฅ๐‘™ โˆˆ ร˜

๐‘–โˆˆ๐ผโˆช๐ฝ

๐‘ˆ๐‘–\ ร˜

๐‘–โˆˆ{0,...,๐‘š}\(๐ผโˆช๐ฝ)

๐‘ˆ๐‘– (1.5.7)

where ๐ผ B {๐‘–โˆˆ {1, . . . , ๐‘š} |๐‘ฅ โˆˆ๐‘ˆ๐‘–}, ๐ฝ B {๐‘– โˆˆ {1, . . . , ๐‘š} |๐‘ฅ โˆˆ๐œ•๐‘ˆ๐‘–} (for ๐‘™ large, at least). Clearly, ๐œ๐‘–(๐‘ฅ๐‘™) = 0 for any๐‘– โˆˆ ๐ฝ and large ๐‘™. Now take ๐‘– โˆˆ ๐ผ. Since ๐บ๐‘– is continuous and since๐บ๐‘–

3(๐‘ฅ, ๐‘ฃ)=๐บ๐‘–

6(๐‘ฅ, ๐‘ฃ)=0 by(๐‘ฅ, ๐‘ฃ) โˆˆ หœ๐›พ0, we have

๐‘™โ†’โˆžlim๐บ๐‘–

3(๐‘ฅ๐‘™, ๐‘ฃ๐‘™)=lim

๐‘™โ†’โˆž๐บ๐‘–

6(๐‘ฅ๐‘™, ๐‘ฃ๐‘™)=0 and then

๐‘˜2 ๐บ๐‘–

3(๐‘ฅ๐‘™, ๐‘ฃ๐‘™)2+๐บ๐‘–

6(๐‘ฅ๐‘™, ๐‘ฃ๐‘™)2

โ‰ค 1 2 for๐‘™large. But then๐œ‚๐บ๐‘˜๐‘–(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)=0 and therefore by (1.5.7)

0โ‰ ๐œ“หœ๐‘˜(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)

=ร•

๐‘–โˆˆ๐ผ

๐œ๐‘–(๐‘ฅ๐‘™)๐œ“(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)๐œ‚๐บ๐‘˜๐‘–(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™) +ร•

๐‘–โˆˆ๐ฝ

๐œ๐‘–(๐‘ฅ๐‘™)๐œ“(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)๐œ‚๐บ๐‘˜๐‘–(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)=0,

which is a contradiction. As for{0} ร—๐œ•ฮฉร—R3, the proof works completely analogously:

If we assume dist

supp๐œ“หœ๐‘˜,{0} ร—๐œ•ฮฉร—R3

= 0, we find sequences ๐‘กหœ๐‘™,๐‘ฅหœ๐‘™,๐‘ฃหœ๐‘™ โŠ‚ {0} ร—๐œ•ฮฉร—R3 and((๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)) โŠ‚Rร—R3ร—R3such that๐œ“หœ๐‘˜(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™) โ‰ 0 for all๐‘™ โˆˆ N and

๐‘™โ†’โˆžlim

๐‘กหœ๐‘™,๐‘ฅหœ๐‘™,๐‘ฃหœ๐‘™โˆ’ (๐‘ก

๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™) =0.

As before, we may assume that both sequences converge to the same limit, say, (๐‘ก, ๐‘ฅ, ๐‘ฃ) โˆˆRร—R3ร—R3. Since{0} ร—๐œ•ฮฉร—R3is closed, we have(๐‘ก, ๐‘ฅ, ๐‘ฃ) โˆˆ {0} ร—๐œ•ฮฉร—R3. Again we may assume (1.5.7). Now take ๐‘– โˆˆ ๐ผ. Since ๐บ๐‘– is continuous and since ๐‘ก=๐บ๐‘–

3(๐‘ฅ, ๐‘ฃ)=0 by๐‘ฅ โˆˆ๐œ•ฮฉ, we have

๐‘™โ†’โˆžlim

๐‘ก๐‘™= lim

๐‘™โ†’โˆž

๐บ๐‘–

3(๐‘ฅ๐‘™, ๐‘ฃ๐‘™)=0 and then

๐‘˜2 ๐‘ก๐‘™2+๐บ๐‘–

3(๐‘ฅ๐‘™, ๐‘ฃ๐‘™)2

โ‰ค 1 2

for๐‘™large. But then๐œ‚๐บ๐‘˜๐‘–(๐‘ก๐‘™, ๐‘ฅ๐‘™, ๐‘ฃ๐‘™)=0 and the contradiction follows as before.

There only remains one problem: The approximating functions are only of class ๐ถโˆฉ๐‘Š1,โˆž with compact support and not necessarily of class๐ถโˆžas desired (which corresponds to the fact that๐œ•ฮฉis only of class๐ถ1โˆฉ๐‘Š2,โˆžand not necessarily smooth).

To this end, take a Friedrichโ€™s mollifier๐œ”โˆˆ ๐ถ๐‘โˆž R7

with supp๐œ”โŠ‚๐ต1,โˆซ

R7๐œ”๐‘‘(๐‘ก, ๐‘ฅ, ๐‘ฃ)= 1, and denote ๐œ”๐›ฟ B ๐›ฟโˆ’7๐œ” ๐›ฟยท

for ๐›ฟ > 0. By ๐œ“หœ๐‘˜ โˆˆ ๐ป1 R7

, we know that ๐œ”๐›ฟ โˆ— หœ๐œ“๐‘˜ converges to๐œ“หœ๐‘˜for๐›ฟ โ†’0 in๐ป1 R7

. Moreover, since supp๐œ“หœ๐‘˜ โŠ‚ ]โˆ’๐‘‡โ€ข, ๐‘‡โ€ข[ ร—R3ร—R3, dist

supp๐œ“หœ๐‘˜,๐›พ๐‘‡0โ€ข

,dist

supp๐œ“หœ๐‘˜,{0} ร—๐œ•ฮฉร—R3

> 0, these properties also hold for ๐œ”๐›ฟโˆ— หœ๐œ“๐‘˜instead of๐œ“หœ๐‘˜if๐›ฟis small enough. Choose 0< ๐›ฟ๐‘˜ โ‰ค1 so small and such that

๐œ”๐›ฟ๐‘˜โˆ— หœ๐œ“๐‘˜โˆ’ หœ๐œ“๐‘˜ ๐ป1(

R7)

โ‰ค 1 ๐‘˜. By๐‘ <2, this implies

๐œ”๐›ฟ๐‘˜โˆ— หœ๐œ“๐‘˜โˆ’ หœ๐œ“๐‘˜

๐‘Š1,๐‘๐‘ก2๐‘ฅ1๐‘ฃ(]

0,๐‘…+1[ร—ฮฉร—๐ต๐‘…+1)โ‰ค ๐ถ ๐‘˜

where๐ถ>0 depends on๐‘,ฮฉ, and๐‘…. After combining this with (1.5.6), noting that๐œ“หœ๐‘˜ and๐œ“vanish if๐‘กโ‰ฅ๐‘…or|๐‘ฃ| โ‰ฅ ๐‘…and๐œ”๐›ฟ๐‘˜โˆ— หœ๐œ“๐‘˜if๐‘กโ‰ฅ๐‘…+1 (which implies the existence of๐‘Ÿas asserted) or|๐‘ฃ| โ‰ฅ๐‘…+1, and setting

๐œ“๐‘˜ B๐œ”๐›ฟ๐‘˜โˆ— หœ๐œ“๐‘˜ ๐ผ

๐‘‡โ€ขร—ฮฉร—R3

โˆˆฮจ๐‘‡โ€ข, we are finally done.

With this lemma, we can extend (1.1.2) to test functions๐œ“whose supports do not necessarily have to be away from ๐›พ๐‘‡0โ€ข and {0} ร—๐œ•ฮฉร—R3 under a condition on the integrability of the solution.

Lemma 1.5.2. Let ๐›ผ โˆˆ {1, . . . , ๐‘}, ๐‘“๐›ผ โˆˆ ๐ฟโˆž

lt ๐ผ๐‘‡

โ€ขร—ฮฉร—R3

, ๐‘“+๐›ผ โˆˆ ๐ฟโˆž

lt

๐›พ๐‘‡+โ€ข

, (๐ธ, ๐ป) โˆˆ ๐ฟ๐‘ž

lt ๐ผ๐‘‡

โ€ข;๐ฟ2 R3;R6 for some ๐‘ž > 2,๐’ฆ๐›ผ:๐ฟโˆž

lt

๐›พ๐‘‡+โ€ข

โ†’ ๐ฟโˆž

lt

๐›พโˆ’๐‘‡โ€ข

, ๐‘”๐›ผ โˆˆ ๐ฟโˆž

lt

๐›พ๐‘‡โˆ’โ€ข

, and ๐‘“หš๐›ผ โˆˆ ๐ฟโˆž ฮฉร—R3

such that Definition 1.1.1.(ii) is satisfied. Moreover, let๐œ“ โˆˆ๐ถ1 ๐ผ๐‘‡

โ€ขร—R3ร—R3 withsupp๐œ“โŠ‚ [0, ๐‘‡โ€ข[ ร—R3ร—R3compact. Then,(1.1.2)still holds for๐œ“.

1.5 The redundant divergence equations and the charge balance 65

First, we have for๐‘˜ โ†’ โˆž. Note that this was the crucial estimate, for which we essentially needed the convergence of๐œ“๐‘˜to๐œ“in the๐‘Š1,๐‘๐‘ก2๐‘ฅ1๐‘ฃ-norm. As for the integrals over๐›พ๐‘‡ยฑโ€ข, we first

โ‰ค๐ถ(ฮฉ) done via a cut-off procedure in๐‘ฃ. Note that in the following lemma it is essential that

๐‘“๐›ผis of class๐ฟ1โˆฉ๐ฟ2

๐›ผkinlocally in time.

Lemma 1.5.3. For ๐›ผ โˆˆ {1, . . . , ๐‘} let ๐‘“๐›ผ โˆˆ

such that Definition 1.1.1.(ii) is satisfied. Further-more, let๐œ“โˆˆ ๐ถ1 ๐ผ๐‘‡ then(1.1.2)is still satisfied for๐œ“, i.e.,

0=โˆ’

Proof. The proof works similarly to the proof of [Guo93, Lemma 4.2.]. First, consider a test function๐œ“that may have support on๐œ•ฮฉ. Take๐œ‚ โˆˆ ๐ถโˆž๐‘ R3

1.5 The redundant divergence equations and the charge balance 67 As for the term including the initial data, we see that

โ‰ค ๐œ“(0)

๐ฟโˆž(ฮฉ)

โˆซ

ฮฉ

โˆซ

R3

๐œ‚๐‘šโˆ’1

๐‘“หš๐›ผ

๐‘‘๐‘ฃ๐‘‘๐‘ฅโ†’0 for๐‘šโ†’ โˆžas well by dominated convergence and ๐‘“หš๐›ผ โˆˆ๐ฟ1 ฮฉร—R3

. Now if supp๐œ“โŠ‚ [0, ๐‘‡โ€ข[ ร— R3\๐œ•ฮฉ

, then๐œ“๐‘švanishes on๐œ•ฮฉ, too, and for๐œ“๐‘šthere vanish the integrals over๐›พ๐‘‡ยฑโ€ข appearing in (1.1.2). Hence, (1.5.8) is satisfied.

If the additional assumptions of part 1.5.3.(ii) hold but๐œ“ need not vanish on๐œ•ฮฉ, we consider the integrals over๐›พ๐‘‡ยฑโ€ข:

โˆซ

๐›พ๐‘‡โ€ข+

๐‘“+๐›ผ๐œ“๐‘š๐‘‘๐›พ๐›ผโˆ’

โˆซ

๐›พ๐‘‡โ€ข+

๐‘“+๐›ผ๐œ“๐‘‘๐›พ๐›ผ

โ‰ค ๐œ“

๐ฟโˆž(๐ผ๐‘‡โ€ขร—R3)

โˆซ

๐›พ๐‘…+

๐œ‚๐‘šโˆ’1

๐‘“+๐›ผ

๐‘‘๐›พ๐›ผ โ†’0 and similarly

โˆซ

๐›พ๐‘‡โ€ขโˆ’

๐’ฆ๐›ผ๐‘“+๐›ผ+๐‘”๐›ผ

๐œ“๐‘š๐‘‘๐›พ๐›ผโˆ’

โˆซ

๐›พ๐‘‡โ€ขโˆ’

๐’ฆ๐›ผ๐‘“+๐›ผ+๐‘”๐›ผ ๐œ“๐‘‘๐›พ๐›ผ

โ‰ค ๐œ“

๐ฟโˆž(๐ผ๐‘‡โ€ขร—R3)

โˆซ

๐›พโˆ’๐‘…

๐œ‚๐‘šโˆ’1

๐’ฆ๐›ผ๐‘“+๐›ผ

+

๐‘”๐›ผ

๐‘‘ ๐›พ๐›ผ โ†’0

for๐‘šโ†’ โˆžby dominated convergence and๐‘“๐›ผ

+ โˆˆ๐ฟ1 ๐›พ+๐‘…, ๐‘‘๐›พ๐›ผ ,๐’ฆ๐›ผ๐‘“๐›ผ

+, ๐‘”๐›ผ โˆˆ๐ฟ1 ๐›พโˆ’๐‘…, ๐‘‘๐›พ๐›ผ . Therefore, we obtain (1.5.9).

In the following, we denote ๐œŒintB

๐‘

ร•

๐›ผ=1

๐‘ž๐›ผ

โˆซ

R3

๐‘“๐›ผ๐‘‘๐‘ฃ, ๐‘—intB

๐‘

ร•

๐›ผ=1

๐‘ž๐›ผ

โˆซ

R3

b๐‘ฃ๐›ผ๐‘“๐›ผ๐‘‘๐‘ฃ and extend these functions by zero outsideฮฉ.

Equations (1.5.8) and (1.5.9) reflect the principle of local conservation of internal charge and imply a global charge balance after an integration.

Corollary 1.5.4. Let the assumptions of Lemma 1.5.3 hold for all๐›ผโˆˆ {1, . . . , ๐‘}. (i) We have

๐œ•๐‘ก๐œŒint+div๐‘ฅ๐‘—int=0 on]0, ๐‘‡โ€ข[ ร—ฮฉin the sense of distributions.

If moreover the additional assumptions of Lemma 1.5.3.(ii) are satisfied for all๐›ผโˆˆ {1, . . . , ๐‘}, then:

(ii) It holds that

๐œ•๐‘ก๐œŒint+๐‘‡๐œ•ฮฉ+div๐‘ฅ๐‘—int=0 (1.5.10)

1.5 The redundant divergence equations and the charge balance 69 on]0, ๐‘‡โ€ข[ ร—R3 in the sense of distributions. Here, the distribution๐‘‡๐œ•ฮฉ describes the boundary processes via

๐‘‡๐œ•ฮฉ๐œ“=

Proof. As for parts 1.5.4.(i) and 1.5.4.(ii), simply multiply (1.5.8) and (1.5.9) with๐‘ž๐›ผ and sum over๐›ผ. As for part 1.5.4.(iii), take๐œ‘ โˆˆ ๐ถ๐‘โˆž(]0, ๐‘‡โ€ข[)and let๐œ‚โˆˆ ๐ถโˆž๐‘ R3 yields, after summing over๐›ผ,

0=

โˆ’

โˆซ ๐‘‡โ€ข 0

๐œ‘(๐‘ )

โˆซ ๐‘ 

0

โˆซ

๐œ•ฮฉ

โˆซ

{๐‘ฃโˆˆR3|๐‘›(๐‘ฅ)ยท๐‘ฃ<0}

๐’ฆ๐›ผ๐‘“+๐›ผ+๐‘”๐›ผ(๐‘ก, ๐‘ฅ, ๐‘ฃ)๐‘›(๐‘ฅ) ยท

b๐‘ฃ๐›ผ๐‘‘๐‘ฃ๐‘‘๐‘†๐‘ฅ๐‘‘๐‘ก๐‘‘๐‘ 

,

from which the assertion follows immediately.

We can finally show the redundancy of the divergence equation div๐‘ฅ(๐œ€๐ธ)=๐œŒwith the help of Lemma 1.5.3; the redundancy of div๐‘ฅ ๐œ‡๐ป

=0 has already been proved.

To this end, we have to introduce an external charge density such that the external charge is locally conserved, which is a natural assumption. Precisely, this means the following.

Condition 1.5.5. There are๐œŒ๐‘ข โˆˆ๐ฟ1

loc(๐ผ๐‘‡

โ€ขร—ฮ“)and๐œŒหš๐‘ขโˆˆ ๐ฟ1

loc(ฮ“)such that๐œ•๐‘ก๐œŒ๐‘ข+div๐‘ฅ๐‘ข= 0 on]0, ๐‘‡โ€ข[ ร—R3and๐œŒ๐‘ข(0)=๐œŒหš๐‘ขonฮ“, which is to be understood in the following weak sense:

0=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œŒ๐‘ข๐œ•๐‘ก๐œ“+๐‘ขยท๐œ•๐‘ฅ๐œ“๐‘‘๐‘ฅ๐‘‘๐‘ก+

โˆซ

R3

๐œŒหš๐‘ข๐œ“(0)๐‘‘๐‘ฅ for any๐œ“ โˆˆ ๐ถโˆž ๐ผ๐‘‡

โ€ขร—R3

with supp๐œ“ โŠ‚ [0, ๐‘‡โ€ข[ ร—R3 compact. Here,๐œŒ๐‘ข and๐œŒหš๐‘ข are extended by zero outsideฮ“.

Theorem 1.5.6. Let ฮฉ โŠ‚ R3 be a bounded domain such that its boundary ๐œ•ฮฉis a ๐ถ1โˆฉ ๐‘Š2,โˆž-submanifold of R3. Furthermore, we assume that, for all ๐›ผ โˆˆ {1, . . . , ๐‘}, ๐‘“๐›ผ โˆˆ

๐ฟ1

ltโˆฉ๐ฟ2

๐›ผkin,ltโˆฉ๐ฟโˆž

lt

๐ผ๐‘‡

โ€ขร—ฮฉร—R3

, ๐‘“+๐›ผ โˆˆ ๐ฟโˆž

lt

๐›พ๐‘‡+โ€ข

,(๐ธ, ๐ป) โˆˆ ๐ฟ๐‘ž

lt ๐ผ๐‘‡

โ€ข;๐ฟ2 R3;R6 for some ๐‘ž > 2, ๐’ฆ๐›ผ: ๐ฟโˆž

lt

๐›พ+๐‘‡โ€ข

โ†’ ๐ฟโˆž

lt

๐›พ๐‘‡โˆ’โ€ข

, ๐‘”๐›ผ โˆˆ ๐ฟโˆž

lt

๐›พ๐‘‡โˆ’โ€ข

, ๐‘“หš๐›ผ โˆˆ ๐ฟ1โˆฉ๐ฟโˆž

ฮฉร—R3 ,

๐ธ,หš ๐ปหš

โˆˆ ๐ฟ2 R3;R6

,๐œ€,๐œ‡โˆˆ๐ฟโˆž

loc R3;R3ร—3

with๐œ€=๐œ‡=Idonฮฉ, and๐‘ขโˆˆ ๐ฟ1

loc ๐ผ๐‘‡

โ€ขร—ฮ“;R3

such that the tuple ๐‘“๐›ผ, ๐‘“+๐›ผ

๐›ผ, ๐ธ, ๐ป, ๐‘—int+๐‘ข

is a weak solution of (VM)on the time interval๐ผ๐‘‡

โ€ขwith external current๐‘ขin the sense of Definition 1.1.1. Furthermore, assume that Condition 1.5.5 holds and let initially

div๐‘ฅ ๐œ€๐ธหš

=4๐œ‹ ๐œŒหšint+ หš๐œŒ๐‘ข onR3be satisfied in the sense of distributions. Then:

(i) We have

div๐‘ฅ(๐œ€๐ธ)=4๐œ‹ ๐œŒint+๐œŒ๐‘ข on]0, ๐‘‡โ€ข[ ร— R3\๐œ•ฮฉ

in the sense of distributions, i.e.,

0=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ€๐ธยท๐œ•๐‘ฅ๐œ‘+4๐œ‹ ๐œŒint+๐œŒ๐‘ข๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘ก for all๐œ‘โˆˆ๐ถโˆž๐‘ ]0, ๐‘‡โ€ข[ ร— R3\๐œ•ฮฉ .

1.5 The redundant divergence equations and the charge balance 71

(ii) If, additionally to the given assumptions, ๐‘“+๐›ผ โˆˆ ๐ฟ1

lt

๐›พ๐‘‡+โ€ข, ๐‘‘๐›พ๐›ผ

,๐‘”๐›ผ โˆˆ๐ฟ1

lt

๐›พ๐‘‡โˆ’โ€ข, ๐‘‘๐›พ๐›ผ

, and ๐’ฆ๐›ผ:

๐ฟ1

ltโˆฉ๐ฟโˆž

lt ๐›พ๐‘‡+โ€ข, ๐‘‘๐›พ๐›ผ

โ†’

๐ฟ1

ltโˆฉ๐ฟโˆž

lt ๐›พ๐‘‡โˆ’โ€ข, ๐‘‘๐›พ๐›ผ

for all๐›ผโˆˆ {1, . . . , ๐‘}, then div๐‘ฅ(๐œ€๐ธ)=4๐œ‹ ๐œŒint+๐œŒ๐‘ข+๐‘†๐œ•ฮฉ

(1.5.11) on]0, ๐‘‡โ€ข[ ร—R3in the sense of distributions, i.e.,

0=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ€๐ธยท๐œ•๐‘ฅ๐œ‘+4๐œ‹ ๐œŒint+๐œŒ๐‘ข

๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘ก+

4๐œ‹๐‘†๐œ•ฮฉ๐œ‘ for all ๐œ‘ โˆˆ ๐ถโˆž๐‘ ]0, ๐‘‡โ€ข[ ร—R3

. Here, the distribution ๐‘†๐œ•ฮฉ, whose support satisfies supp๐‘†๐œ•ฮฉ โŠ‚๐ผ๐‘‡

โ€ขร—๐œ•ฮฉ, is given by ๐‘†๐œ•ฮฉ๐œ‘=

โˆซ ๐‘‡โ€ข 0

โˆซ

๐œ•ฮฉ

๐œ‘(๐‘ก, ๐‘ฅ)

โˆซ ๐‘ก

0

๐‘›(๐‘ฅ) ยท

๐‘

ร•

๐›ผ=1

๐‘ž๐›ผ

โˆซ

{๐‘ฃโˆˆR3|๐‘›(๐‘ฅ)ยท๐‘ฃ>0}b๐‘ฃ๐›ผ๐‘“+๐›ผ(๐‘ , ๐‘ฅ, ๐‘ฃ)๐‘‘๐‘ฃ +

๐‘

ร•

๐›ผ=1

๐‘ž๐›ผ

โˆซ

{๐‘ฃโˆˆR3|๐‘›(๐‘ฅ)ยท๐‘ฃ<0}b๐‘ฃ๐›ผ ๐’ฆ๐›ผ๐‘“+๐›ผ+๐‘”๐›ผ(๐‘ , ๐‘ฅ, ๐‘ฃ)๐‘‘๐‘ฃ

!

๐‘‘๐‘ ๐‘‘๐‘†๐‘ฅ๐‘‘๐‘ก.

Proof. First take๐œ‘โˆˆ๐ถ๐‘โˆž ]0, ๐‘‡โ€ข[ ร—R3

arbitrary and define ๐œ“:๐ผ๐‘‡

โ€ข ร—R3 โ†’R, ๐œ“(๐‘ก, ๐‘ฅ)=โˆ’

โˆซ ๐‘‡โ€ข

๐‘ก ๐œ‘(๐‘ , ๐‘ฅ)๐‘‘๐‘ , ๐œ—:๐ผ๐‘‡

โ€ข ร—R3 โ†’R3, ๐œ—(๐‘ก, ๐‘ฅ)=โˆ’

โˆซ ๐‘‡โ€ข

๐‘ก ๐œ•๐‘ฅ๐œ‘(๐‘ , ๐‘ฅ)๐‘‘๐‘ ,

๐œ‰:R3 โ†’R, ๐œ‰(๐‘ฅ)=

โˆซ ๐‘‡โ€ข 0

๐œ‘(๐‘ , ๐‘ฅ)๐‘‘๐‘ .

Clearly, ๐œ“ โˆˆ ๐ถโˆž ๐ผ๐‘‡

โ€ขร—R3

with supp๐œ“ โŠ‚ [0, ๐‘‡โ€ข[ ร—R3 compact, ๐œ— โˆˆ ฮ˜๐‘‡โ€ข, and ๐œ‰ โˆˆ ๐ถ๐‘โˆž R3

. Because of๐œ—โˆˆฮ˜๐‘‡โ€ข, (1.1.3a) holds, i.e., 0=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ€๐ธยท๐œ•๐‘ก๐œ—โˆ’๐ปยทcurl๐‘ฅ๐œ—โˆ’4๐œ‹ ๐‘—int+๐‘ขยท

๐œ—๐‘‘๐‘ฅ๐‘‘๐‘ก+

โˆซ

R3

๐œ€๐ธหšยท๐œ—(0)๐‘‘๐‘ฅ

=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ€๐ธยท๐œ•๐‘ฅ๐œ‘+๐ปยท

โˆซ ๐‘‡โ€ข

๐‘ก curl๐‘ฅ๐œ•๐‘ฅ๐œ‘(๐‘ , ๐‘ฅ)๐‘‘๐‘ โˆ’4๐œ‹ ๐‘—int+๐‘ขยท๐œ—

๐‘‘๐‘ฅ๐‘‘๐‘ก

โˆ’

โˆซ

R3

๐œ€๐ธหšยท๐œ•๐‘ฅ๐œ‰๐‘‘๐‘ฅ

=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ€๐ธยท๐œ•๐‘ฅ๐œ‘โˆ’4๐œ‹ ๐‘—int+๐‘ขยท

๐œ—๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’

โˆซ

R3

๐œ€๐ธหšยท๐œ•๐‘ฅ๐œ‰๐‘‘๐‘ฅ. (1.5.12) By Condition 1.5.5, we have

0=

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œŒ๐‘ข๐œ•๐‘ก๐œ“+๐‘ขยท๐œ•๐‘ฅ๐œ“๐‘‘๐‘ฅ๐‘‘๐‘ก+

โˆซ

R3

๐œŒหš๐‘ข๐œ“(0)๐‘‘๐‘ฅ

=

compact and Lemma 1.5.3.(i) gives us, after multiplying with๐‘ž๐›ผ and summing over๐›ผ,

0= Multiplying (1.5.13) and (1.5.14) with 4๐œ‹and adding them to (1.5.12) yields

โˆซ ๐‘‡โ€ข

in the sense of distributions.

To prove part 1.5.6.(ii), let the additional assumptions stated there hold. Now the test function๐œ‘ โˆˆ๐ถโˆž๐‘ ]0, ๐‘‡โ€ข[ ร—R3

1.5 The redundant divergence equations and the charge balance 73

=โˆ’๐‘†๐œ•ฮฉ๐œ‘.

Similarly as before, multiplying (1.5.13) and (1.5.15) with 4๐œ‹ and adding them to (1.5.12) yields

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

๐œ€๐ธยท๐œ•๐‘ฅ๐œ‘+4๐œ‹ ๐œŒint+๐œŒ๐‘ข ๐œ‘๐‘‘๐‘ฅ+

4๐œ‹๐‘†๐œ•ฮฉ๐œ‘

=

โˆซ

R3

๐œ€๐ธหšยท๐œ•๐‘ฅ๐œ‰+4๐œ‹ ๐œŒหšint+ หš๐œŒ๐‘ข ๐œ‰

๐‘‘๐‘ฅ=0. Hence, div๐‘ฅ(๐œ€๐ธ)=4๐œ‹ ๐œŒint+๐œŒ๐‘ข+๐‘†๐œ•ฮฉ

on]0, ๐‘‡โ€ข[ ร—R3in the sense of distributions.

Remark 1.5.7. We discuss some assumptions and give some comments regarding Theorem 1.5.6 and Corollary 1.5.4:

โ€ข Clearly, we see by interpolation that ๐‘“๐›ผ โˆˆ ๐ฟ1

๐›ผkin,ltโˆฉ๐ฟโˆž

lt

๐ผ๐‘‡

โ€ขร—ฮฉร—R3

implies ๐‘“๐›ผ โˆˆ

๐ฟ1

ltโˆฉ๐ฟ2

๐›ผkin,ltโˆฉ๐ฟโˆž

lt

๐ผ๐‘‡

โ€ขร—ฮฉร—R3

and that(๐ธ, ๐ป) โˆˆ๐ฟโˆž

lt ๐ผ๐‘‡

โ€ข;๐ฟ2 R3;R6 implies (๐ธ, ๐ป) โˆˆ๐ฟ๐‘ž

lt ๐ผ๐‘‡

โ€ข;๐ฟ2 R3;R6 for any๐‘ž>2. Hence, Theorem 1.5.6.(i) can be applied to solutions constructed as in Section 1.4; cf. Theorem 1.4.4. However, the boundary values ๐‘“๐›ผ

+ constructed there only satisfy ๐‘“๐›ผ + โˆˆ๐ฟ1

lt

๐›พ๐‘‡+โ€ข, ๐‘‘๐›พ๐›ผ

for๐›ผ=1, . . . , ๐‘0, i.e., the particles are subject to partially absorbing boundary conditions, and not necessarily for๐›ผ = ๐‘0+1, . . . , ๐‘, i.e., the particles are subject to (partially) purely reflecting boundary conditions. Therefore, whether the statement of Theorem 1.5.6.(ii) is true for solutions constructed as in Section 1.4, remains as an open problem, unless ๐‘0=๐‘, i.e., all particles are subject to partially absorbing boundary conditions.

โ€ข Conversely, the assumption ๐‘“๐›ผ + โˆˆ ๐ฟ1

lt

๐›พ๐‘‡+โ€ข, ๐‘‘๐›พ๐›ผ

is necessary for Theorem 1.5.6.(ii) (and for Lemma 1.5.3.(ii)); otherwise, the integral โˆซ

๐›พ๐‘‡โ€ข+

๐‘“+๐›ผ๐œ“๐‘‘๐›พ๐›ผ will not exist in general since๐œ“need not vanish on๐œ•ฮฉand does not depend on๐‘ฃ.

โ€ข The distribution๐‘†๐œ•ฮฉcan be interpreted as follows: The terms ๐‘—out

๐œ•ฮฉ(๐‘ก, ๐‘ฅ)B

๐‘

ร•

๐›ผ=1

๐‘ž๐›ผ

โˆซ

{๐‘ฃโˆˆR3|๐‘›(๐‘ฅ)ยท๐‘ฃ>0}b๐‘ฃ๐›ผ๐‘“+๐›ผ(๐‘ก, ๐‘ฅ, ๐‘ฃ)๐‘‘๐‘ฃ, ๐‘—in

๐œ•ฮฉ(๐‘ก, ๐‘ฅ)B

๐‘

ร•

๐›ผ=1

๐‘ž๐›ผ

โˆซ

{๐‘ฃโˆˆR3|๐‘›(๐‘ฅ)ยท๐‘ฃ<0}b๐‘ฃ๐›ผ ๐’ฆ๐›ผ๐‘“+๐›ผ+๐‘”๐›ผ(๐‘ก, ๐‘ฅ, ๐‘ฃ)๐‘‘๐‘ฃ, where(๐‘ก, ๐‘ฅ) โˆˆ๐ผ๐‘‡

โ€ขร—๐œ•ฮฉ, can be interpreted as the outgoing and incoming boundary current density. Hence,๐‘†๐œ•ฮฉcan be rewritten as

๐‘†๐œ•ฮฉ๐œ‘=

โˆซ ๐‘‡โ€ข 0

โˆซ

๐œ•ฮฉ

๐œ‘(๐‘ก, ๐‘ฅ)

โˆซ ๐‘ก

0

๐‘›(๐‘ฅ) ยท ๐‘—out

๐œ•ฮฉ(๐‘ , ๐‘ฅ) +๐‘—in

๐œ•ฮฉ(๐‘ , ๐‘ฅ)

๐‘‘๐‘ ๐‘‘๐‘†๐‘ฅ๐‘‘๐‘ก.

Thus,๐‘†๐œ•ฮฉmakes up the balance of how many particles have left and enteredฮฉup to time๐‘ก. On the other hand, the distribution๐‘‡๐œ•ฮฉ makes up the balance of how many particles leave and enterฮฉattime๐‘กvia

๐‘‡๐œ•ฮฉ๐œ“=

โˆซ ๐‘‡โ€ข 0

โˆซ

๐œ•ฮฉ

๐œ“(๐‘ก, ๐‘ฅ)๐‘›(๐‘ฅ) ยท ๐‘—out

๐œ•ฮฉ(๐‘ก, ๐‘ฅ) +๐‘—in

๐œ•ฮฉ(๐‘ก, ๐‘ฅ) ๐‘‘๐‘†๐‘ฅ๐‘‘๐‘ก.

We easily see that๐œ•๐‘ก๐‘†๐œ•ฮฉ =๐‘‡๐œ•ฮฉ on]0, ๐‘‡โ€ข[ ร—R3 in the sense of distributions, which corresponds to the fact that๐‘‡๐œ•ฮฉappears as โ€œa part of๐œ•๐‘ก๐œŒโ€ in (1.5.10) and๐‘†๐œ•ฮฉappears as โ€œa part of๐œŒโ€ in (1.5.11).

โ€ข The global charge balance, see Corollary 1.5.4.(iii), can similarly been written as follows:

โˆซ

ฮฉ

๐œŒint(๐‘ก, ๐‘ฅ)๐‘‘๐‘ฅ =

โˆซ

ฮฉ

๐œŒหšint๐‘‘๐‘ฅโˆ’

โˆซ ๐‘ก

0

โˆซ

๐œ•ฮฉ

๐‘›ยท ๐‘—out

๐œ•ฮฉ +๐‘—in

๐œ•ฮฉ

๐‘‘๐‘†๐‘ฅ๐‘‘๐‘ 

for almost all๐‘กโˆˆ๐ผ๐‘‡

โ€ข.

โ€ข As mentioned in the introduction, in a more realistic model๐œ€and๐œ‡should depend on ๐‘“๐›ผ, ๐ธ, and ๐ป (maybe even nonlocally) and hence implicitly on time. In this situation, the weak formulation is the same as before, which is stated in Defini-tion 1.1.1. If we assume ๐œ€,๐œ‡ โˆˆ ๐ฟโˆž

loc ๐ผ๐‘‡

โ€ขร—R3;R3ร—3

(and suitably introduce initial values for๐œ€,๐œ‡), viewed as explicit functions of๐‘กand๐‘ฅ, the proofs of Theorem 1.5.6 and the lemmas before are still valid, and Theorem 1.5.6 remains true, as well as the redundancy of div๐‘ฅ ๐œ‡๐ป

=0.

โ€ข Lastly, we emphasize that all results of this section hold, under the respective assumptions, for all weak solutions of (VM) in the sense of Definition 1.1.1 and not only for the solutions constructed as in Section 1.4.

CHAPTER 2

Optimal control problem

2.1 A prototype

In a fusion reactor, one of the main goals is to keep the particles away from the bound-ary of their containerฮฉsince particles hitting the boundary damage the material there due to the usually very hot temperature of the plasma. Therefore, it is reasonable to penalize these hits, which, for example, can be achieved by taking some๐ฟ๐‘ž-norms of the ๐‘“+๐›ผas a part of the objective function that shall be minimized in an optimal control problem. Moreover, it is natural to consider the external current density๐‘ขas a tool to reduce these hits on the reactor wall. For a prototype problem, we consider the case that all particles are subject to partially absorbing boundary conditions, i.e.,๐‘ =๐‘0, and assume๐‘”๐›ผ =0.

Apart from driving the amount of hits on the boundary to a minimum, one does not want too exhaustive control costs so that the fusion reactor may have a good efficiency.

Thus, it is reasonable to add some norm of๐‘ข to the objective function. Thereby, we also gain a mathematical advantage since then the objective function is coercive in๐‘ข, which means that along a minimizing sequence this ๐‘ข-norm is bounded so that we can extract a weakly convergent subsequence whose weak limit is a candidate for an optimal control.

Conversely, as there are no terms including ๐‘“๐›ผ,๐ธ, and๐ปin the objective function, we do not have coercivity in these state variables because of the objective function itself.

But there is still the PDE system (VM) as a constraint. Recalling (1.4.40) to (1.4.45) we see that these estimates yield uniform boundedness of ๐‘“๐›ผ,๐ธ,๐ป(and ๐‘—int) in various norms along a minimizing sequence. Unfortunately, we can only verify these estimates for solutions that are constructed as in Section 1.4. For general solutions of (VM) in the sense of Definition 1.1.1 these estimates may be violated as we do not know a way to prove these generally. Since in the classical context these estimates are easily heuristically established by exploiting an energy balance and the measure preserving nature of the characteristic flow of the Vlasov equation, it is reasonable to restrict ourselves to solutions that satisfy at least part of, maybe slightly weaker versions of (1.4.40) to (1.4.45).

75

To put our hands on the fields, only (1.4.44) is helpful. Considering this estimate along a minimizing, weakly converging sequence and trying to pass to the limit in this estimate, we see that the right-hand side, including some norm of๐‘ข, has to be weakly continuous. But if we endow the control space with the norm that appears in (1.4.44), i.e., the๐ฟ1 [0, ๐‘‡โ€ข];๐ฟ2 ฮ“;R3 -norm, this weak continuity will not hold. Consequently, we consider a control space that is compactly embedded in๐ฟ1 [0, ๐‘‡โ€ข];๐ฟ2 ฮ“;R3 so that the right-hand side of (1.4.44) converges even if the controls only converge weakly in this new smaller control space. This will be made clear in the proof of Theorem 2.2.1.

Altogether, we arrive at the following minimization problem:

๐‘ฆโˆˆ๐’ด,๐‘ขโˆˆ๐’ฐmin

๐’ฅ ๐‘ฆ, ๐‘ข, s.t. ๐‘“๐›ผ, ๐‘“+๐›ผ

๐›ผ, ๐ธ, ๐ป, ๐‘—int+๐‘ข

solves (VM), (2.1.1) and (2.1.2) hold

๏ฃผ๏ฃด

๏ฃด๏ฃด

๏ฃด

๏ฃฝ

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃพ

(P)

where the objective function is

๐’ฅ ๐‘ฆ, ๐‘ข

= 1 ๐‘ž

๐‘

ร•

๐›ผ=1

๐‘ค๐›ผ ๐‘“+๐›ผ

๐‘ž ๐ฟ๐‘ž

๐›พ๐‘‡โ€ข+,๐‘‘๐›พ๐›ผ

+1 ๐‘Ÿk๐‘ขk๐‘Ÿ๐’ฐ and the additional constraints are

0โ‰ค ๐‘“๐›ผ โ‰ค

๐‘“หš๐›ผ

๐ฟโˆž(ฮฉร—R3)

a.e., ๐›ผ=1, . . . , ๐‘ , (2.1.1)

๐‘

ร•

๐›ผ=1

โˆซ ๐‘‡โ€ข 0

โˆซ

ฮฉ

โˆซ

R3

๐‘ฃ0

๐›ผ๐‘“๐›ผ๐‘‘๐‘ฃ๐‘‘๐‘ฅ๐‘‘๐‘ก+ ๐œŽ 8๐œ‹

โˆซ ๐‘‡โ€ข 0

โˆซ

R3

|๐ธ|2+ |๐ป|2 ๐‘‘๐‘ฅ๐‘‘๐‘ก

โ‰ค2๐‘‡โ€ข

๐‘

ร•

๐›ผ=1

โˆซ

ฮฉ

โˆซ

R3

๐‘ฃ0

๐›ผ๐‘“หš๐›ผ๐‘‘๐‘ฃ๐‘‘๐‘ฅ+๐‘‡โ€ข๐œŽ0 4๐œ‹

๐ธ,หš ๐ปหš

2 ๐ฟ2(R3;R6)

+2๐œ‹๐‘‡โ€ข2๐œŽโˆ’1k๐‘ขk2๐ฟ2

([0,๐‘‡โ€ข]ร—ฮ“;R3)

(2.1.2) Cโ„(๐‘ข).

Definition and Remark 2.1.1. We explain the formulation of the minimization prob-lem in detail:

โ€ข We consider the optimal control problem on a finite time interval, i.e.,๐‘‡โ€ข<โˆž.

โ€ข We assume that the given functions ๐‘“หš๐›ผ, ๐‘Ž๐›ผ,๐ธหš, ๐ปหš,๐œ€, and๐œ‡satisfy the respective properties of Condition 1.4.1 with ๐‘0 = ๐‘ and that ๐‘”๐›ผ = 0, ๐‘“หš๐›ผ . 0 for all ๐›ผ = 1, . . . , ๐‘.

โ€ข For ease of notation, we have abbreviated ๐‘ฆ = ๐‘“๐›ผ, ๐‘“+๐›ผ

๐›ผ, ๐ธ, ๐ป,

2.1 A prototype 77

๐’ด=

?๐‘ ๐›ผ=1

๐’ด๐›ผ

pdร—๐ฟ๐‘ž ๐›พ๐‘‡+โ€ข, ๐‘‘๐›พ๐›ผ

!

ร—๐ฟ2 [0, ๐‘‡โ€ข] ร—R3;R32, where 1<๐‘ž <โˆžis fixed and

๐’ด๐›ผ

pd B ๐‘“ โˆˆ ๐ฟ1

๐›ผkinโˆฉ๐ฟโˆž [

0, ๐‘‡โ€ข] ร—ฮฉร—R3 |

โˆ€๐œ‚โˆˆ๐ถโˆž๐‘ ]0, ๐‘‡โ€ข[ ร—ฮฉร—R3

:๐œ•๐‘ก ๐œ‚๐‘“+

b๐‘ฃ๐›ผยท๐œ•๐‘ฅ ๐œ‚๐‘“โˆˆ๐ฟ2 [

0, ๐‘‡โ€ข] ร—ฮฉ;๐ปโˆ’1 R3 , ๐’ฉ๐›ผ ๐‘“<โˆž . Here and in the following, for a distributionโ„Žon]0, ๐‘‡โ€ข[ ร—ฮฉร—R3the propertyโ„Ž โˆˆ ๐ฟ2 [0, ๐‘‡โ€ข] ร—ฮฉ;๐ปโˆ’1 R3 means that there exist functions ๐‘”0 โˆˆ ๐ฟ2 ]0, ๐‘‡โ€ข[ ร—ฮฉร—R3 and๐‘”1โˆˆ ๐ฟ2 ]0, ๐‘‡โ€ข[ ร—ฮฉร—R3;R3

such that

โ„Ž=๐‘”0+div๐‘ฃ๐‘”1on]0, ๐‘‡โ€ข[ ร—ฮฉร—R3in the sense of distributions. (2.1.3) The space๐ฟ2 [0, ๐‘‡โ€ข] ร—ฮฉ;๐ปโˆ’1 R3 consisting of all such distributions is equipped with the norm

kโ„Žk๐ฟ2([

0,๐‘‡โ€ข]ร—ฮฉ;๐ปโˆ’1(R3))

=min

๐‘”0

2

๐ฟ2(]0,๐‘‡โ€ข[ร—ฮฉร—R3)

+ ๐‘”1

2

๐ฟ2(]0,๐‘‡โ€ข[ร—ฮฉร—R3;R3)

12

| ๐‘”0, ๐‘”1satisfy (2.1.3)

.

Moreover, we denote ๐’ฉ๐›ผ ๐‘“

Bsup

๐œ•๐‘ก ๐œ‚๐‘“+

b๐‘ฃ๐›ผยท๐œ•๐‘ฅ ๐œ‚๐‘“ ๐ฟ2([

0,๐‘‡โ€ข]ร—ฮฉ;๐ปโˆ’1(R3))

where the supremum is taken over all๐œ‚โˆˆ๐ถโˆž๐‘ ]0, ๐‘‡โ€ข[ ร—ฮฉร—R3

satisfying

๐œ‚ ๐ป1(]

0,๐‘‡โ€ข[ร—ฮฉร—R3)

+ ๐œ‚

๐ฟโˆž([0,๐‘‡โ€ข]ร—ฮฉ;๐ป1(R3))=1. (2.1.4) The restriction in the definition of๐’ด๐›ผ

pdwill not be important until Section 2.4 and is motivated by Lemma 2.1.2, which is stated below.

โ€ข The numbers๐‘ค๐›ผ >0 are weights. For example, if we have two sorts of particles, say, ions and electrons, the weight corresponding to the ions should be larger than the one corresponding to the electrons since the heavy ions will cause more damage on the boundary of a fusion reactor if they hit it. Moreover, the weights also serve as an indicator of which of our two aims should rather be achieved, that is to say, no hits on the boundary and small control costs. More precisely, the๐‘ค๐›ผshould be large if one rather wants no hits on the boundary, and should be small if one rather wants small control costs.

โ€ข The control space is

๐’ฐ =๐‘Š1,๐‘Ÿ ]0, ๐‘‡โ€ข[ ร—ฮ“;R3

where43 <๐‘Ÿ <โˆžis fixed andฮ“โŠ‚R3is open and bounded. By Sobolevโ€™s embedding theorem,๐’ฐis compactly embedded in๐ฟ2 ]0, ๐‘‡โ€ข[ ร—ฮ“;R3

. For this, the boundary of ฮ“has to satisfy some regularity condition, for example, the cone condition. From now on, we shall always assume that๐œ•ฮ“is not โ€œtoo badโ€, that is to say, this compact embedding holds. We endow๐’ฐwith the norm

k๐‘ขk๐’ฐ Bยฉ parameters chosen according to how much one wants to penalize๐‘ขitself compared to its๐‘ก-and๐‘ฅ-derivatives.

โ€ข As usual,

โ€ข The constraint that (VM) be solved is to be understood in the sense of Definition 1.1.1.

โ€ข The pointwise constraint (2.1.1) on ๐‘“๐›ผis on the one hand natural since any classical solution of (VM.1) with nonnegative initial datum satisfies this constraint, and, as we have seen in Theorem 1.4.4, also the weak solutions constructed in Section 1.4 do, and on the other hand necessary for a limit process when proving existence of a minimizer; see Section 2.2.

โ€ข The same applies mutatis mutandis for the energy constraint (2.1.2). Note that this inequality directly follows from the stronger inequality (1.4.44) (recall that we consider๐‘”๐›ผ =0) after an integration in time and Hรถlderโ€™s inequality:

๐‘

2.1 A prototype 79

โ‰ค ๐‘‡โ€ข2 2 k๐‘ขk2

๐ฟ2([0,๐‘‡โ€ข]ร—ฮ“;R3)

.

The main reason why we impose the weaker inequality (2.1.2) as a constraint is that no longer๐ฟโˆž-terms or square roots appear, which would cause some trouble with respect to differentiability.

We proceed with the following lemma, that was already mentioned above.

Lemma 2.1.2. Let ๐‘“๐›ผ โˆˆ ๐ฟโˆž [0, ๐‘‡โ€ข] ร—ฮฉร—R3 , ๐‘“๐›ผ

+ โˆˆ ๐ฟ1

loc

๐›พ๐‘‡+โ€ข, ๐‘‘๐›พ๐›ผ

such that Defini-tion 1.1.1.(ii) is satisfied with ๐ธ, ๐ป โˆˆ ๐ฟ2 [0, ๐‘‡โ€ข] ร—ฮฉ;R3

. Denote ๐น B ๐‘ž๐›ผ(๐ธ+

b๐‘ฃ๐›ผร—๐ป). Then, for any๐œ‚โˆˆ๐ถโˆž๐‘ ]0, ๐‘‡โ€ข[ ร—ฮฉร—R3

it holds that

๐œ•๐‘ก ๐œ‚๐‘“๐›ผ+

Proof. It is easy to see that (2.1.5) holds. There remains to estimate the right-hand side:

The next lemma gives an๐ฟ43-estimate on๐‘—intin view of the inequality constraints of (P) and will be useful later.

Lemma 2.1.3. The constraints(2.1.1)and(2.1.2)yield๐‘—intโˆˆ๐ฟ43 [0, ๐‘‡โ€ข] ร—ฮฉ;R3

Proof. Similarly to (1.4.31) and (1.4.32), we have

โˆซ

โ‰ค which, together with the constraint (2.1.2), implies the assertion.