• Keine Ergebnisse gefunden

The quantum phase transition of the Hubbard model

Our work in Chapters 4 and 5 represents the first instance where the grand canonical Brower-Rebbi-Schaich (BRS) algorithm has been applied to the hexagonal Hubbard model (beyond mere proofs of principle), and we have found highly promising results. We emphasize that previously encountered issues related to the computational scaling and ergodicity of the HMC updates have been solved [56]. Our findings are split into two parts, broadly speaking Chapter 4 focuses on electric and Chapter 5 on magnetic properties.

We calculated the single particle gap ∆ as well as all operators that contribute to the anti-ferromagnetic (AFM), anti-ferromagnetic (FM), and charge density wave (CDW) order parameters of the Hubbard Model on a honeycomb lattice. Furthermore we provide a comprehensive analysis of the temporal continuum, thermodynamic and zero-temperature limits for all these quantities.

The favorable scaling of the HMC enabled us to simulate lattices withL >100and to perform a highly systematic treatment of all three limits. The latter limit was taken by means of a finite-size scaling analysis, which determines the critical coupling Uc/κ = 3.835(14) as well as the critical exponentsν = 1.181(43)andβ= 0.898(37).

Depending on which symmetry is broken, the critical exponents of the hexagonal Hubbard model are expected to fall into one of the Gross-Neveu (GN) universality classes [184]. The semimetal-antiferromagnetic Mott insulator (SM-AFMI) transition falls into the GN-Heisenberg SU(2) universality class, as the staggered magnetisationms is described by a vector with three components.

The GN-Heisenberg critical exponents have been studied by means of projection Monte Carlo (PMC) simulations of the hexagonal Hubbard model, by thed= 4−expansion around the upper

critical dimension d, by large N calculations, and by functional renormalization group (FRG) methods. In Table 4.1, we give an up-to-date comparison with our results. Our value forUc/κis in overall agreement with previous Monte Carlo (MC) simulations. For the critical exponents ν andβ, the situation is less clear. Our results forν(assumingz= 1due to Lorentz invariance [184]) agree best with the MC calculation (in the Blankenbecler-Sugar-Scalapino (BSS) formulation) of Ref. [161], followed by the FRG and largeN calculations. On the other hand, our critical exponent ν is systematically larger than most PMC calculations and first-order4−expansion results. The agreement appears to be significantly improved when the4−expansion is taken to higher orders, although the discrepancy between expansions forνand1/νpersists. Finally, our critical exponent βdoes not agree with any results previously derived in the literature. They have been clustering in two regions. The PMC methods and first order 4− expansion yielding values between 0.7 and 0.8, the other methods predicting values larger than 1. Our result lies within this gap at approximately0.9and our uncertainties do not overlap with any of the other results.

Thus, though we are confident to have pinned down the nature of the phase transition and to have performed a thorough analysis of the critical parameters, the values of ν and β remain ambiguous. This is mostly due to a large spread of incompatible results existing in the literature prior to this work. With our values derived by an independent method we add a valuable con-firmation for the critical coupling and some estimations ofν as well as a new but plausible result forβ.

In addition to an unambiguous classification of the character of the quantum critical point (QCP) of the honeycomb Hubbard model, our results demonstrate the ability to perform high-precision calculations of strongly correlated electronic systems using lattice stochastic methods.

A central component of our calculations is the Hasenbusch-accelerated HMC algorithm, as well as other state-of-the-art techniques originally developed for lattice QCD. This has allowed us to push our calculations to system sizes which are, to date, still the largest that have been performed, up to 102×102 unit cells (or 20,808 lattice sites), which reaches a physically realistic size in the field of carbon-based nano-materials. Thus, it may be plausible to put a particular experimental system (a nanotube, a graphene patch, or a topological insulator, for instance) into software, for a direct, first-principles Hubbard model calculation.

There are several future directions in which our present work can be developed that go beyond algorithmic improvements and simulations of yet larger lattices. For instance, while the AFMI phase may not be directly observable in graphene, we note that tentative empirical evidence for such a phase exists in carbon nanotubes [192], along with preliminary theoretical evidence from MC simulations presented in Ref. [55]. The MC calculation of the single-particle Mott gap in a (metallic) carbon nanotube is expected to be much easier, since the lattice dimensionLis determ-ined by the physical nanotube radius used in the experiment (and by the number of unit cells in the longitudinal direction of the tube). As electron-electron interaction (or correlation) effects are expected to be more pronounced in the (1-dimensional) nanotubes, the treatment of flat graphene as the limiting case of an infinite-radius nanotube would be especially interesting. Strong correla-tion effects could be even more pronounced in the (0-dimensional) carbon fullerenes (buckyballs), where we are also faced with a fermion sign problem due to the admixture of pentagons into the otherwise-bipartite honeycomb structure [7]. This particular sign problem has the unusual prop-erty of vanishing as the system size becomes large, as the number of pentagons in a buckyball is

fixed by its Euler characteristic to be exactly12, independent of the number of hexagons.

Our progress sets the stage for future high-precision calculations of additional observables of the Hubbard model and its extensions, as well as other Hamiltonian theories of strongly correlated electrons [198–200]. We anticipate the continued advancement of calculations with ever increasing system sizes, through the leveraging of additional state-of-the-art techniques from lattice QCD, such as multigrid solvers on GPU-accelerated architectures. We are actively pursuing research along these lines.

[12] ‘The highest clock frequency achieved by a silicon processor,’ in The Guinness Book of World Records. Stamford, CT: Guinness Media, 18th Jun. 2021. [Online]. Available:https:

//www.guinnessworldrecords.com/world-records/98281-highest-clock-frequency-achieved-by-a-silicon-processor.

[13] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill and P. Avouris, ‘100-GHz Transistors from Wafer-Scale Epitaxial Graphene,’Science, vol. 327, no. 5966, pp. 662–662, 2010, issn: 0036-8075. doi: 10 . 1126 / science . 1184289. eprint:

http://science.sciencemag.org/content/327/5966/662.full.pdf. [Online]. Avail-able:http://science.sciencemag.org/content/327/5966/662.

[14] F. Schwierz, ‘Graphene transistors: Status, prospects, and problems,’ Proceedings of the IEEE, vol. 101, no. 7, pp. 1567–1584, 2013.doi:10.1109/JPROC.2013.2257633.

[15] M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong and S. Mitra, ‘Carbon nanotube computer,’Nature, vol. 501, pp. 526–30, Sep. 2013.doi:10.1038/nature12502.

[16] G. Hills, C. Lau, A. Wright, S. H. Fuller, M. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A.

Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan and M. Shulaker, ‘Modern micropro-cessor built from complementary carbon nanotube transistors,’Nature, vol. 572, pp. 595–

602, 2019.

[17] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.

Grigorieva and A. A. Firsov, ‘Electric Field Effect in Atomically Thin Carbon Films,’

Science, vol. 306, no. 5696, pp. 666–669, 2004,issn: 0036-8075.doi: 10.1126/science.

1102896.

[18] A. K. Geim and K. S. Novoselov, ‘The rise of graphene,’Nat Mater, vol. 6, no. 3, pp. 183–

191, Mar. 2007. [Online]. Available:http://dx.doi.org/10.1038/nmat1849.

[19] C. Lee, X. Wei, J. W. Kysar and J. Hone, ‘Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,’Science, vol. 321, no. 5887, pp. 385–388, 2008, issn: 0036-8075. doi:10.1126/science.1157996. eprint: http://science.sciencemag.

org/content/321/5887/385.full.pdf. [Online]. Available:http://science.sciencemag.

org/content/321/5887/385.

[20] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, ‘The electronic properties of graphene,’ Rev. Mod. Phys., vol. 81, pp. 109–162, Jan. 2009. doi: 10.1103/RevModPhys.81.109.

92

[21] R. Saito, G. Dresselhaus and M. S. Dresselhaus,Physical Properties of Carbon Nanotubes.

World Scientific Publishing, 1998, ISBN 978-1-86094-093-4 (hb) ISBN 978-1-86094-223-5 (pb).

[22] S. Das Sarma, S. Adam, E. H. Hwang and E. Rossi, ‘Electronic transport in two-dimensional graphene,’Rev. Mod. Phys., vol. 83, pp. 407–470, 2 2011. doi:10.1103/RevModPhys.83.

407.

[23] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea and A. H. Castro Neto, ‘Electron-Electron Interactions in Graphene: Current Status and Perspectives,’ Rev. Mod. Phys., vol. 84, pp. 1067–1125, Jul. 2012.doi:10.1103/RevModPhys.84.1067.

[24] J. Hubbard, ‘Electron correlations in narrow energy bands,’Proc. R. Soc. Lond. A, vol. 276, pp. 238–257, 1963.doi:10.1098/rspa.1963.0204.

[25] F. Bloch, ‘Über die Quantenmechanik der Elektronen in Kristallgittern,’ Zeitschrift für Physik, vol. 52, no. 7, pp. 555–600, 1929,issn: 0044-3328.doi:10.1007/BF01339455.

[26] J. C. Slater and G. F. Koster, ‘Simplified LCAO Method for the Periodic Potential Prob-lem,’Phys. Rev., vol. 94, pp. 1498–1524, 6 1954.doi:10.1103/PhysRev.94.1498.

[27] P. R. Wallace, ‘The Band Theory of Graphite,’ Phys. Rev., vol. 71, pp. 622–634, 9 1947.

doi:10.1103/PhysRev.71.622.

[28] A. Giuliani and V. Mastropietro, ‘The Two-Dimensional Hubbard Model on the Honeycomb Lattice,’Communications in Mathematical Physics, vol. 293, no. 2, p. 301, Sep. 2009,issn: 1432-0916.doi:10.1007/s00220-009-0910-5.

[29] S. Arya, P. V. Sriluckshmy, S. R. Hassan and A.-M. S. Tremblay, ‘Antiferromagnetism in the Hubbard model on the honeycomb lattice: A two-particle self-consistent study,’Phys.

Rev. B, vol. 92, p. 045 111, 4 2015.doi:10.1103/PhysRevB.92.045111.

[30] Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad and A. Muramatsu, ‘Quantum spin liquid emerging in two-dimensional correlated Dirac fermions,’Nature, vol. 464, no. 7290, pp. 847–

851, Apr. 2010,issn: 0028-0836.doi: 10.1038/nature08942.

[31] F. F. Assaad and I. F. Herbut, ‘Pinning the order: the nature of quantum criticality in the Hubbard model on honeycomb lattice,’ Phys. Rev., vol. X3, p. 031 010, Aug. 2013. doi: 10.1103/PhysRevX.3.031010.

[32] L. Wang, P. Corboz and M. Troyer, ‘Fermionic Quantum Critical Point of Spinless Fermions on a Honeycomb Lattice,’New J. Phys., vol. 16, no. 10, p. 103 008, 2014. doi: 10.1088/

1367-2630/16/10/103008. arXiv:1407.0029 [cond-mat.str-el].

[33] Y. Otsuka, S. Yunoki and S. Sorella, ‘Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons,’ Phys. Rev., vol. X6, no. 1, p. 011 029, 2016.doi:10.1103/PhysRevX.6.011029.

[34] N. F. Mott and R Peierls, ‘Discussion of the paper by de boer and verwey,’Proceedings of the Physical Society, vol. 49, no. 4S, pp. 72–73, 1937.doi:10.1088/0959-5309/49/4s/308.

[35] P. Buividovich, D. Smith, M. Ulybyshev and L. von Smekal, ‘Numerical evidence of con-formal phase transition in graphene with long-range interactions,’ Phys. Rev. B, vol. 99,

no. 20, p. 205 434, 2019.doi:10.1103/PhysRevB.99.205434. arXiv:1812.06435 [cond-mat.str-el].

[36] D. J. Gross and A. Neveu, ‘Dynamical symmetry breaking in asymptotically free field theories,’ Phys. Rev. D, vol. 10, pp. 3235–3253, 10 Nov. 1974. doi: 10.1103/PhysRevD.

10.3235.

[37] L. Janssen and I. F. Herbut, ‘Antiferromagnetic critical point on graphene’s honeycomb lattice: A functional renormalization group approach,’Phys. Rev. B, vol. 89, p. 205 403, 20 May 2014.doi:10.1103/PhysRevB.89.205403.

[38] J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L. Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J.

Millis, N. V. Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R. White, S. Zhang, B.-X. Zheng, Z. Zhu and E. Gull, ‘Solutions of the two-dimensional hubbard model: Benchmarks and results from a wide range of numerical algorithms,’Phys. Rev. X, vol. 5, p. 041 041, 4 2015.doi:10.1103/PhysRevX.5.041041.

[39] M. Qin, T. Schäfer, S. Andergassen, P. Corboz and E. Gull, ‘The Hubbard model: A compu-tational perspective,’arXiv e-prints, Mar. 2021. arXiv:2104.00064 [cond-mat.str-el].

[40] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden and K. Schönhammer, ‘Functional renormalization group approach to correlated fermion systems,’Rev. Mod. Phys., vol. 84, pp. 299–352, 1 2012.doi:10.1103/RevModPhys.84.299.

[41] P. Corboz, ‘Improved energy extrapolation with infinite projected entangled-pair states applied to the two-dimensional Hubbard model,’Physical Review B, vol. 93, no. 4, 2016, issn: 2469-9969.doi:10.1103/physrevb.93.045116.

[42] S. Sorella, Y. Otsuka and S. Yunoki, ‘Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice,’Sci. Rep., vol. 2, p. 992, 2012.doi: 10.1038/srep00992.

[43] M. Ulybyshev, S. Zafeiropoulos, C. Winterowd and F. Assaad,Bridging the gap between nu-merics and experiment in free standing graphene, 2021. arXiv:2104.09655 [cond-mat.str-el].

[44] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, ‘Hybrid Monte Carlo,’ Phys.

Lett., vol. B195, pp. 216–222, 1987.doi:10.1016/0370-2693(87)91197-X.

[45] R. Brower, C. Rebbi and D. Schaich, ‘Hybrid Monte Carlo simulation on the graphene hexagonal lattice,’PoS, vol. LATTICE2011, P. Vranas, Ed., p. 056, 2011.doi:10.22323/

1.139.0056. arXiv:1204.5424 [hep-lat].

[46] R. Blankenbecler, D. J. Scalapino and R. L. Sugar, ‘Monte Carlo Calculations of Coupled Boson - Fermion Systems. 1.,’Phys. Rev., vol. D24, p. 2278, 1981.doi:10.1103/PhysRevD.

24.2278.

[47] M. Creutz, ‘Global Monte Carlo algorithms for many-fermion systems,’Phys. Rev., vol. D38, pp. 1228–1238, 1988.doi:10.1103/PhysRevD.38.1228.

[48] I. Omelyan, I. Mryglod and R. Folk, ‘Symplectic analytically integrable decomposition algorithms: Classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations,’Computer Physics Communications, vol. 151, no. 3, pp. 272 –314, 2003,issn: 0010-4655.doi: https://doi.org/10.1016/S0010-4655(02)00754-3.

[49] Y. Saad, ‘A flexible Inner-Outer preconditioned GMRES algorithm,’ SIAM Journal on Scientific Computing, vol. 14, pp. 461–469, 1993.

[50] M. Hasenbusch, ‘Speeding up the hybrid Monte Carlo algorithm for dynamical fermions,’

Physics Letters B, vol. 519, no. 1, pp. 177 –182, 2001,issn: 0370-2693.doi:https://doi.

org/10.1016/S0370-2693(01)01102-9.

[51] C. Urbach, K. Jansen, A. Shindler and U. Wenger, ‘HMC algorithm with multiple time scale integration and mass preconditioning,’Computer Physics Communications, vol. 174, no. 2, pp. 87 –98, 2006,issn: 0010-4655.doi:https://doi.org/10.1016/j.cpc.2005.08.006.

[52] M. A. Clark, B. Joó, A. Strelchenko, M. Cheng, A. Gambhir and R. Brower, ‘Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization,’ 2016. arXiv:1612.

07873 [hep-lat].

[53] M. Ulybyshev, N. Kintscher, K. Kahl and P. Buividovich, ‘Schur complement solver for Quantum Monte-Carlo simulations of strongly interacting fermions,’ Computer Physics Communications, vol. 236, pp. 118–127, 2019, issn: 0010-4655. doi: https://doi.org/

10.1016/j.cpc.2018.10.023.

[54] D. Smith and L. von Smekal, ‘Monte-Carlo simulation of the tight-binding model of graphene with partially screened Coulomb interactions,’Phys. Rev., vol. B89, no. 19, p. 195 429, 2014.

doi:10.1103/PhysRevB.89.195429.

[55] T. Luu and T. A. Lähde, ‘Quantum Monte Carlo Calculations for Carbon Nanotubes,’

Phys. Rev., vol. B93, no. 15, p. 155 106, 2016.doi:10.1103/PhysRevB.93.155106. arXiv:

1511.04918 [cond-mat.str-el].

[56] J.-L. Wynen, E. Berkowitz, C. Körber, T. A. Lähde and T. Luu, ‘Avoiding Ergodicity Problems in Lattice Discretizations of the Hubbard Model,’ Phys. Rev., vol. B100, no. 7, p. 075 141, 2019.doi:10.1103/PhysRevB.100.075141. arXiv:1812.09268 [cond-mat.str-el].

[57] E Ising, ‘Beitrag zur Theorie des Ferromagnetismus,’Z. Phys., vol. 31, pp. 253–258, 1925.

[Online]. Available:http://cds.cern.ch/record/429052.

[58] L. Onsager, ‘Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Trans-ition,’Phys. Rev., vol. 65, pp. 117–149, 3-4 Feb. 1944.doi:10.1103/PhysRev.65.117.

[59] S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems: A Concrete Math-ematical Introduction. Cambridge University Press, 2017, isbn: 978-1-107-18482-4. doi: 10.1017/9781316882603.

[60] G. Gallavotti, Statistical Mechanics: A Short Treatise, ser. Theoretical and Mathemat-ical Physics. Springer Berlin Heidelberg, 1999,isbn: 978-3-662-03952-6. [Online]. Available:

https://link.springer.com/book/10.1007%2F978-3-662-03952-6.

[61] R. Baierlein,Thermal Physics. Cambridge University Press, 1999.doi:10.1017/CBO9780511840227.

[62] S. G. Brush, ‘History of the Lenz-Ising Model,’Rev. Mod. Phys., vol. 39, pp. 883–893, 4 1967.doi:10.1103/RevModPhys.39.883.

[63] D. G. Gardner, J. C. Gardner, G. Laush and W. W. Meinke, ‘Method for the Analysis of Multicomponent Exponential Decay Curves,’The Journal of Chemical Physics, vol. 31, no. 4, pp. 978–986, 1959.doi:10.1063/1.1730560. eprint: https://doi.org/10.1063/

1.1730560.

[64] C. Michael and I. Teasdale, ‘Extracting Glueball Masses From Lattice QCD,’Nucl. Phys., vol. B215, pp. 433–446, 1983.doi:10.1016/0550-3213(83)90674-0.

[65] M. Lüscher and U. Wolff, ‘How to Calculate the Elastic Scattering Matrix in Two-dimensional Quantum Field Theories by Numerical Simulation,’ Nucl. Phys., vol. B339, pp. 222–252, 1990.doi:10.1016/0550-3213(90)90540-T.

[66] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes and R. Sommer, ‘On the generalized eigenvalue method for energies and matrix elements in lattice field theory,’JHEP, vol. 04, p. 094, 2009.doi:10.1088/1126-6708/2009/04/094. arXiv:0902.1265 [hep-lat].

[67] G. R. de Prony,Journal de l’cole Polytechnique, vol. 1, no. 22, pp. 24–76, 1795.

[68] G. T. Fleming, ‘What can lattice QCD theorists learn from NMR spectroscopists?’ In QCD and numerical analysis III. Proceedings, 3rd International Workshop, Edinburgh, UK, June 30-July 4, 2003, 2004, pp. 143–152. arXiv: hep- lat/0403023 [hep-lat]. [Online].

Available:http://www1.jlab.org/Ul/publications/view_pub.cfm?pub_id=5245.

[69] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, A. Torok and A. Walker-Loud, ‘High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions,’ Phys. Rev., vol. D79, p. 114 502, 2009. doi: 10 . 1103 / PhysRevD.79.114502. arXiv:0903.2990 [hep-lat].

[70] T. Fohrmann, ‘ÜBER DIE BESTIMMUNG VON GRUNDZUSTANDSENERGIEN MIT HILFE VON MASCHINELLEN LERNVERFAHREN,’ B.S. Thesis, University of Bonn, Sep. 2019.

[71] M. Fischer, ‘Bayesian Inference in Analysing Results from Lattice QCD,’ M.S. thesis, Uni-versity of Bonn, May 2019.

[72] W. A. Little, ‘An ising model of a neural network,’ inBiological Growth and Spread, W.

Jäger, H. Rost and P. Tautu, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1980, pp. 173–179,isbn: 978-3-642-61850-5.

[73] E. Schneidman, M. Berry and R. S. et al., ‘Weak pairwise correlations imply strongly correlated network states in a neural population,’ Nature, vol. 440, pp. 1007–1012, 2006.

doi:10.1038/nature04701.

[74] P. W. Kasteleyn and C. M. Fortuin, ‘Phase Transitions in Lattice Systems with Random Local Properties,’Physical Society of Japan Journal Supplement, vol. 26, p. 11, Jan. 1969.

[75] C. Fortuin and P. Kasteleyn, ‘On the random-cluster model: I. introduction and relation to other models,’Physica, vol. 57, no. 4, pp. 536 –564, 1972,issn: 0031-8914.doi:https:

//doi.org/10.1016/0031-8914(72)90045-6.

[76] A. A. Saberi and H. Dashti-Naserabadi, ‘Three-dimensional ising model, percolation theory and conformal invariance,’EPL (Europhysics Letters), vol. 92, no. 6, p. 67 005, Dec. 2010.

doi:10.1209/0295-5075/92/67005.

[77] Y.-P. Ma, I. Sudakov, C. Strong and K. M. Golden, ‘Ising model for melt ponds on arctic sea ice,’New Journal of Physics, vol. 21, no. 6, p. 063 029, Jun. 2019.doi: 10.1088/1367-2630/ab26db.

[78] D. Chowdhury and D. Stauffer, ‘A generalized spin model of financial markets,’The European Physical Journal B - Condensed Matter and Complex Systems, vol. 8, pp. 477–482, 1999.

[79] T. Kaizoji, S. Bornholdt and Y. Fujiwara, ‘Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents,’Physica A: Statistical Mechanics and its Applications, vol. 316, no. 1, pp. 441 –452, 2002, issn: 0378-4371. doi: https : //doi.org/10.1016/S0378-4371(02)01216-5.

[80] D. Sornette and W.-X. Zhou, ‘Importance of positive feedbacks and overconfidence in a self-fulfilling ising model of financial markets,’ Physica A: Statistical Mechanics and its Applications, vol. 370, no. 2, pp. 704 –726, 2006,issn: 0378-4371.doi:https://doi.org/

10.1016/j.physa.2006.02.022.

[81] T. C. Schelling, ‘Dynamic models of segregation,’The Journal of Mathematical Sociology, vol. 1, no. 2, pp. 143–186, 1971. doi: 10.1080/0022250X.1971.9989794. eprint:https:

//doi.org/10.1080/0022250X.1971.9989794.

[82] D. Stauffer, ‘Social applications of two-dimensional ising models,’ American Journal of Physics, vol. 76, no. 4, pp. 470–473, 2008. doi: 10 . 1119 / 1 . 2779882. eprint: https : //doi.org/10.1119/1.2779882.

[83] R. H. Swendsen and J.-S. Wang, ‘Nonuniversal critical dynamics in Monte Carlo simula-tions,’Phys. Rev. Lett., vol. 58, pp. 86–88, 1987.doi: 10.1103/PhysRevLett.58.86.

[84] U. Wolff, ‘Collective Monte Carlo Updating for Spin Systems,’ Phys. Rev. Lett., vol. 62, p. 361, 1989.doi:10.1103/PhysRevLett.62.361.

[85] N. Prokof’ev and B. Svistunov, ‘Worm algorithms for classical statistical models,’ Phys.

Rev. Lett., vol. 87, p. 160 601, 16 Sep. 2001.doi: 10.1103/PhysRevLett.87.160601.

[86] S. J. Wetzel and M. Scherzer, ‘Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2) Lattice Gauge Theory,’Phys. Rev., vol. B96, no. 18, p. 184 410, 2017.

doi:10.1103/PhysRevB.96.184410. arXiv:1705.05582 [cond-mat.stat-mech].

[87] G. Cossu, L. Del Debbio, T. Giani, A. Khamseh and M. Wilson, ‘Machine learning de-termination of dynamical parameters: The Ising model case,’Phys. Rev., vol. B100, no. 6, p. 064 304, 2019.doi:10.1103/PhysRevB.100.064304. arXiv:1810.11503 [physics.comp-ph].

[88] A. Morningstar and R. G. Melko, ‘Deep learning the ising model near criticality,’Journal of Machine Learning Research, vol. 18, no. 163, pp. 1–17, 2018. [Online]. Available:http:

//jmlr.org/papers/v18/17-527.html.

[89] C. Giannetti, B. Lucini and D. Vadacchino, ‘Machine learning as a universal tool for quant-itative investigations of phase transitions,’Nuclear Physics B, vol. 944, p. 114 639, 2019, issn: 0550-3213.doi:https://doi.org/10.1016/j.nuclphysb.2019.114639.

[90] C. Alexandrou, A. Athenodorou, C. Chrysostomou and S. Paul, ‘Unsupervised identification of the phase transition on the 2D-Ising model,’ 2019. arXiv:1903.03506 [cond-mat.stat-mech].

[91] A. Pakman and L. Paninski,Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions, 2015. arXiv:1311.2166 [stat.CO].

[92] Y. Zhang, Z. Ghahramani, A. J. Storkey and C. Sutton, ‘Continuous Relaxations for Dis-crete Hamiltonian Monte Carlo,’ inAdvances in Neural Information Processing Systems, F.

Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger, Eds., vol. 25, Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/file/

c913303f392ffc643f7240b180602652-Paper.pdf.

[93] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Philadelphia, PA: SIAM, 1993.

[94] I. P. Omelyan, I. M. Mryglod and R. Folk, ‘Optimized verlet-like algorithms for molecular dynamics simulations,’ Phys. Rev. E, vol. 65, p. 056 706, 5 May 2002. doi: 10 . 1103 / PhysRevE.65.056706.

[95] A. E. Ferdinand and M. E. Fisher, ‘Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice,’ Phys. Rev., vol. 185, pp. 832–846, 2 Sep. 1969. doi: 10.1103/PhysRev.185.832.

[96] J. Negele and H. Orland,Quantum many-particle systems, ser. Frontiers in physics. Addison-Wesley Pub. Co., 1988,isbn: 9780201125931. [Online]. Available:https://books.google.

de/books?id=EV8sAAAAYAAJ.

[97] U. Wolff and Alpha Collaboration, ‘Monte Carlo errors with less errors,’Computer Physics Communications, vol. 156, pp. 143–153, Jan. 2004.doi: 10.1016/S0010-4655(03)00467-3. eprint:hep-lat/0306017.

[98] A. Pelissetto and E. Vicari, ‘Critical phenomena and renormalization group theory,’Phys.

Rept., vol. 368, pp. 549–727, 2002.doi: 10.1016/S0370-1573(02)00219-3. arXiv: cond-mat/0012164 [cond-mat].

[99] G. Aarts and K. Splittorff, ‘Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential,’JHEP, vol. 08, p. 017, 2010.doi:10.1007/

JHEP08(2010)017. arXiv:1006.0332 [hep-lat].

[100] Z. Fodor, S. D. Katz, D. Sexty and C. Török, ‘Complex Langevin dynamics for dynamical QCD at nonzero chemical potential: a comparison with multi-parameter reweighting,’ 2015.

arXiv:1508.05260 [hep-lat].

[101] M. Cristoforetti, F. Di Renzo and L. Scorzato, ‘New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble,’Phys. Rev. D, vol. D86, p. 074 506, 2012.doi:10.1103/PhysRevD.86.074506. arXiv:1205.3996 [hep-lat].

[102] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, ‘Hybrid Monte Carlo on Lefschetz thimbles - A study of the residual sign problem,’JHEP, vol. 10, p. 147, 2013.

doi:10.1007/JHEP10(2013)147. arXiv:1309.4371 [hep-lat].

[103] A. Alexandru, G. Basar, P. F. Bedaque and N. C. Warrington, ‘Tempered transitions between thimbles,’Phys. Rev., vol. D96, no. 3, p. 034 513, 2017. doi:10.1103/PhysRevD.

96.034513. arXiv:1703.02414 [hep-lat].

[104] A. Alexandru, P. F. Bedaque, H. Lamm and S. Lawrence, ‘Deep Learning Beyond Lefschetz Thimbles,’ Phys. Rev., vol. D96, no. 9, p. 094 505, 2017. doi: 10 . 1103 / PhysRevD . 96 . 094505. arXiv:1709.01971 [hep-lat].

[105] Y. Mori, K. Kashiwa and A. Ohnishi, ‘Toward solving the sign problem with path optim-ization method,’Phys. Rev., vol. D96, no. 11, p. 111 501, 2017.doi: 10.1103/PhysRevD.

96.111501. arXiv:1705.05605 [hep-lat].

[106] K. Kashiwa, Y. Mori and A. Ohnishi, ‘Control the model sign problem via path optimization method: Monte-Carlo approach to QCD effective model with Polyakov loop,’ 2018. arXiv:

1805.08940 [hep-ph].

[107] G. P. Lepage, ‘The analysis of algorithms for lattice field theory,’ in, Invited lectures given at TASI’89 Summer School, Boulder, CO, Jun 4-30, 1989. Published in Boulder ASI 1989:97-120 (QCD161:T45:1989), 1989.

[108] X. Feng, K. Jansen and D. B. Renner, ‘Resonance Parameters of the rho-Meson from Lattice QCD,’Phys. Rev., vol. D83, p. 094 505, 2011.doi: 10.1103/PhysRevD.83.094505. arXiv:

1011.5288 [hep-lat].

[109] G. T. Fleming, S. D. Cohen, H.-W. Lin and V. Pereyra, ‘Excited state effective masses,’

PoS, vol. LATTICE2007, p. 096, 2007.doi:10.22323/1.042.0096.

[110] E. Berkowitz, A. Nicholson, C. C. Chang, E. Rinaldi, M. A. Clark, B. Joó, T. Kurth, P.

Vranas and A. Walker-Loud, ‘Calm Multi-Baryon Operators,’ EPJ Web Conf., vol. 175, p. 05 029, 2018.doi: 10.1051/epjconf/201817505029. arXiv:1710.05642 [hep-lat].

[111] K. K. Cushman and G. T. Fleming, ‘Automated label flows for excited states of correlation functions in lattice gauge theory,’ 2019. arXiv:1912.08205 [hep-lat].

[112] M. C. Banuls, M. P. Heller, K. Jansen, J. Knaute and V. Svensson, ‘From Spin Chains to Real-Time Thermal Field Theory Using Tensor Networks,’ Dec. 2019. arXiv:1912.08836 [hep-th].

[113] B. C. Sauer, ‘Approaches to Improving η0 Mass Calculations,’ M.S. thesis, University of Bonn, Nov. 2013.

[114] N. Irges and F. Knechtli, ‘Lattice gauge theory approach to spontaneous symmetry breaking from an extra dimension,’ Nucl. Phys., vol. B775, pp. 283–311, 2007. doi: 10 . 1016 / j . nuclphysb.2007.01.023. arXiv:hep-lat/0609045 [hep-lat].

[115] C. Aubin and K. Orginos, ‘A new approach for Delta form factors,’ AIP Conf. Proc., vol. 1374, no. 1, pp. 621–624, 2011.doi:10.1063/1.3647217. arXiv:1010.0202 [hep-lat].

[116] ——, ‘An improved method for extracting matrix elements from lattice three-point func-tions,’PoS, vol. LATTICE2011, p. 148, 2011.doi:10.22323/1.139.0148.

[117] R. W. Schiel, ‘Expanding the Interpolator Basis in the Variational Method to Explicitly Account for Backward Running States,’Phys. Rev., vol. D92, no. 3, p. 034 512, 2015.doi: 10.1103/PhysRevD.92.034512. arXiv:1503.02588 [hep-lat].

[118] K. Ottnad, T. Harris, H. Meyer, G. von Hippel, J. Wilhelm and H. Wittig, ‘Nucleon average quark momentum fraction withNf = 2 + 1 Wilson fermions,’ EPJ Web Conf., vol. 175, p. 06 026, 2018.doi: 10.1051/epjconf/201817506026. arXiv:1710.07816 [hep-lat].

[119] G. Bailas, B. Blossier and V. Morénas, ‘Some hadronic parameters of charmonia inNf= 2 lattice QCD,’Eur. Phys. J. C, vol. 78, no. 12, p. 1018, 2018.doi: 10.1140/epjc/s10052-018-6495-4. arXiv:1803.09673 [hep-lat].

[120] R. Baron et al., ‘Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks,’JHEP, vol. 06, p. 111, 2010. doi:10.1007/JHEP06(2010)111. arXiv:

1004.5284 [hep-lat].

[121] P. Boucaudet al., ‘Dynamical Twisted Mass Fermions with Light Quarks: Simulation and Analysis Details,’Comput. Phys. Commun., vol. 179, pp. 695–715, 2008.doi:10.1016/j.

cpc.2008.06.013. arXiv:0803.0224 [hep-lat].

[122] K. Ottnad and C. Urbach, ‘Flavor-singlet meson decay constants from Nf = 2 + 1 + 1 twisted mass lattice QCD,’ Phys. Rev., vol. D97, no. 5, p. 054 508, 2018. doi: 10.1103/

PhysRevD.97.054508. arXiv:1710.07986 [hep-lat].

[123] K. Ottnad, C. Michael, S. Reker, C. Urbach, C. Michael, S. Reker and C. Urbach, ‘η and η0 mesons fromNf = 2 + 1 + 1 twisted mass lattice QCD,’ JHEP, vol. 11, p. 048, 2012.

doi:10.1007/JHEP11(2012)048. arXiv:1206.6719 [hep-lat].

[124] C. Michael, K. Ottnad and C. Urbach, ‘η and η0 mixing from Lattice QCD,’ Phys. Rev.

Lett., vol. 111, no. 18, p. 181 602, 2013.doi: 10.1103/PhysRevLett.111.181602. arXiv:

1310.1207 [hep-lat].

[125] M. Werner et al., ‘Hadron-Hadron Interactions fromNf = 2 + 1 + 1 Lattice QCD: The ρ-resonance,’ Eur. Phys. J. A, vol. 56, no. 2, p. 61, 2020. doi: 10.1140/epja/s10050-020-00057-4. arXiv:1907.01237 [hep-lat].

[126] A. Abdel-Rehimet al., ‘First physics results at the physical pion mass fromNf = 2Wilson twisted mass fermions at maximal twist,’Phys. Rev., vol. D95, no. 9, p. 094 515, 2017.doi: 10.1103/PhysRevD.95.094515. arXiv:1507.05068 [hep-lat].

[127] L. Liuet al., ‘Isospin-0ππs-wave scattering length from twisted mass lattice QCD,’Phys.

Rev., vol. D96, no. 5, p. 054 516, 2017.doi:10.1103/PhysRevD.96.054516. arXiv:1612.

02061 [hep-lat].

[128] M. Fischer, B. Kostrzewa, M. Mai, M. Petschlies, F. Pittler, M. Ueding, C. Urbach and M.

Werner, ‘Theρ-resonance with physical pion mass from Nf = 2 lattice QCD,’ Jun. 2020.

arXiv:2006.13805 [hep-lat].

[129] S. Romiti and S. Simula, ‘Extraction of multiple exponential signals from lattice correlation functions,’Phys. Rev. D, vol. 100, p. 054 515, 5 Sep. 2019. doi:10.1103/PhysRevD.100.

054515.

[130] Jülich Supercomputing Centre, ‘JUQUEEN: IBM Blue Gene/Q Supercomputer System at the Jülich Supercomputing Centre,’Journal of large-scale research facilities, vol. 1, no. A1, 2015.doi:10.17815/jlsrf-1-18.

[131] ——, ‘JURECA: Modular supercomputer at Jülich Supercomputing Centre,’ Journal of large-scale research facilities, vol. 4, no. A132, 2018.doi:10.17815/jlsrf-4-121-1.

[132] ——, ‘JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre,’

Journal of large-scale research facilities, vol. 5, no. A135, 2019.doi: 10.17815/jlsrf-5-171.

[133] K. Jansen and C. Urbach, ‘tmLQCD: A Program suite to simulate Wilson Twisted mass Lattice QCD,’ Comput.Phys.Commun., vol. 180, pp. 2717–2738, 2009. doi: 10.1016/j.

cpc.2009.05.016. arXiv:0905.3331 [hep-lat].

[134] A. Abdel-Rehim, F. Burger, A. Deuzeman, K. Jansen, B. Kostrzewa, L. Scorzato and C.

Urbach, ‘Recent developments in the tmLQCD software suite,’ PoS, vol. LATTICE2013, p. 414, 2014.doi:10.22323/1.187.0414. arXiv:1311.5495 [hep-lat].

[135] A. Deuzeman, K. Jansen, B. Kostrzewa and C. Urbach, ‘Experiences with OpenMP in tmLQCD,’PoS, vol. LATTICE2013, p. 416, 2013. arXiv:1311.4521 [hep-lat].

[136] A. Deuzeman, S. Reker and C. Urbach, ‘Lemon: an MPI parallel I/O library for data encapsulation using LIME,’Comput. Phys. Commun., vol. 183, pp. 1321–1335, 2012.doi: 10.1016/j.cpc.2012.01.016. arXiv:1106.4177 [hep-lat].

[137] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, ‘Solving Lattice QCD systems of equations using mixed precision solvers on GPUs,’Comput. Phys. Commun., vol. 181, pp. 1517–1528, 2010. doi: 10 . 1016 / j . cpc . 2010 . 05 . 002. arXiv: 0911 . 3191 [hep-lat].

[138] R. Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower and S. Gottlieb, ‘Scaling Lattice QCD beyond 100 GPUs,’ inSC11 International Conference for High Performance Computing, Networking, Storage and Analysis Seattle, Washington, November 12-18, 2011, 2011.doi: 10.1145/2063384.2063478. arXiv:1109.2935 [hep-lat].

[139] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2019. [Online]. Available: https : / / www . R -project.org/.

[140] H. Takahasi and M. Mori, ‘Double Exponential Formulas for Numerical Integration,’ Pub-lications of the Research Institute for Mathematical Sciences, vol. 9, no. 3, pp. 721–741, 1973.doi:10.2977/prims/1195192451.

[141] T. Ooura and M. Mori, ‘A robust double exponential formula for Fourier-type integrals,’

Journal of Computational and Applied Mathematics, vol. 112, no. 1, pp. 229 –241, 1999, issn: 0377-0427.doi:https://doi.org/10.1016/S0377-0427(99)00223-X.

[142] A. Jibia and M. Salami, ‘An Appraisal of Gardner Transform-Based Methods of Transient Multiexponential Signal Analysis,’International Journal of Computer Theory and Engin-eering, vol. 4, pp. 16–25, Jan. 2012.doi:10.7763/IJCTE.2012.V4.420.

[143] S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols and D. L. Henry, ‘A digital technique for analyzing a class of multicomponent signals,’ Proceedings of the IEEE, vol. 63, no. 10, pp. 1460–1467, Oct. 1975,issn: 1558-2256.doi:10.1109/PROC.1975.9975.

[144] S. Provencher, ‘A Fourier method for the analysis of exponential decay curves,’Biophysical Journal, vol. 16, no. 1, pp. 27 –41, 1976, issn: 0006-3495. doi: https : / / doi . org / 10 . 1016/S0006-3495(76)85660-3.

[145] D. Khveshchenko and H. Leal, ‘Excitonic instability in layered degenerate semimetals,’

Nuclear Physics B, vol. 687, no. 3, pp. 323 –331, 2004, issn: 0550-3213. doi:http://dx.

doi.org/10.1016/j.nuclphysb.2004.03.020.

[146] R. E. Throckmorton and O. Vafek, ‘Fermions on bilayer graphene: Symmetry breaking for B= 0 andν = 0,’ Phys. Rev. B, vol. 86, p. 115 447, Sep. 2012.doi:10.1103/PhysRevB.

86.115447.

[147] J. E. Drut and T. A. Lähde, ‘Is graphene in vacuum an insulator?’Phys. Rev. Lett., vol. 102, p. 026 802, 2009.doi:10.1103/PhysRevLett.102.026802.

[148] S. Hands and C. Strouthos, ‘Quantum Critical Behaviour in a Graphene-like Model,’Phys.

Rev., vol. B78, p. 165 423, 2008.doi:10.1103/PhysRevB.78.165423.

[149] T. O. Wehling, E. Şaşıoğlu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson and S. Blügel,

‘Strength of Effective Coulomb Interactions in Graphene and Graphite,’Phys. Rev. Lett., vol. 106, p. 236 805, Jun. 2011.doi:10.1103/PhysRevLett.106.236805.

[150] H.-K. Tang, E. Laksono, J. N. B. Rodrigues, P. Sengupta, F. F. Assaad and S. Adam,

‘Interaction-Driven Metal-Insulator Transition in Strained Graphene,’ Phys. Rev. Lett., vol. 115, p. 186 602, Oct. 2015.doi:10.1103/PhysRevLett.115.186602.

[151] J.-W. Chen and D. B. Kaplan, ‘A Lattice theory for low-energy fermions at finite chemical potential,’ Phys. Rev. Lett., vol. 92, p. 257 002, 2004. doi: 10 . 1103 / PhysRevLett . 92 . 257002. arXiv:hep-lat/0308016.

[152] A. Bulgac, J. E. Drut and P. Magierski, ‘Spin 1/2 Fermions in the unitary regime: A Superfluid of a new type,’ Phys. Rev. Lett., vol. 96, p. 090 404, 2006. doi: 10 . 1103 / PhysRevLett.96.090404. arXiv:cond-mat/0505374.

[153] I. Bloch, J. Dalibard and W. Zwerger, ‘Many-body physics with ultracold gases,’Rev. Mod.

Phys., vol. 80, pp. 885–964, 2008. doi: 10.1103/RevModPhys.80.885. arXiv: 0704.3011 [cond-mat.other].

[154] J. E. Drut, T. A. Lähde and T. Ten, ‘Momentum Distribution and Contact of the Unitary Fermi gas,’Phys. Rev. Lett., vol. 106, p. 205 302, 2011. doi:10.1103/PhysRevLett.106.

205302. arXiv:1012.5474 [cond-mat.stat-mech].

[155] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee and U.-G. Meißner, ‘Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order,’ Eur. Phys. J. A, vol. 31, pp. 105–123, 2007.doi:10.1140/epja/i2006-10154-1.

[156] D. Lee, ‘Lattice simulations for few- and many-body systems,’ Prog. Part. Nucl. Phys., vol. 63, pp. 117–154, 2009.doi: 10.1016/j.ppnp.2008.12.001.

[157] T. A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner and G. Rupak, ‘Lattice Effective Field Theory for Medium-Mass Nuclei,’ Phys. Lett. B, vol. 732, pp. 110–115, 2014.doi:10.1016/j.physletb.2014.03.023.

[158] T. A. Lähde and U.-G. Meißner,Nuclear Lattice Effective Field Theory: An introduction.

Springer, 2019, vol. 957,isbn: 978-3-030-14187-5, 978-3-030-14189-9.doi: 10.1007/978-3-030-14189-9.

[159] D. Son, ‘Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction,’ Phys. Rev. B, vol. 75, no. 23, p. 235 423, 2007. doi: 10 . 1103 / PhysRevB.75.235423. arXiv:cond-mat/0701501.

[160] P. Buividovich, D. Smith, M. Ulybyshev and L. von Smekal, ‘Competing order in the fermionic Hubbard model on the hexagonal graphene lattice,’ PoS, vol. LATTICE2016, p. 244, 2016.doi:10.22323/1.256.0244.

[161] ——, ‘Hybrid Monte Carlo study of competing order in the extended fermionic Hubbard model on the hexagonal lattice,’Phys. Rev. B, vol. 98, p. 235 129, Dec. 2018.doi:10.1103/

PhysRevB.98.235129.

[162] E. Gorbar, V. Gusynin, V. Miransky and I. Shovkovy, ‘Magnetic field driven metal insulator phase transition in planar systems,’Phys. Rev. B, vol. 66, p. 045 108, 2002.doi:10.1103/

PhysRevB.66.045108. arXiv:cond-mat/0202422.

[163] I. F. Herbut and B. Roy, ‘Quantum critical scaling in magnetic field near the Dirac point in graphene,’Phys. Rev. B, vol. 77, p. 245 438, 2008.doi:10.1103/PhysRevB.77.245438.

arXiv:0802.2546 [cond-mat.mes-hall].

[164] T. Paiva, R. T. Scalettar, W. Zheng, R. R. P. Singh and J. Oitmaa, ‘Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice,’Phys. Rev. B, vol. 72, p. 085 123, Aug. 2005.doi:10.1103/PhysRevB.

72.085123.

[165] S. Beyl, F. Goth and F. F. Assaad, ‘Revisiting the Hybrid Quantum Monte Carlo Method for Hubbard and Electron-Phonon Models,’ Phys. Rev., vol. B97, p. 085 144, 2018. doi: 10.1103/PhysRevB.97.085144.

[166] J. Ostmeyer, ‘Semi-Metal – Insulator Phase Transition of the Hubbard Model on the Hexagonal Lattice,’ M.S. thesis, University of Bonn, Sep. 2018.

[167] R. Brower, C. Rebbi and D. Schaich, ‘Hybrid Monte Carlo Simulation of Graphene on the Hexagonal Lattice,’ Jan. 2011. arXiv:1101.5131 [hep-lat].

[168] Z. Fodor, S. D. Katz and K. K. Szabo, ‘Dynamical overlap fermions, results with hybrid Monte Carlo algorithm,’JHEP, vol. 08, p. 003, 2004.doi:10.1088/1126-6708/2004/08/

003.

[169] N. Cundy, S. Krieg, G. Arnold, A. Frommer, T. Lippert and K. Schilling, ‘Numerical methods for the QCD overlap operator IV: Hybrid Monte Carlo,’Comput. Phys. Commun., vol. 180, pp. 26–54, 2009.doi:10.1016/j.cpc.2008.08.006.

[170] R Core Team,R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018. [Online]. Available: https : / / www . R -project.org/.

[171] Z. Wang, F. F. Assaad and F. Parisen Toldin, ‘Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions,’ Phys. Rev. E, vol. 96, no. 4, p. 042 131, 2017.doi:10.1103/PhysRevE.96.042131. arXiv:1706.01874 [cond-mat.stat-mech].

[172] T. Stauber, P. Parida, M. Trushin, M. V. Ulybyshev, D. L. Boyda and J. Schliemann,

‘Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response,’

Phys. Rev. Lett., vol. 118, p. 266 801, Jun. 2017.doi:10.1103/PhysRevLett.118.266801.