• Keine Ergebnisse gefunden

The mechanism of neurotoxicity of artemisinin and its derivatives is still unclear. A relationship to the potential of the peroxide bridge, which is present in all artemisinin derivatives, to generate toxic carbon-centered free radicals (oxidative stress) and metabolic stress (hypoxia, hypoglycemia) can cause mitochondrial changes resulting in the formation of pores in the mitochondrial membrane (permeability transition pores) with subsequent cellular degeneration (SMITH et al., 1997). The fact that depletion of glutathione seems to be a prerequisite for artemisinin neurotoxicity in mice represents additional evidence for the pathogenetic role of free radical mediated damage (SMITH et al., 2001).

In almost all studies with toxic effects of artemisinin compounds in animals, oil-based intramuscular injections were used as the route of administration. Most of these studies presented these compounds as toxic, not considering the underlying pharmacokinetic properties of oil-based formulations. It is also noteworthy that the volumes of injected oil in most animal studies were significantly larger. Such a relatively large volume would undoubtedly act as a reservoir for the administered drugs, ensuring a sustained release from the site of injection (TITULAER et al., 1990). In another study, plasma concentrations of artemether and its metabolite dihydroartemisinin declined much faster after oral administration compared to a formulation based on arachis oil after intramuscular application (TEJA-ISAVADHARM et al., 1996). The duration of intramuscular administrations, however, is generally limited to less than 4 days in humans. Such a short duration is not expected to result in any accumulation of the compounds and therefore does not possess an increased risk of toxicity. In a recent investigation (HIEN et al., 2003) on malaria patients who died of malaria despite treatment with high doses of i. m. artemether (4 mg/kg followed by 2 mg/kg every 8 h) or quinine (20 mg salt/kg followed by 10 mg/kg every 8 h), the median time to death was 76.5 hours in the artemether group and 31.1

hours in the quinine group. This observation supports a longer standing effect of arthemether compared to quinine salt. Morphological changes associated with the toxic effects of artemether observed in animal studies were thought to be specific comprising damage to neurons, neuroparenchyma, and axons. However, in human patients with malaria there was no evidence of neurotoxic effects of artemether (HORTOBAGYI and AL-SARRAJ 2008).

Whatever the mechanism of the neurotoxicity of artemisinins is, it is evident that the observed toxicity in laboratory animals is related more to the presence of these compounds in a high concentration for a long period of time. Obviously, if eliminated rapidly from the body, artemisinin drugs possess a low toxic potential. Oral intake is the most frequently used route of administration. In patients with intramuscular administration a conversion to oral dosing is normal practice once signs of recovery occurred and the number of parasites decreased, normally within 2-3 days.

Obviously, oil injections can act as a depot and result in sustained release of the drugs from the site of injection. The combination of short treatment time, small injection volume, and lower doses compared to animal studies make the development of neurotoxic side effects in humans very unlikely. New formulations of artemisinin have recently been synthesized showing improved bioavailability as well as stability (GABRIELS and PLAIZIER-VERCAMMEN, 2003; JUNG et al., 2002;

MAGUEUR et al., 2003; WONG and YUEN, 2001). It is generally argued that short artemisinins half-lives necessitate more frequent applications. Increasing the half-life of these compounds by chemical manipulation or pharmaceutical formulation would improve the therapeutic outcome. The anti-parasitic action of these compounds is much more complex than a linear drug-effect relationship and constant drug levels are not necessary for a satisfactory effect. Moreover, animal data suggest that persistent drug plasma levels seemed to be associated with an increased risk for toxicity, which might be manifested at clinically relevant doses. The most common use of artemisinin drugs is as once- or twice-daily oral doses for treatment of uncomplicated malaria. Due to their short elimination half-lives, no accumulation is expected in these patients. Moreover, these compounds exhibit the fastest known parasite clearance, with relief of the clinical symptoms within the first day and low or no detectable parasites within 2-3 days after treatment initiation. This fast action is likely to result in poor compliance and aborted intake, which might increase the risk

of resistance. However, shorter administration times would also result in lower risk of drug toxicity effects.

The pharmacological activity of a drug is related to the degree and rate of exposure, even if the effect manifests itself long after the compound has been eliminated from the body, or is present in minute amounts. The limited available data on the pharmacokinetics of these compounds are demanding for caution of taken up by high doses and for long periods. In conclusion, the signs of toxicity of the artemether in laboratory animals, and the lack of similar findings in humans, can be explained by persistent drug concentrations after repeated intramuscular administrations using oil-based vehicles in animals. Oral intake, the most commonly used route of administration in humans, results in fast absorption and elimination of these compounds. Comparing the animal and human toxicity of artemisinins, the pharmacokinetic properties of these drugs after various administration routes should be considered (GORDI and LEPIST, 2004).

6 SUMMARY

Investigations on the neurotoxic effects of the anti-malaria components artemether and artemether-lumefantrine in dogs

Mohamed A. E. Elhensheri

Artemisinin compounds are now used as first-line antimalarial drugs but converse information is available regarding animal and human toxicity. The aim of this study was a morphological evaluation of brains and ears of dogs after administration of multiple-doses of artemether or artemether-lumefantrine for three and eight-days in two various modes of application (i. m. or orally).

Dogs treated with high-doses (40 mg/kg b. w.) of artemether for eight days intramuscularly displayed significantly more neuropathological changes in the brain stem with various degrees of severity compared to all other experimental groups of animals. The alterations in the brain occurred in a dose- and time-related and non-specific manner. The lesions included neuronal degeneration characterized by central chromatolysis, total chromatolysis, swelling and rounding of neurons, increased granular eosinophilic cytoplasm, vacuolization of cytoplasm and neuronal necrosis characterized by karyopyknosis, karyorrhexis and karyolysis. In addition, axonal damage in form of spheroid formation, and mild inflammatory changes were present. Reactive lesions were characterized by gliosis located in areas with neuronal damage. Occasionally mild inflammatory infiltrations were observed.

The pathogenesis of neurotoxicity is not well understood, but appears to be closely related to a sustained level of the circulating drug (prolonged exposure time) or a metabolite. Laboratory research on this topic has decreased in recent years, even as major questions regarding to neurotoxicity remained to be addressed. If effective pharmacovigilance is to be maintained with the continued increase in the use of artemisinins, it is particularly important that progress is made in these areas.

Although neurotoxicity in animal studies has been documented fairly well, the artemisinins have been increasingly deployed in the global fight against falciparum

malaria in humans, even though it cannot be completely ruled out that the artemisinin derivatives have a potential neurotoxic effect in humans.

7 ZUSAMMENFASSUNG

Untersuchungen über die neurotoxischen Wirkungen der Anti-Malaria-Substanzen Artemether und Artemether-Lumefantrin bei Hunden

Mohamed A. E. Elhensheri

Artemisinin-Verbindungen wurden zur Bekämpfung der Malaria entwickelt und werden derzeit als „First-Line“-Medikamente eingesetzt. Über ihre Toxizität bei Tieren und Menschen gibt es allerdings gegenteilige Informationen. Diese Studie diente der neuropathologischen Untersuchung von Hunden, die mit Artemether oder Artemether-Lumefantrin über drei oder acht Tage auf zwei verschiedenen Applikationsarten (i. m. oder per os) behandelt wurden.

Hunde, denen eine hohe Dosis Artemether (40 mg/kg Körpergewicht) intramuskulär über acht Tage appliziert wurde, zeigten signifikant mehr und schwerere Läsionen als die Kontrolltiere und alle anderen Behandlungsgruppen. Topographisch waren die Veränderungen insbesondere im Hirnstamm lokalisiert. Sie waren durch neuronale Degenerationen in Form von zentraler Chromatolyse, totaler Chromatolyse mit Zellschwellung, Granulierung oder Vakuolisierung des Zytoplasmas sowie neuronale Nekrosen gekennzeichnet. Darüber hinaus wurden axonale Schäden in Form von Sphäroidbildungen beobachtet. In Gebieten mit neuronalen Läsionen wurden auch reaktive Veränderungen festgestellt, die durch Gliosen charakterisiert waren. Gelegentlich wurden geringfügige entzündliche Veränderungen nachgewiesen.

Die genauen Mechanismen der Neurotoxizität der Substanzen sind nicht bekannt, aber wahrscheinlich stehen diese Wirkungen mit einer länger bestehenden, hohen Konzentration der zirkulierenden Substanz oder einer ihrer Metaboliten in einem engen Zusammenhang. Bemerkenswerterweise wurde die Forschung in diesem Bereich in den letzten Jahren eingeschränkt, obwohl noch viele wichtige Fragen hinsichtlich zur Neurotoxizität ungelöst sind. Wenn in den kommenden Jahren die

permanente Pharmakovigilanz im Hinblick auf dieses Fertigarzneimittel erfolgreich ist, wird mit der weiteren Zunahme der Nutzung von Artemisininen zu rechnen sein.

Trotz der Neurotoxizität in Tierstudien können die Artemisinine zunehmend im globalen Kampf gegen die falciparum Malaria bei Menschen zum Einsatz kommen, auch wenn nicht absolut ausgeschlossen werden kann, dass neurotoxische Wirkungen beim Menschen auftreten.

8 REFERENCES

Aarum J., K. Sandberg, S. L. Haeberlein and M. A. Persson (2003):

Migration and differentiation of neural precursor cells can be directed by microglia Proc Natl Acad Sci, 100, 15983-15988

Abdulla S., I. Sagara, S. Borrmann, U. D'Alessandro, R. González, M. Hamel, B.

Ogutu, A. Martensson, J. Lyimo, H. Maiga, P. Sasi, A. Nahum, Q. Bassat, E.

Juma, L. Otieno, A. Björkman, H. P. Beck, K. Andriano, M. Cousin, G. Lefèvre, D. Ubben and Z. Premji (2008):

Efficacy and safety of artemether-lumefantrine dispersible tablets compared with crushed commercial tablets in African infants and children with uncomplicated malaria: a randomised, single-blind, multicentre trial

Lancet, doi: 10.1016/S0140-6736(08)61492-0, epub: ahead of print Abnet K., J. W. Fawcett and S. B. Dunnett (1991):

Interactions between meningeal cells and astrocytes in vivo and in vitro Brain Res Dev Brain Res, 59, 187-196

Alldinger S., A. Wünschmann, W. Baumgärtner, C. Voss and E. Kremmer (1996):

Up-regulation of major histocompatibility complex class II antigen antigen expression in the central nervous system of dogs with spontaneous canine distemper virus encephalitis

Acta Neuropathol, 92, 273-280 Andersen J. K. (2004):

Oxidative stress in neurodegeneration: Cause or consequence?

Nat Med, 10, 18-25, Andrew W. (1936):

The nissl substance of the purkinje cell in the mouse and rat from birth to senility Cell and Tissue Res, 25, 583-604

Ankarcrona M., J. M. Dypbukt, E. Bonfoco, B. Zhivotovsky, S. Orrenius, S. A.

Lipton and P. Nicotera (1995):

Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function

Neuron, 15, 961-973 Anonymus (2002):

The safety and efficacy of antimalarial therapy with artemisinin compounds in pregnancy

Report of an informal consultation of clinical investigators convened by WHO, Genova, 22-23 July 2002

Assessment of the safety of artemisinin compounds in pregnancy 11-13

Anonymus (2003):

Malaria is alive and well and killing more than 3000 African children every day WHO and UNICEF call for urgent increased effort to roll back malaria

WHO, http://www.who.int/mediacentre/news/releases/2003/pr33/en/print.html Anonymus (2004):

The RBM partnership’s global response: a programmatic strategy 2004-2008.

WHO, 1-7 Anonymus (2005):

Malaria control in complex emergencies (2005): an inter-agency field handbook / World Health Organization

WHO press, Geneva Anonymus (2007a):

Reproductive (Preclinical) risk assessment of antimalarial therapy with artemisinin compounds

Report of an informal consultation convened by WHO, Genova, January 2006 Assessment of the safety of artemisinin compounds 3-14

Anonymus (2007b):

Malaria.

Centers for Disease Control and Prevention http://www.cdc.gov/malaria/faq.htm#1 Arimoto T. and G. Bing (2003):

Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration

Neurobiol Dis, 12, 35-45

Back T. and O. G. Schuler (2004):

The natural course of lesion development in brain ischemia Acta Neurochir Suppl, 89, 55-61

Batchelor P. E., M. J. Porritt, P. Martinello, C. L. Parish, G. T. Liberatore, G. A.

Donnan and D. W. Howells (2002):

Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge

Mol Cell Neurosci, 21, 436-453 Baumgärtner W. (2007):

Pathohistologie für die Tiermedizin Enke Press, Stuttgart, Germany, 277

Beck L. R., M. H. Rodriguez, S. W. Dister, A. D. Rodriguez, E. Rejmankova, A.

Ulloa, R. A. Meza, D. R. Roberts, J. F. Paris, M. A. Spanner, R. K. Washino, C.

Hacker and L. J. Legters (1994):

Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission

Am J Trop Med Hyg, 51, 271-280

Bennett G. S. and C. DiLullo (1985):

Slow post-translational modification of a neurofilament protein J Cell Biol, 100, 1799-1804

Black M. M., P. Keyser and E. Sobel (1986):

Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons

J Neurosci, 6, 1004-1012

Bledsoe A. W., C. A. Jackson, S. McPhersonand C. D. Morrow (2000):

Cytokine production in motor neurons by poliovirus replicon vector gene delivery Nat Biotechnol, 18, 964-969

Bloland P. B. and H. A. Williams (2003):

Malaria control during mass population movements and natural disasters The National Academies Press, Washington, USA

Bonfoco E., D. Krainc, M. Ankarcrona, P. Nicotera and S. A. Lipton (1995):

Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures

Proc Natl Acad Sci USA, 92, 7162-7166 Böck P. and B. Romeis (1989):

Romeis Mikroskopische Technik.

17th ed., Publisher Urban and Schwarzenberg, München, Germany

Brewer T. G., S. J. Grate, J. O. Peggins, P. J. Weina, J. M. Petras, B. S. Levine, M. H. Heiffer and B. G. Schuster (1994a):

Fatal neurotoxicity of arteether and artemether Am J Trop Med Hyg, 51, 251-259

Brewer T. G., J. O. Peggins, S. J. Grate, J. M. Petras, B. S. Levine, P. J. Weina, J. Swearengen, M. H. Heiffer and B. G. Schuster (1994b):

Neurotoxicity in animals due to arteether and artemether Trans R Soc Trop Med Hyg, 88, 133-136

Brossi A., B. Venugopalan, L. D. Gerpe, H. J. C. Yeh, J. L. Flippen- Anderson, P.

Buchs, X. D. Luo, W. Milhous and W. Peters (1988):

Arteether, a new antimalarial drug; synthesis and antimalarial properties J Med Chem, 31, 645-650

Brown D. G., X. M. Sun and G. M. Cohen (1993):

Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation

J Biol Chem, 268, 3037-3039

Brown G. C. and A. Bal-Price (2003):

Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria

Mol Neurobiol, 27, 325-355

Cammermeyer J. (1963):

Peripheral chromatolysis after transection of mouse facial nerve Acta Neuropathol, 3, 213-230

Chan K. K. and J. Lowe (2002):

Techniques in neuropathology

In: Bancroft J. D. and M. Gamble (eds). Theory and practice of histological techniques,

5th ed., Churchill Livingstone, London, UK, 397–398

Chen P. Q., G. Q. Li, X. B. Guo, K. R. He, Y. X. Fu, L. C. Fu and Y. Z. Song (1994):

The infectivity of gametocytes of Plasmodium falciparum from patients treated with artemisinin

Chin Med J, 107, 709-711

Classen W., B. Altmann, P. Gretener, C. Souppart, P. S. Stroud and G. Krinke (1999):

Differential effects of orally versus parenterally administered qinghaosu derivative artemether in dogs

Exp Toxicol Pathol, 51, 507-516

Colton C. A., L. K. Needham, C. Brown, D. Cook, K. Rasheed, J. R. Burke, W. J.

Strittmatter, D. E. Schmechel and M. P. Vitek (2004):

APOE genotype-specific differences in human and mouse macrophage nitric oxide production

J Neuroimmunol, 147, 62–67

Cork L. C., J. W. Griffin, C. Choy, C. A. Padula and D. L. Price (1982):

Pathology of motor neurons in accelerated hereditary canine spinal muscular atrophy

Lab Invest, 46, 89-99

Czasch S., S. Paul and W. Baumgärtner (2006):

A comparison of immunohistochemical and silver staining methods for the detection of diffuse plaques in the aged canine brain

Neurobiol Aging, 27, 293-305

Davis T. M. E., T. Q. Binh, K. F. Ilett, K. T. Batty, H. L. Phuöng, G. M. Chiswell, V.

D. Phuong and C. Agus (2003):

Penetration of dihydroartemisinin into cerebrospinal fluid after administration of intravenous artesunate in severe falciparum malaria

Antimicrob Agents Chemother, 47, 368-370

Davis T. M. E., H. A. Karunajeewa and K. F. Ilett (2005a):

Artemisinin-based combination therapies for uncomplicated malaria Med J Aust, 182, 181-185

Davis T. M. E., T. Y. Hung, I. K. Sim, H. A. Karunajeewa and K. F. Ilett (2005b):

Piperaquine: A resurgent antimalarial drug Drugs, 65, 75-87

Denis M. B., T. M. E. Davis, S. Hewitt, S. Incardona, K. Nimol, T. Fandeur, Y.

Poravuth, C. Lim and D. Socheat (2002):

Efficacy and safety of dihydroartemisinin-piperaquine (Artekin) in cambodian children and adults with uncomplicated falciparum malaria

Clin Infect Dis, 35, 1469-1476

De Simone R., M. A. Ajmone-Cat and L. Minghetti (2004):

Atypical antiinflammatory activation of microglia induced by apoptotic neurons:

Possible role of phosphatidylserine-phosphatidylserine receptor interaction Mol Neurobiol, 29, 197-212

Destombes J., P. Gogan and A. Rouvière (1979):

The fine structure of neurones and cellular relationships in the abducens nucleus in the cat

Exp Brain Res, 35, 249-267.

De Waegh S. M., V. M. Lee and S. T. Brady (1992):

Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells

Cell, 68, 451-463

Dihne M., F. Block, H. Korr and R. Topper (2001):

Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury

Brain Res, 902, 178-189 Dolley D. H. (1911):

Studies on the recuperation of nerve cells after functional activity from youth to senility

J Med Res, 24, 309-347

Duffy P. E. and R. S. Desowitz (2001):

Pregnancy malaria throughout history: Dangerous labours.

In: Duffy P. E. and M. Fried (eds). Malaria in pregnancy deadly parasite susceptible host

Taylor & Francis, London, 1-25

Eckstein-Ludwig U., R. J. Webb, I. D. A. van Goethem, J. M. East, A. G. Lee, M.

Kimua, P. M. O’Neill, P. G. Bray, S. A. Ward and S. Krishna (2003):

Artemisinins target the SERCA of Plasmodium falciparium Nature, 424, 957-961

Enserink M. (2007):

Malaria Treatment: ACT Two

An influx of money and a new generation of drugs called artemisinin-based combination therapies (ACTs) are raising optimism that malaria’s toll can be reduced

Science, 318, 560-563

Faulkner J. R., J. E. Herrmann, M. J. Woo, K. E. Tansey, N. B. Doan and M. V.

Sofroniew (2004):

Reactive astrocytes protect tissue and preserve function after spinal cord injury J Neurosci, 24, 2143-2155

Ferreira A., A. Caceres and K. S. Kosik (1993):

Intraneuronal compartments of the amyloid precursor protein J Neurosci, 13, 3112-3123

Fioroni F., A. Moretto and M. Lotti (1995):

Triphenylphosphite neuropathy in hens Arch Toxicol, 69, 705-711

Gabriëls M. and J. Plaizier-Vercammen (2003):

Physical and chemical evaluation of liposomes, containing artesunate J Pharm Biomed Anal, 31, 655-667

Gao H. M., B. Liu, W. Zhang and J. S. Hong (2003):

Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease

FASEB J, 17, 1954-1956,

Garruto R. M., S. K. Shankar, R. Yanagihara, A. M. Salazar, H. L. Amyx and D. C.

Gajdusek (1989):

Low-calcium, high-aluminum diet-induced motor neuron pathology in cynomolgus monkeys

Acta Neuropathol, 78, 210-219 Geddes J. F. (1997):

What’s new in the diagnosis of head injury?

J Clin Pathol, 50, 271-274

Gennarelli T. A., L. E. Thibault, J. H. Adams, D. I. Graham, C. J. Thompson and R. P. Marcincin (1982):

Diffuse axonal injury and traumatic coma in the primate Ann Neurol, 12, 564-574

Gennarelli T. A. (1996)

The spectrum of traumatic axonal injury Neuropathol Appl Neurobiol, 22, 509-513

Genovese R. F., D. B. Newman, J. M. Petras and T. G. Brewer (1998):

Behavioral and neural toxicity of arteether in rats Pharmacol Biochem Behav, 60, 449-458

Genovese R. F., D. B. Newman, K. A. Gordon and T. G. Brewer (1999):

Acute high dose arteether toxicity in rats Neurotoxicology, 20, 851-859

Genovese R. F., D. B. Newman and T. G. Brewer (2000):

Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats

Pharmacol Biochem Behav, 67, 37-44

Genovese R. F., H. A. Nguyen and S. R. Mog (2001):

Effects of arteether on an auditory radial-arm maze task in rats Physiol Behav, 73, 87-91

Genovese R. F. and D. B. Newman (2007):

Understanding artemisinin-induced brainstem neurotoxicity Arch Toxicol, 82, 379-385

Gersh I. and D. Bodian (1943):

Some chemical mechanism in chromatolysis J Cell Comp Physiol, 21, 253-279

Golenser J., J. H. Waknine, M. Krugliak, N. H. Hunt and G. E. Grau (2006):

Current perspectives on the mechanism of action of artemisinins Int J Parasitol, 36, 1427-1441

Gordi T. and E. I. Lepist (2004):

Artemisinin derivatives: toxic for laboratory animals, safe for humans?

Toxicol Lett, 147, 99-107

Graham D. I., T. A. Gennarelli and T. K. McIntosh (2002):

Trauma

In: Graham D. I. and P. L. Lantos (eds). Greenfield's Neuropathology 7th ed., Arnold press, London, UK, 823-882

Guarnieri T., M. Virgili, S. Carraro and L. Villani (1994):

Quinolinic acid but not MK-801 protects the dopaminergic system from 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced toxicity in goldfish retina

Neurochem Int, 24, 559-564

Hailer N. P., A. Grampp and R. Nitsch (1999):

Proliferation of microglia and astrocytes in the dentate gyrus following entorhinal cortex lesion: A quantitative bromodeoxyuridine-labelling study

Eur J Neurosci, 11, 3359-3364 Hardy J. (1996):

New insights into the genetics of Alzheimer's disease Ann Med, 28, 255-258

Hien T. T. and N. J. White (1993):

Qinghaosu

Lancet, 341, 603-608

Hien T. T., G. D. Turner, N. T. Mai, N. H. Phu, D. Bethell, W. F. Blakemore, J. B.

Cavanagh, A. Dayan, I. Medana, R. O. Weller, N. P. Day and N. J. White (2003):

Neuropathological assessment of artemether-treated severe malaria Lancet, 362, 295-296

Hien T. T., C. Dolecek, P. P. Mai, N. T. Dung, N. T. Truong, L. H. Thai, D. T. H. An, T. T. Thanh, K. Stepniewska, N. J. White and J. Farrar (2004):

Dihydroartemisinin-piperaquine against multidrug-resistant Plasmodium falciparum malaria in Vietnam: randomised clinical trial

Lancet, 363, 18-22

Hirt U. A., F. Gantner and M. Leist (2000):

Phagocytosis of nonapoptotic cells dying by caspase-independent mechanisms J Immunol, 164, 6520-6529

Honda S., Y. Sasaki, K. Ohsawa, Y. Imai, Y. Nakamura, K. Inoue and S. Kohsaka (2001):

Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors

J Neurosci, 21, 1975-1982

Hortobágyi T. and Al-Sarraj S. (2008):

The Significance of Diffuse Axonal Injury: how to diagnose it and what does it tell us?

Adv Clin Neurosci Rehabil, 8, 16-18

Hung T. Y., T. M. E. Davis, K. F. Ilett, H. Karunajeewa, S. Hewitt, M. B. Denis, C.

Lim and D. Socheat (2003):

Population pharmacokinetics of piperaquine in adults and children with uncomplicated falciparum or vivax malaria

Br J Clin Pharmacol, 57, 253-262

Hutagalung R., H. Htoo, P. Nwee, J. Arunkamomkiri, J. Zwang, V. I. Carrara, E.

Ashley, P. Singhasivanon, N. J. White and F. Nosten (2006):

A case-control auditory evaluation of patients treated with artemether-lumefantrine

Am J Trop Med Hyg, 74, 211-214

Jessen K. R., R. Thorpe and R. Mirsky (1984):

Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes.

J Neurocytol, 13, 187-200.

Johann-Liang R. and R. Albrecht (2003):

Safety evaluations of drugs containing artemisinin derivatives for the treatment of malaria

Clin Infect Dis, 36, 1626-1627