• Keine Ergebnisse gefunden

MMN 15 minute

4 Comprehensive Discussion

4.3 Synopsis of research

Considering all of the above results, it should be noted that the observed neuronal activity changes that are associated with tinnitus perception overlap in two primary brain regions: the auditory brainstem and the neural structures in the primary and secondary associative auditory cortices. The observed neuroelectrical alterations are characterized by an increased BTT and decreased CAP amplitude in tinnitus subjects and may indicate underlying neuronal activity lesions, which manifest as auditory deafferentation. Regarding to extraction of whatever mentioned in part one, “it was assumed that BTT and other specific features of early AEPs altered associated with RI induced by AES”. Based on results of this study, we came into this point that some of the features of early AEPs and particularly BTT changed associated with RI and therefore our main hypothesis was confirmed.

37 The reduced integrity of the brainstem auditory nuclei and centrifugal pathways in tinnitus subjects (as indexed by ECochG and ABR recordings) and the neural structures in the primary and secondary associative auditory cortices (as indexed by MMN) with other cortical and subcortical structures, all together may indicate a primary lesion that underlies tinnitus pathogenesis. A consequence of such deficits may cause a secondary defect that is characterized by abnormal functionality in these regions. As mentioned in part two “the study hypothesized that the central auditory processing was affected from chronic tinnitus compared to normal hearing (NH) controls.

Also the main aim of the study was to compare the neural correlation of the automatic auditory sensory memory and auditory discrimination in tinnitus subjects and normal hearing (NH) controls”. The results revealed smaller amplitude and area under the curve for multi-feature of MMN responses consisting of frequency, duration and silent gap deviants in the tinnitus subjects (refer to page 80-83). The study concluded that there was a deficit in automatic central auditory processing mechanisms in tinnitus subjects (as supported by the MMN findings).

The following results were extracted from the part one of study:

1- CAP amplitude significantly increased associated with RI in tinnitus subjects.

2- BTT significantly decreased associated with RI in tinnitus subjects.

3- Amplitude ratio of waves III/V and I/V decreased associated with RI in tinnitus subjects.

And the following evidences were concluded from the part two of the study:

1- MMN amplitude and area under the curve decreased for three deviants of frequency, duration and silent gap in tinnitus subjects.

38 2- The patterns of silence in the brain of chronic tinnitus subjects were potentially affected by

abnormal silence code.

The following issues were concluded in chronic tinnitus subjects:

1- Neuro-electrical alterations in early AEPs induced by RI and some changes in peripheral and central auditory functions including auditory nerve fibres, the cochlear nucleus and inferior colliculus and finally modification of cortical activity

2- The roles of synchronizing discharges in auditory nerve fibers and inhibition of abnormal activity of cochlear nerve during RI

3- Subjects with chronic tinnitus indicated a deficit in pre-attentive central auditory processing and auditory sensory memory mechanisms.

4- Possible neuroplastic changes in brain caused by abnormal central auditory activity.

5- Transient and partial normalization of abnormal auditory neural activities associated with RI

This thesis was highlighted the neuro-electrical substrates caused by tinnitus RI using early AEPs and also disclosed that pre-attentive central auditory processing was affected in chronic tinnitus (as indexed by topographical maps of the mismatch negativity responses). Hopefully this study could extend our insight to neurophysiological and pathophysiological aspects corresponding to tinnitus and RI. Meanwhile investigation of pathophysiology of tinnitus and related neural mechanisms through more precise studies with other methods is fully recommended.

39 6 References

American Academy of Audiology. (2000). Audiologic Guidelines for the Diagnosis &

Management of Tinnitus Patients, Revised October 18. Retrieved from

http://www.audiology.org/publications-resources/document-library/audiologic-guidelines-diagnosis-management-tinnitus-patients

Andersson, G., McKenna, L. (2006). The role of cognition in tinnitus. Acta Otolaryngology Supplement, 126, 39-43.

Aran, J.M., Cazals, Y. (1981). Electrical suppression of tinnitus, Ciba Foundation Symposium, 85, 217-31.

Attias, J., Furman, V., Shemesh, Z., Bresloff, I. (1996). Impaired brain processing in noise-induced tinnitus patients as measured by auditory and visual event-related potentials. Ear and hearing, 17, 327-333.

Attias, J., Urbach, D., Gold, S., Shemesh, Z. (1993). Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hearing Research, 71, 106–113.

Baguley, D.M., Axon, P., Winter, I.M., Moffat, D.A. (2002). The effect of vestibular nerve section upon tinnitus. Clinical Otolaryngology Allied Science. 27, 219-226.

Balkany, T., Bantli, H., Vernon, J., Douek, E., Shulman, A., House, J., Portmann, M., House W.

(1987). Direct electrical stimulation of the inner ear for the relief of tinnitus. American Journal of Otolaryngology, 8, 207-212.

Bauer, C.A., Brozoski, T.J., Holder, T.M., Caspary, D.M. (2000). Effects of chronic salicylate on GABAergic activity in rat inferior colliculus. Hearing Research, 147, 175-82.

Brummett, R.E. (1995). A mechanism for tinnitus? In: Vernon JA, Møller AR, editors.

Mechanisms of tinnitus. United State of America: Allyn & Bacon, 7-10.

40 Cacace, A.T., Cousins, J.P., Parnes, S.M., McFarland, D.J., Semenoff, D., Holmes, T., Davenport, C., Stegbauer, K., Lovely, T.J. (1999). Cutaneous-evoked tinnitus. I. Phenomenology, psychophysics and functional imaging. Audiology and Neurotology, 4, 247-257.

Cacace, A.T. (2003). Expanding the biological basis of tinnitus: crossmodal origins and the role of neuroplasticity. Hearing Research, 175, 112-132.

Cartocci, G., Attanasio, G., Fattapposta, F., Locuratolo, N., Mannarelli, D., Filipo, R. (2012). An electrophysiological approach to tinnitus interpretation. International Tinnitus Journal, 17, 152-157.

Chan, D.K., Hudspeth, A.J. (2005). Mechanical responses of the organ of corti to acoustic and electrical stimulation in vitro. Biophysical Journal, 89, 4382–4395.

Coles, R.R.A. (1985). Epidemiology of Tinnitus: (1) Prevalence. Journal of Laryngology and Otology, 9, 7-15.

Coles, R.R.A. (1997). Tinnitus. In: Stephens D, editor. Scott-Brown's Otolaryngology, Volume 2, Adult Audiology. London, Butterworth-Heinemann: 1-34.

Daneshi, A., Mahmoudian, S., Farhadi, M., Hasanzadeh, S., Ghalebaghi, B. (2005). Auditory electrical tinnitus suppression in patients with and without implants. International Tinnitus Journal, 11, 85-91.

Davis, A., Rafaie, A. El. (2000). Epidemiology of tinnitus. In: Tyler RS, editor. Tinnitus Handbook. San Diego CA, Singular, 1-24.

Davis, A. (1996). Epidemiology of Tinnitus and Its Clinical Relevance. In The Sixteenth European Instructional Course on “Tinnitus and Its Management.” England, Nottingham School of Audiology, RNID London, MRC Institute, 13–18.

41 de Lavernhe-Lemaire, M.C., Garand, G., Beutter, P. (1987). Study by auditory evoked potentials of the efficacy of transcutaneous electric stimulation in the treatment of tinnitus. Archives internationales de physiologie et de biochimie, 95, 173-181.

Delorme, A., Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.

De Ridder, D., Elgoyhen, A.B., Romo, R., Langguth, B. (2011). Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proceedings of the National Academy of Sciences of the United States of America. 108, 8075-8080.

Dietrich, V., Nieschalk, M., Stoll, W., Rajan, R., Pantev, C. (2001). Cortical reorganization in patients with high frequency cochlear hearing loss. Hearing Reseach, 158, 95-101.

Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annual Review of Psychology, 55, 51–86.

Dudai,Y. (2006). Reconsolidation: the advantage of being refocused. Current Opinion in Neurobiology, 16, 174–178.

Eggermont, J.J. (2003). Central tinnitus. Auris Nasus Larynx, 30, 7-12.

Eggermont, J.J. (2006). Cortical tonotopic map reorganization and its implications for treatment of tinnitus. Acta oto-laryngologica, Supplementum, 556, 9–12.

Eggermont, J.J., Roberts, L.E. (2004). The neuroscience of tinnitus, Trends Neuroscience, 27, 676-682.

42 Eggermont, J.J., Roberts, L.E. (2012). The neuroscience of tinnitus: understanding abnormal and normal auditory perception. Frontiers in Systems Neuroscience, 6, 53.

Eggermont, J.J., Sininger, Y. (1995). Correlated neural activity and tinnitus In: Vernon JA, Moller AR, editors. Mechanisms of tinnitus. Boston, Allyn and Bacon, 21–34.

Eichhammer, P., Kleinjung, T., Landgrebe, M., Hajak, G., Langguth B. (2007). TMS for treatment of chronic tinnitus: neurobiological effects. Progress in Brain Research, 166, 369-75.

Escera, C., Alho, K., Winkler, I., Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10, 590–604.

Fabiani, M., Sohmer, H., Tait, C., Bordieri, O. (1984). Mathematical expression of relationship between auditory brainstem transmission time and age. Developmental Medicine & Child Neurology, 26, 461-65.

Farhadi, M., Mahmoudian, S., Saddadi, F., Karimian, A.R., Mirzaee, M., Ahmadizadeh, M., & et al. (2010). Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI. Journal of Cerebral Blood Flow & Metabolism, 30, 864–

870.

Farhadi, M., Mahmoudian S., Yazdanparasti V., Daneshi A. (2005). Effects of auditory electrical stimulation (AES) on tinnitus improvement and associated complaints. Hakim Research Journal 8, 1-8.

Feldmann, H. (1971). Homolateral and contralateral masking of tinnitus by noise-bands and by pure tones. Audiology, 10, 138-144.

Feldmann, H. (1986). Suppression of tinnitus by electrical stimulation: A contribution to the history of medicine. The Journal of laryngology and otology. Supplement, 9, 123-124.

43 Fettiplace, R., Hackney, C.M. (2006). The sensory and motor roles of auditory hair cells. Nature Reviews Neuroscience, 7, 19–29.

Flor, Herta., Thomas, Elbert., Stefan, Knecht., Christian Wienbruch, Christo Pantev, Niels Birbaumer, Wolfgang Larbig, and Edward Taub. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375, 6531, 482-484.

Gené-Cos, N., Ring, H.A., Pottinger, R.C., Barrett, G. (1999). Possible roles for mismatch negativity in neuropsychiatry. Neuropsychiatry, neuropsychology, and behavioral neurology, 12, 17-27.

Georgiewa, P., Klapp, B.F., Fischer, F., Reisshauer, A., Juckel, G. (2006). An integrative model of developing tinnitus based on recent neurobiological findings. Medical Hypotheses, 66, 592-600.

Gerken, G.M., Hesse, P.S., Wiorkowski, J.J. (2001). Auditory evoked responses in control subjects and in patients with problem-tinnitus. Hearing research, 157, 52-64.

Giard, M.H., Lavikainen, J., Reinikainen, K., Perrin, F., Bertrand, O., Pernier, J., Näätänen, R.

(1995). Separate representation of stimulus frequency, intensity and duration in auditory sensory memory: an event-related potential and dipole-model analysis. Journal of Cognitive Neuroscience, 7, 133-143.

Giard, M.H., Perrin, F., Pernier, J., Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study.

Psychophysiology, 27, 627–640.

Giraud, A.L., Chery-Croze, S., Fischer, G., Fischer, C., Vighetto, A., Gregoire, M.C, Lavenne, F., Collet, I. (1999). A selective imaging of tinnitus. NeuroReport, 10, 1–5.

Graham, J.M., Hazell, J.W.P. (1977). Electrical stimulation of the human cochlea using a transtympanic electrode. British Journal of Audiology, 11, 59-62.

44 Guitton, M.J. (2012). Tinnitus: pathology of synaptic plasticity at the cellular and system levels. Frontiers in systems neuroscience, 6, 1-7.

Guitton, M.J. (2006). Tinnitus and anxiety: more than meet the ears. Current Psychiatry Reviews, 2, 333–338.

Guitton, M.J. and Dudai,Y. (2007). Blockade of cochlear NMDA receptors prevents long term tinnitus during a brief consolidation window after acoustic trauma. Neural Plasticity, 2007;

2007:80904. doi: 10.1155/2007/80904.

Hall, J.W. III. (2007). the new handbook of auditory evoked responses, Boston: Allyn & Bacon.

Hallam, R.S. (1996). Manual of the tinnitus questionnaire (TQ). Revised and updated, 2008,

Psychological Corporation, London, Retrieved from

http://richardhallam.co.uk/Downloads/TinManREV5.pdf.

Hallam, R.S., Jakes, S.C., Hinchcliffe, R. (1988). Cognitive variables in tinnitus annoyance.

British Journal of Clinical Psychology, 27, 213–222.

Harrop-Griffiths, J., Katon, W., Dobie, R., Sakai, C., Russo, J. (1987). Chronic tinnitus:

Association with psychiatric disorders. Journal of Psychosomatic Research, 37,613–621.

Hazell, J.W., Jastreboff, P.J. (1990). Tinnitus I–Auditory mechanisms: a model for tinnitus and hearing impairment. Journal of Otolaryngology, 19, 1-5.

Hazell, J.W., Jasterboff, P.J., Meerton, L.E., Conway, M.J. (1993). Electrical tinnitus suppression:

Frequency dependence of effects. Audiology, 32, 68–77.

Hazell, J.W., Meerton, L.J., Conway, M.J. (1984). Electrical tinnitus suppression (ETS) with a single channel cochlear implant. The Journal of laryngology and otology, Supplement, 18, 39-44.

45 Hazell, J.W.P, Wood, S.M. (1981). Tinnitus masking: a significant contribution to tinnitus management. British Journal of Audiology, 15, 223-230.

Heinze, H.J., Münte, T.F., Kutas, M., Butler, S.R., Näätänen, R., Nuwer, M.R., Goodin, D.S.

(1999). Cognitive event-related potentials. The International Federation of Clinical Neurophysiology. Electroencephalography and clinical neurophysiology, Supplement, 52, 91-95.

Henry, J.A., Flick, C.L., Gilbert, A., Fllingson, P.M. (2007). Comparison of manual and computation automated procedures for tinnitus pitch-matching. Journal of Rehabilitation Research

& Development, 41, 121-138.

Henry, J.A., Meikle, M.B. (2000). Psychoacoustic measures of tinnitus. Journal of American Academy of Audiology, 11, 138-155.

Herraiz, C. (2005). Physiopathological mechanisms in tinnitus generation and persistence. Acta Otorrinolaringológica Española, 56, 335-342.

Herraiz, C., Diges, I., Cobo, P., Aparicio, J.M. (2009). Cortical reorganisation and tinnitus:

principles of auditory discrimination training for tinnitus management. European Archives of Oto-Rhino-Laryngology, 266, 9–16.

Hiller, W., Goebel, G. (1992). A psychometric study of complaints in chronic tinnitus. Journal of Psychosomatic Research, 36, 337–348.

Hiller, W., Goebel, G., Rief, W. (1994). Reliability of self-rated tinnitus distress and association with psychological symptom patterns. British Journal of Clinical Psychology, 33, 231–239.

Hoke, M., Pantev, C., Lütkenhöner, B., Lehnertz, K. (1991). Auditory cortical basis of tinnitus.

Acta otolaryngology (stockh), 491, 176-182.

Holgres, K.M., Barrenas, M.L., Svedlund, J., Zoger, S. (2003). Clinical evaluation of tinnitus; a review. Audiological Medicine, 2, 101-106.

46 House, J.W., Brackmann, D.E. (1981). Tinnitus: Surgical Treatment. In: Evered D, Lawrenson G, editors. Tinnitus, CIBA Foundation Symposium 85. London, Pitman Books, 204–216.

Jacobson, G.P., Calder, J.A., Newman, C.W., Peterson, E.L., Wharton, J.A., Ahmad, B.K. (1996).

Electrophysiological indices of selective auditory attention in subjects with and without tinnitus.

Hearing Research, 97, 66-74.

Jastreboff, P.J. (1990). Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neuroscience Research, 8, 221-254.

Jastreboff, P.J., Gray, W.C., Gold, S.L. (1996). Neurophysiological approach to tinnitus patients.

American Journal of Otolaryngology, 17, 236-240.

Jastreboff, P.J., Hazell, J.W.P. (2004). Tinnitus Retraining Therapy: Implementing the Neurophysiological Model. Cambridge University Press.

Jastreboff, P.J., Hazell J.W.P., Graham, R. (1994). Neurophysiological model of tinnitus:

dependence of the minimal masking level on treatment outcome. Hearing Research, 80, 216-232.

Kadner, A., Viirre, E., Wester, D.C., Walsh, S.F., Hestenes, J., Vankov, A., Pineda, J.A. (2002).

Lateral inhibition in the auditory cortex: An EEG index of tinnitus? Neuroreport, 13, 443-446.

Kahlbrock, N., Weisz, N. (2009). Residual Inhibition in Chronic Tinnitus: Influence on Spontaneous Brain Activity. Clinical Neurophysiology, 120 (1) e38.

http://dx.doi.org/10.1016/j.clinph.2008.07.087

Kaltenbach, J.A. (2000). Neurophysiologic mechanisms of tinnitus. Journal of American Academy of Audiology, 11, 125-137.

47 Kaltenbach, J.A., Zacharek, M.A., Zhang,J., Frederick, S. (2004). Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neuroscience Letter, 355, 121–125.

Kennedy, H.J., Crawford, A.C., Fettiplace, R. (2005). Depolarization of cochlear outer hair cell generation by mammalian hair bundles supports a role in cochlear amplification. Nature, 433, 880–

883.

Kim, K.S., Park, J.W., Nam, S.H., Im, J.J., Choi, E.S., Jun, B.H. (1998). A study for the effect of electrical stimulation on tinnitus treatment based on the correlation analysis of ABR and ECochG."

In Engineering in Medicine and Biology Society. Proceedings of the 20th Annual International Conference of the IEEE, 5, 2456-2459. DOI:10.1109/IEMBS.1998.744933

Kimura, M., Eggermont, J.J. (1999). Effects of acute pure tone induced hearing loss on response properties in three auditory cortical fields in cat. Hearing Research, 135, 146–162.

Kitahara, M. (Editor). Tinnitus: Pathophysiology and Management. Igaku-Shoin medical publication; 1st edition (September 1988), Tokyo, New York. ISBN-13: 978-0318400792.

Kleinjung, T., Steffens, T., Landgrebe, M., Vielsmeier, V., Frank, E., Hajak, G., Strutz, J., Langguth, B. (2009). Levodopa does not enhance the effect of low-frequency repetitive transcranial magnetic stimulation in tinnitus treatment. Otolaryngology-Head & Neck Surgery, 140, 92-95.

Komiya, H., Eggermont, J.J. (2000). Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Oto-Laryngologica, 120, 750–

6.

Konopka, W., Zalewski, P., Olszewaski, J., Olszewska-Ziaber, A., Pietkiewicz, P. (2001). Tinnitus suppression by electrical promontory stimulation (EPS) in patients with sensorineural hearing loss.

Auris Nasus Larynx, 28, 35–40.

48 Korostenskaja, M., Dapsys, K., Maciulis, V., Ruksenas, O. (2003). Evaluation of new MMN parameters in schizophrenia. Acta Neurobiologiae Experimentalis (Wars), 63, 383-388.

Kristeva-Feige, R., Feige, B., Kowalik, Z., Ross, B., Feldmann, H., Elbert, T., Hoke, M. (1995).

Neuromagnetic activity during residual inhibition in tinnitus. Journal of Audiological Medicine, 4, 135-142.

Lee, SL., Abraham, M., Cacace, AT., Silver, SM. (2008). Repetitive transcranial magnetic stimulation in veterans with debilitating tinnitus: A pilot study. Otolaryngology–Head and Neck Surgery, 138, 398-399.

Lenarz, T., Schreiner, C., Snyder, R.L., Ernest, A. (1993). Neural mechanisms of tinnitus.

European Archives of Oto-Rhino-Laryngology, 249, 441–446.

Lockwood, A.H., Salvi, R.J., Burkard, R.F. Tinnitus. (2002). New England Journal of Medicine, 347, 904–10.

Lockwood, A.H., Salvi, R.J., Coad, M.L., Towsley, M.L., Wack, D.S., Murphy, BW. (1998). The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity.

Neurology, 50, 114-120.

Lockwood, A.H., Wack, D.S., Burkard, R.F., Coad, M.L., Reyes, S.A., Arnold, S.A., Salvi, R.J.

(2001). The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology, 56, 472–80.

Loeb, M., and Smith, R.P. (1967). Relation of induced tinnitus to physical characteristics of the inducing stimuli. The Journal of the Acoustical Society of America, 42, 453–455.

Mahlke, C., and Wallhäusser-Franke, E. (2004). Evidence for tinnitus related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hearing Research, 195, 17–34.

49 Mahmoudian, S., Shahmiri, E., Rouzbahani, M., Jafari, Z., Keyhani M., Rahimi, F., Farhadi, M.

(2011). Persian language version of the" Tinnitus Handicap Inventory": Translation, standardization, validity and reliability. International Tinnitus Journal, 16, 93-103.

Matsushima, J.I., Fujimura, H., Sakai, N., Suganuma, T., Hayashi, M., Ifukube, T., Hirata, Y., Miyoshi, S. (1994). A study of electrical promontory stimulation in tinnitus patients. Auris Nasus Larynx, 21, 17–24.

Matthies, C., Samii, M. (1997). Management of 1000 vestibular schwannomas (acoustic neuromas): clinical presentation. Neurosurgery, 40, 1-9.

McFadden, D. (1982). Tinnitus: Facts, Theories, and Treatments. Report of Working Group 89, Committee on Hearing, Biomechanics, National Research Council, Washington DC, National Academy Press.

Mielczarek M, Konopka W, Olszewski J. (2013). The application of direct current electrical stimulation of the ear and cervical spine kinesitherapy in tinnitus treatment. Auris Nasus Larynx, 40, 61-5.

Melcher, J.R., Sigalovsky, I.S., Guinan, J.J., Jr., Levine, R.A. (2000). Lateralized tinnitus studied with functional magnetic resonance imaging. Journal of Neurophysiology, 83, 1058-1072.

Mellado Lagarde, M.M., Drexl, M., Lukashkina, V.A., Lukashkin, A.N., Russell, I.J. (2008). Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier. Nature Neuroscience, 11, 746-748.

Merzenich, M.M., Michelson, R.P., Peltit, C.R., Schindler, R.A., Reid, M. (1973). Neural encoding of sound sensation evoked by electrical stimualtion of acoustic nerve. Annals of Otology, Rhinology & Laryngology, 82, 486-503.

50 Micheyl, C., Carlyon, R.P., Shtyrov, Y., Hauk, O., Dodson, T., Pullvermüller, F. (2003). The neurophysiological basis of the auditory continuity illusion: a mismatch negativity study. Journal of Cognitive Neuroscience, 15, 747-758.

Milbrandt, J.C., Holder, T.M., Wilson, M.C., Salvi, R.J., and Caspary, D. M. (2000). GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hearing Research, 147, 251–260.

Mirz, F., Pedersen, C.B., Ishizu, K., Johannsen, P., Ovesen, T., Stødkilde-Jørgensen, H., Gjedde, A. (1999). Positron emission tomography of cortical centers of tinnitus. Hearing Research, 134,133–44.

Molholm, S., Martinez, A., Ritter, W., Javitt, D.C., Foxe, J.J. (2005). The Neural Circuitry of Pre-attentive Auditory Change-detection: An fMRI Study of Pitch and Duration Mismatch Negativity generators. Cerebral Cortex, 15, 545-551.

Møller, A.R., 2003. Pathophysiology of tinnitus. Otolaryngologic Clinics of North America, 36, 249–266.

Møller, A.R., 2007. The role of neural plasticity in tinnitus. Progress in Brain Research, 166, 37-45.

Møller, A.R., Møller, M.B., Yokota, M. (1992a). Some forms of tinnitus may involve the extralemniscal auditory pathway. Laryngoscope, 102, 1165-1171.

Morimitsu, T. (1985). Electrical physiology of inner ear, Tokyo, Kanehara, 88-125.

Mühlau M, Rauschecker JP, Oestreicher E, Gaser C, Röttinger M, Wohlschläger AM, Simon F, Etgen T, Conrad B, Sander D. (2006). Structural brain changes in tinnitus. Cerebral Cortex, 16, 1283-8.

51 Mühlnickel, W., Elbert, T., Taub, E., Flor, H. (1998). Reorganization of auditory cortex in tinnitus.

Proceedings of the National Academy of Sciences, 95, 10340-10343.

Murai, K., Tyler, R.S., Harker, L.A., Stouffer, J.L. (1992). Review of pharmacologic treatment of tinnitus. American Journal of Otolaryngology, 13, 454–64.

Näätänen, R. (1995). The mismatch negativity: a powerful tool for cognitive neuroscience. Ear and Hearing, 16, 6-18.

Näätänen, R. (2007). The mismatch negativity. Journal of Psychophysiology, 21(3), 133-137.

Näätänen, R., Pakarinen, S., Rinne, T., Takegata, R. (2004). The mismatch negativity (MMN):

towards the optimal paradigm. Clinical Neurophysiology, 115, 140-144.

Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., Winkler, I. (2001). “Primitive intelligence” in the auditory cortex. Trends Neuroscience, 24, 283-288.

Newman, CW., Jacobson, G.P., Spitzer, J.B. (1996). Development of the Tinnitus Handicap Inventory. Archives of Otolaryngology - Head and Neck Surgery, 122, 143-148.

Nicolas-Puel, C., Lloyd Faulconbridge, R., Guitton, M.J., Puel, J.L., Mondain, M., and Uziel, A.

(2002). Characteristics of tinnitus and etiology of associated hearing loss: a study of 123 patients.

International Tinnitus Journal, 8, 37–44.

Norena, A., Cransac, H., Chéry-Croze, S. (1999). Towards an objectification by classification of tinnitus. Clinical neurophysiology, 110, 666-675.

Noreña, A.J., Eggermont, J.J. (2003). Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neuronal correlates of tinnitus. Hearing Research, 183, 137–153.

52 Noreña, A.J., Gourévitch, B., Aizawa, N., Eggermont, J.J. (2006). Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nature Neuroscience, 9, 932–939.

Nuttall, A.L., Ren, T. (1995). Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Hearing Research, 92, 170–177.

Ohkawara, D., Watanabe, K. (1995). Effects of electrical promontory stimulation and band-noise masker in the suppression of tinnitus. Nihon Jibiinkoka Gakkai Kaiho, 98, 1303-1309.

Öhman, A. (1979). The orienting response, attention, and learning: An information-processing perspective. The orienting reflex in humans, 443-471.

Okusa, M., Shiraishi, T., Kubo, T., Matsunaga, T. (1993). Tinnitus suppression by electrical promontory stimulation in sensorineural deaf patients. Acta Oto-Laryngologica, supplement, 501, 54-58.

Oldfield, R.C. (1971). The assessment and analysis of handedness: the Edinburgh inventory.

Neuropsychologia, 9, 97–113.

Oostenveld, R., Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112, 713-719.

Osaki, Y., Nishimura, H., Takasawa, M., Imaizumi, M., Kawashima, T., Iwaki, T., Oku, N., Hashikawa, K., Doi, K., Nishimura, T., Hatazawa, J., Kubo, T. (2005). Neural mechanism of residual inhibition of tinnitus in cochlear implant users. Neuroreport, 16, 1625-1628.

Plewnia, C., Reimold, M., Najib, A., Brehm, B., Reischl, G., Plontke, S.K., Gerloff, C. (2007).

"Dose‐dependent attenuation of auditory phantom perception (tinnitus) by PET‐guided repetitive transcranial magnetic stimulation." Human brain mapping, 28, 238-246.

53 Portmann M, Nègrevergne M, Aran JM, Cazals Y. (1983). Electrical stimulation of the ear, clinical applications. Annals of Otology, Rhinology & Laryngology, 92: 621-622.

Rajan, R. (1998). Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nature Neuroscience, 1, 138–43.

Rauschecker, J.P. (1999). Auditory cortical plasticity: a comparison with other sensory systems.

Trends Neuroscience, 22, 74–80.

Reyes, S.A., Salvi, R.J., Burkard, R.F., Coad, M.L., Wack, D.S., Galantowicz, P.J., Lockwood, A.H. (2002). Brain imaging of the effects of lidocaine on tinnitus. Hearing Research, 171, 43-50.

Rinne, T., Alho, K., Ilmoniemi, R.J., Virtanen, J., Näätänen, R. (2000). Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage, 12, 14-19.

Roberts, L.E. (2007). Residual inhibition. In: Langguth B, Hajak G, Kleinjung T, Caccace A, Møller AR, editors. Progress in Brain Research. Elsevier B.V, 487-495.

Roberts, L.E., Moffat, G., Bosnyak, D.J. (2006). Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Oto-Laryngologica, 126, 27-33.

Roberts, L.E., Moffat, G., Baumann, M., Ward, L.M., Bosnyak, D.J. (2008). Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. Journal of the Association for Research in Otolaryngology, 9, 417-435.

Salamy, A., McKean, C.M. (1976). ‘Postnatal development of human brain stem potentials during the first year of life. ’Electroencephalography and Clinical Neurophysiology, 40, 418-426.

Sedley, W., Teki, S., Kumar, S., Barnes, G.R., Bamiou, D.E., Griffiths, T.D. (2012). Single subject oscillatory gamma responses in tinnitus. Brain, 135, 3089-3100.

54 Schlee, W., Weisz., N, Dohrmann., K, Hartmann, T., Elbert, T. (2007). Unravelling the tinnitus distress network using single trial auditory steady-state responses. In: Cheyne D, Ross B, Stroink G, Weinberg H (eds), New Frontiers in Biomagnetism. Proceedings of the 15th International Conference on Biomagnetism Amsterdam, Elsevier, International Congress Series, 1300, 73–76.

54 Schlee, W., Weisz., N, Dohrmann., K, Hartmann, T., Elbert, T. (2007). Unravelling the tinnitus distress network using single trial auditory steady-state responses. In: Cheyne D, Ross B, Stroink G, Weinberg H (eds), New Frontiers in Biomagnetism. Proceedings of the 15th International Conference on Biomagnetism Amsterdam, Elsevier, International Congress Series, 1300, 73–76.