• Keine Ergebnisse gefunden

Figure S 3-1. (a-b), (d-e) and (g-h) are the SEM images of the bare NF, NiCo hydroxide /NF and NiFe LDH/NF, respectively, whereas the insets show high-resolution images. (c), (f) and (i) are the corresponding EDX spectra of bare NF, NiCo hydroxide /NF and NiFe LDH/NF, respectively.

Figure S 3-2. EDX spectra of the as-prepared (a) NiCoP/NF and (b) NiFe LDH@NiCoP/NF.

Table S 3-1. EDX results of the as-prepared electrocatalysts.

Samples Ni

(atom%) O (atom%)

Co (atom%)

P (atom%)

Fe (atom%)

K (atom%)

Bare NF 98.96 1.04 -- -- -- --

NiCo hydroxide/NF 17.00 57.13 25.87 -- -- --

NiCoP/NF 53.90 16.68 12.30 17.29 -- --

NiFe LDH/NF 23.05 71.27 -- -- 5.69 --

NiFe LDH@NiCoP/NF 33.07 21.61 21.99 22.31 1.02 --

NiFe LDH@NiCoP/NF post HER 32.62 49.57 5.98 10.29 0.74 0.81 NiFe LDH@NiCoP/NF post OER 16.16 68.09 4.88 5.98 0.55 4.35

Figure S 3-3. The equivalent circuit diagram used for analysis of the EIS curves measured for the OER and the HER

Table S 3-2. Summary of the EIS results fitted to the equivalent circuit board as shown in Figure S 3-3.

Sample Reaction Rct (Ω) R1 (Ω) CPE

Y0 (μMho) n

Bare NF

HER 34.5 1.20 0.625 0.86

OER 5.39 1.11 0.052 0.811

NiCoP/NF

HER 6.01 1.10 2.29 0.866

OER 1.39 1.16 1.15 0.994

NiFe LDH/NF

HER 20.80 1.15 1.27 0.851

OER 0.63 1.10 0.625 0.555

NiFe LDH@NiCoP/NF

HER 2.77 1.20 9.16 0.824

OER 0.41 1.10 2.08 0.613

Table S 3-3. Comparison of the HER performance of our NiFe LDH@NiCoP/NF heterostructure to other reported electrocatalysts in alkaline media.

Catalyst

Electrolyte

(KOH)

η10a

(mV)

Tafel slope (mV/dec)

Durability

(h) Ref.

NiFe LDH@NiCoP/NF 1 M 120 88.2 100 This work

NiFe/NiCo2O4/NFb 1 M 105 88 10 [S1]

NiFe LDH/NiCo2O4/NF 1 M 192 59 10 [S2]

NiFe LDH@NiCo2S4/NFb 1 M 200 101.1 12 [S3]

MoS2/Ni3S2/NFb 1 M 110 83 10 [S4]

NiO@Ni@Carbon fiber 1 M 153 84 24 [S5]

EG/Co0.85Se/NiFe LDHb 1 M 260 125 10 [S6]

NiCo2Px/Carbon feltb 1 M 58 34.3 30 [S7]

NiFe LDH/NF 1 M 210 58.9 10 [S8]

Ni5P4/Ni foil 1 M 150 53 20 [S9]

Ni(OH)2/NF 1 M 172 140 24 [S10]

Ni3S2/NF 1 M 223 -- 200 [S11]

Ni(OH)2/NF 1 M 298 -- -- [S12]

Cu-P/Cu foamb 1 M 98 55 15 [S13]

If not mentioned specifically, all overpotentials were acquired without iR compensation.

a Overpotential (η) at a current density of 10 mA/cm2; b Overpotential (η) acquired at a current density of 10 mA/cm2 with additional iR compensation.

Figure S 3-4. Comparison of the as prepared NiFe LDH@NiCoP/NF with RuO2/NF for the OER activity.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 0

50 100 150 200 250 300 350

NiFe LDH@NiCoP/NF RuO2/NF

Current density(mA/cm2 )

V (vs. RHE)

Table S 3-4. Comparison of OER performance for NiFe LDH@NiCoP/NF with other reported electrocatalysts in the alkaline media.

Catalyst Electrolyte

(KOH)

η10a

(mV)

Tafel slope

(mV/dec) Stability (h) Ref.

NiFe LDH@NiCoP/NF 1 M 220 48.6 100 This work

NiFe/NiCo2O4/NFb 1 M 340c 45.5 10 [S1]

NiFe-LDH/NiCo2O4/NF 1 M 290 53 10 [S2]

NiFe LDH@NiCo2S4/NF 1 M 201d 46.3 10 [S3]

MoS2/Ni3S2/NFb 1 M 218 88 10 [S4]

NiO@Ni@Carbon fiber 1 M 300 60 24 [S5]

NiFe LDHs@FeOOH/NFb 1 M 208 42 20 [S14]

NiFe LDH@Co0.85Se/NFb 1 M 270e 57 10 [S6]

Ni5P4/Ni foil 1 M 290 40 20 [S9]

Ni(OH)2/NF 1 M 330d 150 24 [S10]

NiFe LDH/NF 1 M 240 58.9 -- [S8]

Ni3S2/NF 1 M 280f -- 200 [S11]

Ni(OH)2/NF 1 M 350 -- -- [S12]

Cu-P/Cu foamb 1 M 325 120 15 [S13]

RuO2b 1 M 350 85 -- [S15]

IrO2b 1 M 350 67 -- [S15]

If not mentioned specifically, all overpotentials were acquired without iR compensation.

a Overpotential (η) at the current density of 10 mA/cm2; b the overpotential was corrected with iR compensation. c Current density at 1200 mA/cm2 with 65 % iR compensation. d Current density at 50 mA/cm2. e Current density at 150 mA/cm2; f Current density at 200 mA/cm2.

Figure S 3-5. (a) XRD pattern comparison of the NiFe LDH@NiCoP, post HER and post OER measurements.

SEM images of the NiFe LDH@NiCoP heterostructure after (b) HER and (c) OER measurement, inset images are the corresponding high-resolution SEM images.

Figure S 3-6. EDX mapping of the NiFe LDH@NiCoP/NF after long time OER measurement. (a) TEM image of the NiFe LDH@NiCoP and the corresponding element distribution of (b) O, (c) Co, (d) Fe, (e) Ni and (f) P.

Table S 3-5. Comparison of the overall water splitting performance of NiFe LDH@NiCoP/NF with other reported electrocatalysts in alkaline medium.

Catalyst Electrolyte(KOH) η10a (mV) Stability (h) Ref.

NiFe LDH@NiCoP/NF 1 M 340 100 This work

NiFe/NiCo2O4/NF 1 M 440 10 [S1]

NiFe LDH/NiCo2O4/NF 1 M 370 12 [S2]

NiFe LDH@NiCo2S4/NF 1 M 370 12 [S3]

MoS2-Ni3S2/NF 1 M 330 12 [S4]

NiO@Ni@Carbon fiber 1 M 500b 60 [S5]

NiFe LDH@Co0.85Se/NF 1 M 440 10 [S6]

NiFe LDH/NF 1 M 470 3 [S8]

Ni5P4/NF 1 M 470 20 [S9]

NiCoP/NF 1 M 350 25 [S16]

NiSe/NF 1 M 400 20 [S17]

Ni3Se2/NF 1 M 380 140 [S18]

NiS/NF 1 M 410 35 [S19]

NiCo2S4/carbon cloth 1 M 450 10 [S20]

V/NF 1 M 510 24 [S21]

NiP/NF 1 M 380 4.2 [S22]

Ni(OH)2/NF 1 M 450 24 [S10]

Ni3S2/NF 1 M 530 200 [S11]

Ni(OH)2/NF 1 M 600 -- [S12]

Ni-P/Cu foam 1 M 450 15 [S13]

NiMo HNRs/Ti mesh 1 M 410 10 [S23]

CoSe/Ti mesh 1 M 430 25 [S24]

NiCo2S4/Carbon cloth 1 M 450 10 [S20]

Cu3P/NF 1 M 440 12 [S25]

a Overpotential (η) at an applied current density of 10 mA/cm2; b Current density at an applied current density of 20 mA/cm2.

References

[S1] C. Xiao, Y. Li, X. Lu, C. Zhao, Adv. Funct. Mater. 2016, 26, 3515.

[S2] Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, ACS Appl. Mater. Interfaces 2017, 9, 1488.

[S3] J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv, X. Ji, K. Xu, L. Miao, J. Jiang, ACS Appl.

Mater. Interfaces 2017, 9, 15364.

[S4] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew.

Chem. 2016, 128, 6814.

[S5] Z. Y. Zhang, S. S. Liu, F. Xiao, S. Wang, ACS Sustain. Chem. Eng. 2017, 5, 529.

[S6] Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, Energy Environ. Sci. 2016, 9, 478.

[S7] R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Adv.

Mater. 2017, 29, 1605502.

[S8] J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, M. Gratzel, Science 2014, 345, 1593.

[S9] M. Ledendecker, S. Krick Calderon, C. Papp, H. P. Steinruck, M. Antonietti, M. Shalom, Angew. Chem. Int. Ed. 2015, 54, 12361.

[S10] Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, ACS Appl. Mater. Interfaces 2016, 8, 33601.

[S11] L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, J. Am.

Chem. Soc. 2015, 137, 14023.

[S12] J. Lee, G.-H. Lim, B. Lim, Chem. Phys. Lett. 2016, 644, 51.

[S13] Q. Liu, S. Gu, C. M. Li, J. Power Sources 2015, 299, 342.

[S14] J. Chi, H. Yu, B. Qin, L. Fu, J. Jia, B. Yi, Z. Shao, ACS Appl. Mater. Interfaces 2017, 9, 464.

[S15] Q. Xiao, Y. Zhang, X. Guo, L. Jing, Z. Yang, Y. Xue, Y. M. Yan, K. Sun, Chem.

Commun. 2014, 50, 13019.

[S16] H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlogl, H. N. Alshareef, Nano Lett. 2016, 16, 7718.

[S17] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. Engl. 2015, 54, 9351.

[S18] R. Xu, R. Wu, Y. Shi, J. Zhang, B. Zhang, Nano Energy 2016, 24, 103.

[S19] W. X. Zhu, X. Y. Yue, W. T. Zhang, S. X. Yu, Y. H. Zhang, J. Wang, J. L. Wang, Chem.

Commun. 2016, 52, 1486.

[S20] D. Liu, Q. Lu, Y. Luo, X. Sun, A. M. Asiri, Nanoscale 2015, 7, 15122.

[S21] Y. Yu, P. Li, X. Wang, W. Gao, Z. Shen, Y. Zhu, S. Yang, W. Song, K. Ding, Nanoscale 2016, 8, 10731.

[S22] G.-F. Chen, T. Y. Ma, Z.-Q. Liu, N. Li, Y.-Z. Su, K. Davey, S.-Z. Qiao, Adv. Funct.

Mater. 2016, 26, 3314.

[S23] J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He, A. M. Asiri, J. Mater. Chem. A 2015, 3, 20056.

[S24] T. Liu, Q. Liu, A. M. Asiri, Y. Luo, X. Sun, Chem. Commun. 2015, 51, 16683.

[S25] A. Han, H. Zhang, R. Yuan, H. Ji, P. Du, ACS Appl. Mater. Interfaces 2017, 9, 2240.

4 Optimization of Chemical Vapor Deposition Process for Carbon Nanotubes Growth on Stainless Steel: Towards Efficient Hydrogen Evolution Reaction

This chapter can be referred to:

H. Zhang; J. M. de Souza e Silva; C. S. de Oliveira; X. Lu, S. L. Schweizer, A. W. Maijenburg, M. Bron, R. B. Wehrspohn, Optimization of Chemical Vapor Deposition Process for Carbon Nanotubes Growth on Stainless Steel: Towards Efficient Hydrogen Evolution Reaction. MRS Advances 2020.