• Keine Ergebnisse gefunden

Table 1. Feeding rates of I. ricinus nymphs after in vitro feeding and infection with TBEV 2018 and 2019.

2018

April May June July

Tick origin Feeding

rate (%) p value Feeding

rate (%) p value Feeding

rate (%) p value Feeding

rate (%) p value

Haselmühl 5.33

p< 0.001 43.81

1.84 x 10-6 58.24

0.9967 20.00

0.1209

Hanover 28.00 19.44 43.01 38.57

2018

August October

Tick origin Feeding

rate (%) p value Feeding

rate (%) p value

Haselmühl 33.13

p< 0.0001 68.04

0.0830

Hanover 78.08 51.11

2019

April May June July

Tick origin Feeding

rate (%) p value Feeding

rate (%) p value Feeding

rate (%) p value Feeding

rate (%) p value

Haselmühl 82.66

5.20 x 10-8 47.33

4 x 10-15 8.00

0.1176 15.83

0.6841

Hanover 53.33 0 2.00 26.00

Publications

25

References

1. Domingo, E. Mutation rates and rapid evolution of RNA viruses. The Evolutionary Biology of Viruses. 1994, 161-184.

2. Drake, J.W.; Holland, J.J. Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 1999, 96, 13910-13913, doi:10.1073/pnas.96.24.13910.

3. Bogovic, P.; Strle, F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases 2015, 3, 430-441, doi:10.12998/wjcc.v3.i5.430.

4. Völker, H., Nessler , Baumgärtner , Wohlsein First tick-borne encephalitis in a dog resident in Northern Germany. Berliner und Münchener Tierärztliche Wochenschrift 2017, 130, 114–160, doi:10.2376/0005-9366-16039.

5. Süss, J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick Borne Dis 2011, 2, 2-15, doi:10.1016/j.ttbdis.2010.10.007.

6. Beauté, J.; Spiteri, G.; Warns-Petit, E.; Zeller, H. Tick-borne encephalitis in Europe, 2012 to 2016. Euro surveillance 2018, 23, 1800201, doi:10.2807/1560-7917.ES.2018.23.45.1800201.

7. Hellenbrand, W.; Kreusch, T.; Böhmer, M.M.; Wagner-Wiening, C.; Dobler, G.; Wichmann, O.;

Altmann, D. Epidemiology of Tick-Borne Encephalitis (TBE) in Germany, 2001⁻2018. Pathogens 2019, 8, 42, doi:10.3390/pathogens8020042.

8. Pavlovsky, E. Fundamentals of the theory of natural focality of transmissible human diseases.

Zh Obshch Biol 1946, 7, 3-33.

9. Michelitsch, A.; Wernike, K.; Klaus, C.; Dobler, G.; Beer, M. Exploring the Reservoir Hosts of Tick-Borne Encephalitis Virus. Viruses 2019, 11, doi:10.3390/v11070669.

10. Uzcategui, N.Y.; Sironen, T.; Golovljova, I.; Jaaskelainen, A.E.; Valimaa, H.; Lundkvist, A.;

Plyusnin, A.; Vaheri, A.; Vapalahti, O. Rate of evolution and molecular epidemiology of tick-borne encephalitis virus in Europe, including two isolations from the same focus 44 years apart. J Gen Virol 2012, 93, 786-796, doi:10.1099/vir.0.035766-0.

11. Lambrechts, L.; Halbert, J.; Durand, P.; Gouagna, L.C.; Koella, J.C. Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum.

Malar J 2005, 4, 3, doi:10.1186/1475-2875-4-3.

26 12. Růzek, D.; Bell-Sakyi, L.; Kopecký, J.; Grubhoffer, L. Growth of tick-borne encephalitis virus (European subtype) in cell lines from vector and non-vector ticks. Virus Res 2008, 137, 142-146, doi:10.1016/j.virusres.2008.05.013.

13. Randolph, S.E.; Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 1999, 36, 741-748, doi:10.1093/jmedent/36.6.741.

14. Cagnacci, F.; Bolzoni, L.; Rosà, R.; Carpi, G.; Hauffe, H.C.; Valent, M.; Tagliapietra, V.;

Kazimirova, M.; Koci, J.; Stanko, M., et al. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. Int J Parasitol 2012, 42, 365-372, doi:10.1016/j.ijpara.2012.02.012.

15. Carpi, G.; Cagnacci, F.; Neteler, M.; Rizzoli, A. Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area.

Epidemiol Infect 2008, 136, 1416-1424, doi:10.1017/S0950268807000039.

16. Vor, T.; Kiffner, C.; Hagedorn, P.; Niedrig, M.; Rühe, F. Tick burden on European roe deer (Capreolus capreolus). Exp Appl Acarol 2010, 51, 405-417, doi:10.1007/s10493-010-9337-0.

17. Lefevre, T.; Vantaux, A.; Dabire, K.R.; Mouline, K.; Cohuet, A. Non-genetic determinants of mosquito competence for malaria parasites. PLoS Pathog 2013, 9, e1003365, doi:10.1371/journal.ppat.1003365.

18. Boelke, M.; Bestehorn, M.; Marchwald, B.; Kubinski, M.; Liebig, K.; Glanz, J.; Schulz, C.; Dobler, G.; Monazahian, M.; Becker, S.C. First Isolation and Phylogenetic Analyses of Tick-Borne Encephalitis Virus in Lower Saxony, Germany. Viruses 2019, 11, doi:10.3390/v11050462.

19. Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938, 27, 493-497, doi:10.1093/oxfordjournals.aje.a118408.

20. Liebig, K.; Boelke, M.; Grund, D.; Schicht, S.; Springer, A.; Strube, C.; Chitimia-Dobler, L.; Dobler, G.; Jung, K.; Becker, S. Tick populations from endemic and non-endemic areas in Germany show differential susceptibility to TBEV. Sci Rep 2020, 10, 15478, doi:10.1038/s41598-020-71920-z.

21. Schwaiger, M.; Cassinotti, P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J Clin Virol 2003, 27, 136-145, doi:10.1016/s1386-6532(02)00168-3.

22. Kupca, A.M.; Essbauer, S.; Zoeller, G.; de Mendonca, P.G.; Brey, R.; Rinder, M.; Pfister, K.;

Spiegel, M.; Doerrbecker, B.; Pfeffer, M., et al. Isolation and molecular characterization of a tick-borne

Publications

27 encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick Borne Dis 2010, 1, 44-51, doi:10.1016/j.ttbdis.2009.11.002.

23. Heinz, F.-X.; Stiasny, K. Chapter 2b: The molecular and antigenic structure of TBEV. Tick-borne encephalitis - The Book 2019, 10.33442/978-981-14-0914-1_2b, doi:10.33442/978-981-14-0914-1_2b.

24. Danet, L.; Beauclair, G.; Berthet, M.; Moratorio, G.; Gracias, S.; Tangy, F.; Choumet, V.;

Jouvenet, N. Midgut barriers prevent the replication and dissemination of the yellow fever vaccine in Aedes aegypti. PLoS Neglect Trop Dis 2019, 13, e0007299-e0007299, doi:10.1371/journal.pntd.0007299.

25. Arias-Goeta, C.; Mousson, L.; Rougeon, F.; Failloux, A.-B. Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level.

PloS One 2013, 8, e57548, doi:10.1371/journal.pone.0057548.

26. Mitzel, D.N.; Best, S.M.; Masnick, M.F.; Porcella, S.F.; Wolfinbarger, J.B.; Bloom, M.E.

Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity. Virology 2008, 381, 268-276, doi:10.1016/j.virol.2008.08.030.

27. Pettersson, J.H.; Golovljova, I.; Vene, S.; Jaenson, T.G. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks in northern Europe with particular reference to Southern Sweden. Parasit Vector 2014, 7, 102, doi:10.1186/1756-3305-7-102.

28. Ott, D.; Ulrich, K.; Ginsbach, P.; Ohme, R.; Bock-Hensley, O.; Falk, U.; Teinert, M.; Lenhard, T.

Tick-borne encephalitis virus (TBEV) prevalence in field-collected ticks (Ixodes ricinus) and phylogenetic, structural and virulence analysis in a TBE high-risk endemic area in southwestern Germany. Parasit Vector 2020, 13, 303, doi:10.1186/s13071-020-04146-7.

29. RKI. SurvStat@RKI 2.0. Availabe online: https://survstat.rki.de/ (accessed on 14.10.2020).

30. Leggewie, M.; Badusche, M.; Rudolf, M.; Jansen, S.; Borstler, J.; Krumkamp, R.; Huber, K.;

Kruger, A.; Schmidt-Chanasit, J.; Tannich, E., et al. Culex pipiens and Culex torrentium populations from Central Europe are susceptible to West Nile virus infection. One health 2016, 2, 88-94, doi:10.1016/j.onehlt.2016.04.001.

31. Vega-Rúa, A.; Marconcini, M.; Madec, Y.; Manni, M.; Carraretto, D.; Gomulski, L.M.; Gasperi, G.; Failloux, A.-B.; Malacrida, A.R. Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun Biol 2020, 3, 326, doi:10.1038/s42003-020-1046-6.

28 32. Bennett, K.E.; Flick, D.; Fleming, K.H.; Jochim, R.; Beaty, B.J.; Black, W.C.t. Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti. Genetics 2005, 170, 185-194, doi:10.1534/genetics.104.035634.

33. Ciota, A.T.; Chin, P.A.; Ehrbar, D.J.; Micieli, M.V.; Fonseca, D.M.; Kramer, L.D. Differential effects of temperature and mosquito genetics determine transmissibility of arboviruses by Aedes aegypti in Argentina. Am J Trop Med Hyg 2018, 99, 417-424, doi:10.4269/ajtmh.18-0097.

34. Steele GM, Nuttall PA. Difference in vector competence of two species of sympatric ticks, Amblyomma variegatum and Rhipicephalus appendiculatus, for Dugbe virus (Nairovirus, Bunyaviridae). Virus Res. 1989 Sep;14(1):73-84. doi: 10.1016/0168-1702(89)90071-3. PMID: 2510418.