• Keine Ergebnisse gefunden

Supplementary Material, Chapter 2

Im Dokument Protein Targeting into Diatom Plastids (Seite 128-151)

Evolution of plastid protein import

A.1. Supplementary Material, Chapter 2

A.1.SupplementaryMaterial,Chapter

predected cleavage site; SP cleavage site: presence of possible SP cleavage site; Sprob: probability of a SP (1 likely; 0 unlikely). Furthermore, the presequences were analysed for the presence of an “ASAFAP”-motif at the SP cleavage site indicating plastid targeting. TP analyses were performed with ChloroP. Score: is the output score from the second step network. cTP: tells whether or not this is predicted as a cTP-containing sequence; CS-score: is the MEME scoring matrix score for the suggested cleavage site; cTP-length: is the predicted length of the transit peptide; Pt: Phaeodactylum tricornutum Tp: Thalassiosira pseudonana

Name Protein ID Cmax Position SP cleavage site Sprob SP prediction

Analyses of  SP cleavage site,

 (ASAFAP motif?) Score cTP CS‐Score

cTP‐length  [bp]

PtTic20 56631 0.821 27 Yes 0.979 Yes SYA‐FV (yes) 0.522 Yes 3.481 17

PtTic21 XP_002183847.1 0.546 26 Yes 0.875 Yes TGA‐FQ (yes) 0.499 No 5.834 12

PtTic22 EEC47673 0.826 19 Yes 0.999 Yes GTA‐SV (no) 0.571 Yes 2.522 79

PtTic32 11808 0.747 23 Yes 0.990 Yes TKA‐WS (yes) 0.568 Yes 4.928 57

PtTic55 50613 0.560 28 Yes 0.996 Yes VSA‐FS (yes) 0.511 Yes ‐0.050 10

PtTic62 35796 0.846 20 Yes 0.985 Yes TAA‐FS (yes) 0.560 Yes 6.055 67

PtTic110 50540 0.405 20 Yes 0.980 Yes ALS‐NT (no) 0.577 Yes 2.585 39

TpTic20 270420 0.475 27 Yes 0.971 Yes VRC‐ES (no) 0.529 Yes 7.118 22

TpTic21 270422 0.515 20 Yes 0.999 Yes SLA‐YT (yes) 0.537 Yes 2.891 46

TpTic22 4604 0.525 20 Yes 0.907 Yes ASG‐NR (no) 0.445 No ‐1.212 28

TpTic32 XP_002288562.1  0.237 31 Yes 0.297 No LSP‐EF (no) 0.428 No ‐1.553 19

TpTic55 270428 0.841 20 Yes 0.999 Yes TTA‐FI (yes) 0.490 No 0.106 8

TpTic62 XP_002295095.1 0.485 18 Yes 0.998 Yes VTA‐FA (yes) 0.558 Yes 6.870 37

TpTic110 XP_002287032.1 0.431 23 Yes 1.000 Yes TTA‐FG (yes) 0.568 Yes 4.188 40

Prediction ChloroP Prediction SignalP

ntaryData

The expected number of amino acids in transmembrane helices. If this number is larger than 18 it is very likely to be a transmembrane protein (OR have a signal peptide); Exp number, first 60 AAs: The expected number of amino acids in transmembrane helices in the first 60 amino acids of the protein. If this number more than a few, it should be warning that a predicted transmembrane helix in the N-term could be a signal peptide. Question mark: not interpretable

PtTic21 XP_002183847.1 3 4 73.569 0.000 3 4 60.119 0.000 4 4 4 4

PtTic22 EEC47673 0 0 0.018 0.000 0 0 0.000 0.000 0 0 0 ?

TpTic21 270422 3 4 73.899 19.836 3 4‐5 60.126 18.878 4 4 4 4

TpTic22 4604 0 0 0.024 0.000 0 0 0.000 0.000 0 0 0 0

TpTic32 XP_002288562.1 0 0 7.091 0.017 0 1 0.000 0.000 1 1 2 2

TpTic55 270428 0 0 1.866 0.000 0 2 0.000 0.000 2 2 1 2

TpTic62 XP_002295095.1 0 0 0.047 0.001 0 0 0.000 0.000 0 0 1 1

TpTic110 XP_002287032.1 0 1 10.595 9.005 0 2 0.000 0.000 0 0 1 1‐?

Prediction MINNOU  Prediction SPLIT

Prediction TMHMM Prediction TMMOD

PtTic22 YVGIPVFYAPTLRKS FNYEDLEATWRQLR TpTic22 NVGLPVFYSEGLVKK FSYEDLMKDWSTMR PsTic22 LAGTSVYTVSNSDNE FRFLPDPVQIKNAL AtTic22-IV LAGTSVFTVSNTNNE FRFLPDPIQIKNAL PpTic22-1 LAGVPVYALSNSNEE FRLIPESTQVKNAL PpTic22-2 LDGVPVYTVSNSANE FRFLPDPRQVKNAL AtTic22-III LDGVPVYTVSNSANE FRFVPDPNQIRNAY TeTic22 LAPVPVYTVANPKNE FRFMPDMKQVAHAL CrTic22 LAQVPVFAVTNESGQ FRFYPNQQQLEYAR CmTic22 LRVIPVFCVTDREGR FHLVPSEQSVRFAE CmTic22-like LRNCPVFTITDELGQ FQFRPSLEAVKTAV

PtTic22

Figure A.1.: Alignment of Tic22 proteins. Conserved Tic22 motifs. Alignment of Tic22 proteins shows two conserved regions. Pt: Phaeodactylum tricornutum, TP: Thalassiosira pseudonana, Ps: Pisum sativum, At: Arabidopsis thaliana, Pp: Physcomitrella patens, Te: Trichodesmium erythraeum Cr:

Chlamydomonas reinhardtii, Cm: Cyanidioschizon merolae; blue, basic: lysine (K), arginine (R), histi-dine (H); green, hydrophilic: asparagine (N), threonine (T), serine (S), glutamine (Q); yellow, aliphatic:

cysteine (C); purple, aromatic: phenilalanine (F),tyrosine (Y), tryptophane (W); red, acidic: glutamine acid (E), aspartic acide (D); grey, neutral: glycine (G), proline (P); white, hydrophobic: leucine (L), alanine (A), valine (V), isoleucine (I), methionine (M); (modified after Kalanon and McFadden 2008 [73])

PtTic32 LITGGNTGLGLESGK TNHLG VSSEAW SYGQSKLAN VLGRYIVGEEKWN TpTic32 VVTGGNVGLGLESSK TNHLG VSSTGY SYGESKLEN LAKFAKTVEEGAS PsTic32 IVTGASSGIGAETTR TNHIG VASEAH AYGQSKLAN LAKKLWDFSINLV AtTic32-1 IVTGASSGIGVETAR TNHIG LSSEAH AYGQSKLCN LAKKVWDFSTKLT AtTic32-2 IVTGASSGIGVETAR TNHIG VSSEAH AYGQSKLCN LAKKVWDFSTKLT AtTic32-3 IVTGASSGIGEETTR TNHLG VSSEGH AYGQSKLGN LAKKLWEFSLRLT AtTic32-4 IITGGTGGIGMETAR TNHIG VSSVAH AYGQSKLAN LAQKLWDFSVKLI AtTic32-5 IITGGTSGIGLEAAR TNHIG LSSIAH AYGQSKLSN LADKLWDFSVFLI PpTic32-1 IVTGATSGIGKESAR TNHLG VSSLAH AYGQSKLAN LATRYWKFSEELI PpTic32-2 IITGATSGIGKESAR TNHLG VSSEAH AYGQSKLAN LARKLWEFSEEFV PpTic32-3 IISGATSGIGKEAAT TNHIG VASEAH AYGQSKLAN LAAKLWEFSEEFV PpTic32-5 IVTGATAGIGLETAR TNFLG VSGHLH GYGQSKLAG LQLKLWKWTEEYL PpTic32-4 IVTGASSGLGKECAR THVVG TGSEAH AYGQSKIGD LGQKVMKWCEDFV OtTic32-1 LLTGATSGIGLETLR VNFIG VSSEVY SYGQSKLAL LARRVCEFADSFI CrTic32-2 FITGGNTGIGYETAL VNHLG VASAAH AYGQSKLAN VAQRLWEVSEELV PpTic32-6 IITGGNTGIGKATAT VNHLG LSSSAH AYGQSKLAN LSYSLWAVSEELT CmTic32-1 IVTGGNSGIGFETAR VNHLA VSSILA AYGWSKAYN LWMLSEHAVEPYL CmTic32-2 VVTGCNVGIGYEVAL VNHLG VSSDGH AYADTKMAN LWDESERIVRNYL OlTic32-2 VVTGANTGIGLATVR VNHLG VSSEAH QYGQSKLAN LWRYTLKELGLED OlTic32-4 VVTGPTSGIGVTTAR ANFLA VSSKLH AYASSKLAE LWDRSAELTGVGF OlTic32-5 LITGANSGVGYTAAK INHLG VSSLLS AYGASKAQN EWRTEANATALWS OlTic32-3 VITGANTGLGYETAK VNHLG LSSIAH TYGRTKMAN ERAYDAEAWARLW NpTic32 IVTGSSSGIGYETAR TNHLG VSSGAH AYGDSKLAN LWVVSEKLTDVKF OlTic32-1 LITGATAGIGFETLK VKFLN VTSEVY SYAQSKLAL LVEYAARELDASA OtTic32-2 VVTGANTGIGLETAR VNHLG VSSEAH QYGQSKLAN LWNRSAELTGVAF CrTic32-1 VVTGGSSGIGVETCR VNHVA VASSAH SYGQSKACN LWEATEALLARAL CrTic32-3 LVTGATSGIGLETAA TNHLG VASVTH –YQHSKLAN LWDWPLRKLSGGM

PtTic32

Figure A.2.: Alignment of Tic32 proteins. Tic32 overview including the NAD-binding domain (red) and C-terminal a possible CaM binding motif (brown). Indicated is the characteristic motif of clas-sical SDR proteins (G-x-G-x-x-x-G). Pt: Phaeodactylum tricornutum, TP: Thalassiosira pseudonana, Ps: Pisum sativum, At: Arabidopsis thaliana, Pp: Physcomitrella patens, Np: Nostoc punctiforme, Cr: Chlamydomonas reinhardtii, Ol: Ostreococcus lucimarinus, Ot: Ostreococcus tauri, Cm: Cyanid-ioschizon merolae; blue, basic: lysine (K), arginine (R), histidine (H); green, hydrophilic: asparagine (N), threonine (T), serine (S), glutamine (Q); yellow, aliphatic: cysteine (C); purple, aromatic: pheni-lalanine (F),tyrosine (Y), tryptophane (W); red, acidic: glutamine acid (E), aspartic acide (D); grey, neutral: glycine (G), proline (P); white, hydrophobic: leucine (L), alanine (A), valine (V), isoleucine (I), methionine (M); (modified after Kalanon and McFadden (2008) [73])

PtTic55 CPHRLAPLSEGRVDRQKNLECSYHGWEFDA-DG ENIVDPSHVPFAH NRWTQHGEHCRHCTSAR

Figure A.3.: Alignment of Tic55 proteins. Tic55 domains show the Rieske motif (yellow), the mononu-clear iron-binding site (blue), the C-x-x-C motif (green; black stars), one to two possible tranmembrane domains (grey) and the PFAM PAO motif (purple). Pt: Phaeodactylum tricornutum, TP:Thalassiosira pseudonana, Ps: Pisum sativum, At: Arabidopsis thaliana, Pp: Physcomitrella patens, Np: Nostoc punctiforme, Cr: Chlamydomonas reinhardtii, Ol: Ostreococcus lucimarinus, Ot: Ostreococcus tauri, Cm: Cyanidioschizon merolae; blue, basic: lysine (K), arginine (R), histidine (H); green, hydrophilic:

asparagine (N), threonine (T), serine (S), glutamine (Q); yellow, aliphatic: cysteine (C); purple, aro-matic: phenilalanine (F),tyrosine (Y), tryptophane (W); red, acidic: glutamine acid (E), aspartic acide (D); grey, neutral: glycine (G), proline (P); white, hydrophobic: leucine (L), alanine (A), valine (V), isoleucine (I), methionine (M); (modified after Kalanon and McFadden (2008) [73])

PtTic62 VVVAGATGQTGRRVLEKL

Figure A.4.: Alignment of Tic62 proteins. Tic62 overview including the NAD-binding domain (red).

Pt: Phaeodactylum tricornutum, TP:Thalassiosira pseudonana, Ps: Pisum sativum, At: Arabidopsis thaliana, Pp: Physcomitrella patens, Np: Nostoc punctiforme, Cr: Chlamydomonas reinhardtii, Ol:

Ostreococcus lucimarinus, Ot: Ostreococcus tauri, Nos: Nostoc sp., Cm: Cyanidioschizon merolae;

blue, basic: lysine (K), arginine (R), histidine (H); green, hydrophilic: asparagine (N), threonine (T), serine (S), glutamine (Q); yellow, aliphatic: cysteine (C); purple, aromatic: phenilalanine (F),tyrosine (Y), tryptophane (W); red, acidic: glutamine acid (E), aspartic acide (D); grey, neutral: glycine (G), proline (P); white, hydrophobic: leucine (L), alanine (A), valine (V), isoleucine (I), methionine (M);

(modified after Kalanon and McFadden (2008) [73])

SignalP-NN prediction (euk networks): PtTic21 SignalP-HMM prediction (euk networks): PtTic21 SignalP-NN prediction (euk networks): PtTic20 SignalP-HMM prediction (euk networks): PtTic20

SignalP-NN prediction (euk networks): PtTic22 SignalP-HMM prediction (euk networks): PtTic22

SignalP-NN prediction (euk networks): PtTic32 SignalP-HMM prediction (euk networks): PtTic32

Figure A.5.: Signal peptide prediction for diatom Tics. Graphical output of SignalP, Neuronal net-works (NN) or Hidden Markov Models (HMM) predictions can be compared to evaluate signal peptide probabilities of diatom Tics (translocons at the inner envelope membrane of chloroplasts) protein sequences from the diatomPhaeodactylum tricornutum (Pt); see text for details.

SignalP-NN prediction (euk networks): PtTic55 SignalP-HMM prediction (euk networks): PtTic55

SignalP-NN prediction (euk networks): PtTic62 SignalP-HMM prediction (euk networks): PtTic62

SignalP-NN prediction (euk networks): PtTic110 SignalP-HMM prediction (euk networks): PtTic110

Figure A.6.: Signal peptide prediction for diatom Tics. Graphical output of SignalP, Neuronal net-works (NN) or Hidden Markov Models (HMM) predictions can be compared to evaluate signal peptide probabilities of diatom Tics (translocons at the inner envelope membrane of chloroplasts) protein sequences from the diatomPhaeodactylum tricornutum(Pt); see text for details.

SignalP-NN prediction (euk networks): TpTic20 SignalP-HMM prediction (euk networks): TpTic20

SignalP-NN prediction (euk networks): TpTic21 SignalP-HMM prediction (euk networks): TpTic21

SignalP-NN prediction (euk networks): TpTic22 SignalP-HMM prediction (euk networks): TpTic22

SignalP-NN prediction (euk networks): TpTic32 SignalP-HMM prediction (euk networks): TpTic32

Figure A.7.: Signal peptide prediction for diatom Tics. Graphical output of SignalP, Neuronal net-works (NN) or Hidden Markov Models (HMM) predictions can be compared to evaluate signal peptide probabilities of diatom Tics (translocons at the inner envelope membrane of chloroplasts) protein sequences from the diatomThalassiosira pseudonana(Tp); see text for details.

SignalP-HMM prediction (euk networks): TpTic55 SignalP-NN prediction (euk networks): TpTic55

SignalP-HMM prediction (euk networks): TpTic62 SignalP-NN prediction (euk networks): TpTic62

SignalP-NN prediction (euk networks): TpTic110 SignalP-HMM prediction (euk networks): TpTic110

Figure A.8.: Signal peptide prediction for diatom Tics. Graphical output of SignalP, Neuronal net-works (NN) or Hidden Markov Models (HMM) predictions can be compared to evaluate signal peptide probabilities of diatom Tics (translocons at the inner envelope membrane of chloroplasts) protein sequences from the diatomThalassiosira pseudonana(Tp); see text for details.

PtTic22 TMHMM prediction PtTic32 TMHMM prediction

PtTic20 TMHMM prediction PtTic21 TMHMM prediction

PtTic55 TMHMM prediction PtTic62 TMHMM prediction

PtTic110 TMHMM prediction

Figure A.9.: Transmembrane helix prediction in diatom Tics. Transmembrane helix prediction in di-atom Tics (translocons at the inner envelope membrane of chloroplasts). Graphical output of TMHMM Server v. 2.0, predicting the topology of diatom Tics protein sequences from the diatoms Phaeodacty-lum tricornutum (Pt); in order to avoid missprediction of signal and transit peptide-like domains as transmembrane helices, presequences were removed before running the prediction; see text for details.

Tic22 TMMOD prediction Tic32 TMMOD prediction

PtTic20 TMMOD prediction PtTic21 TMMOD prediction

PtTic55 TMMOD prediction PtTic62 TMMOD prediction

PtTic110 TMMOD prediction

Figure A.10.: Transmembrane helix prediction in diatom Tics. Transmembrane helix prediction in diatom (translocons at the inner envelope membrane of chloroplasts). Graphical output of TMMOD Server, predicting the topology of diatom Tics protein sequences from the diatoms Phaeodactylum tricornutum (Pt); in order to avoid missprediction of signal and transit peptide-like domains as trans-membrane helices, presequences were removed before running the prediction; see text for details.

PtTic20 SPLIT prediction PtTic21 SPLIT prediction

PtTic22 SPLIT prediction PtTic32 SPLIT prediction

PtTic55 SPLIT prediction PtTic62 SPLIT prediction

PtTic110 SPLIT prediction

Figure A.11.: Transmembrane helix prediction in diatom Tics. Transmembrane helix prediction in di-atom (translocons at the inner envelope membrane of chloroplasts). Graphical output of SPLIT Server, predicting the topology of diatom Tics protein sequences from the diatoms Phaeodactylum tricornu-tum(Pt); in order to avoid missprediction of signal and transit peptide-like domains as transmembrane helices, presequences were removed before running the prediction; see text for details.

TpTic20 TMHMM prediction TpTic21 TMHMM prediction

TpTic22 TMHMM prediction TpTic32 TMHMM prediction

TpTic55 TMHMM prediction TpTic62 TMHMM prediction

TpTic110 TMHMM prediction

Figure A.12.: Transmembrane helix prediction in diatom Tics. Transmembrane helix prediction in diatom (translocons at the inner envelope membrane of chloroplasts). Graphical output of TMHMM Server v. 2.0, predicting the topology of diatom Tics protein sequences from the diatoms Thalas-siosira pseudonana(Tp); in order to avoid missprediction of signal and transit peptide-like domains as transmembrane helices, presequences were removed before running the prediction; see text for details.

TpTic32 TMMOD prediction TpTic22 TMMOD prediction

TpTic20 TMMOD prediction TpTic21 TMMOD prediction

TpTic55 TMMOD prediction TpTic62 TMMOD prediction

TpTic110 TMMOD prediction

Figure A.13.: Transmembrane helix prediction in diatom Tics. Transmembrane helix prediction in di-atom (translocons at the inner envelope membrane of chloroplasts). Graphical output of SPLIT Server, predicting the topology of diatom Tics protein sequences from the diatomsThalassiosira pseudonana (Tp); in order to avoid missprediction of signal and transit peptide-like domains as transmembrane helices, presequences were removed before running the prediction; see text for details.

TpTic20 SPLIT prediction TpTic21 SPLIT prediction

TpTic22 SPLIT prediction TpTic32 SPLIT prediction

TpTic55 SPLIT prediction TpTic62 SPLIT prediction

TpTic110 SPLIT prediction

Figure A.14.: Transmembrane helix prediction in diatom Tics. Transmembrane helix prediction in di-atom (translocons at the inner envelope membrane of chloroplasts). Graphical output of SPLIT Server, predicting the topology of diatom Tics protein sequences from the diatomsThalassiosira pseudonana (Tp); in order to avoid missprediction of signal and transit peptide-like domains as transmembrane helices, presequences were removed before running the prediction; see text for details.

ntaryData

SP cleavage site: presence of possible SP cleavage site; Sprob: probability of a SP (1 likely; 0 unlikely). Furthermore, the presequences were analyzed for the presence of an ASAFAP motif at the SP cleavage site indicating plastid targeting. TP analyses were performed with ChloroP. In order to avoid missprediction sequences were sent to ChloroP without a signal peptide; Score: is the output score from the second step network. cTP: tells whether or not this is predicted as a cTP-containing sequence; CS-score: is the MEME scoring matrix score for the suggested cleavage site; cTP-length: is the predicted length of the transit peptide; Pt: Phaeodactylum tricornutumTp: Thalassiosira pseudonana

Name Protein ID Cmax Position SP cleavage site Sprob SP prediction

Analyses of  SP cleavage site,

 (ASAFAP motif?) Score cTP CS‐Score

cTP‐length  [bp]

PtOEE1 XP\_002180309 0.185 20 Yes 0.998 Yes AFA‐PI (no) 0.496 No 0.618 65

PtPGDH 45333 0.419 19 Yes 0.997 Yes LES‐IQ (no) 0.472 No 0.797 41

TpNTT3 270249 0.758 24 Yes 1.000 Yes TEA‐AL (no) 0.469 No 2.546 33

TpNTRC XP\_002289195 0.988 19 Yes 1.000 Yes TTA‐RP (no) 0.435 No ‐0.201 3

Prediction ChloroP Prediction SignalP

Chapter 2

Characterisation of the Tic-complex in the diatomPhaeodactylum tricornutum Sascha Vugrinec, Ansgar Gruber and Peter G. Kroth

Conceived and designed the experiments: AG PGK SV. Performed the experiments:

SV. Analysed the data: AG PGK SV. Wrote the manuscript: SV.

Chapter 3

Cross-phyla functionality of plastid targeting presequences in chromists Sascha Vugrinec, Ansgar Gruber and Peter G. Kroth

Conceived and designed the experiments: AG PGK SV. Performed the experiments:

SV. Analysed the data: AG PGK SV. Wrote the manuscript: SV.

Chapter 4

Comparison between native and artificial diatom sequences that direct GFP into

“blob”-like structures

Sascha Vugrinec, Ansgar Gruber and Peter G. Kroth

Conceived and designed the experiments: AG PGK SV. Performed the experiments:

SV. Analysed the data: AG PGK SV. Wrote the manuscript: SV.

Chapter 5

Is there a connection between the CER-lumen and the interenvelope space?

Sascha Vugrinec, Ansgar Gruber and Peter G. Kroth

Conceived and designed the experiments: AG PGK SV. Performed the experiments:

SV. Analysed the data: AG PGK SV. Wrote the manuscript: SV.

2009

Gruber A, Weber T, Rio Bartulos C, Vugrinec S and Kroth PG (2009) Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms.

Journal of Basic Microbiology 49: 58–72.

doi:10.1002/jobm.200800339

2007

Gruber A,Vugrinec S, Hempel F, Gould SV, Maier UG and Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific tar-geting motif.

Gruber A and Vugrinec S contributed equally to this work.

Plant Mol Biol 64: 519–530.

doi:10.1007/s11103-007-9171-x

Ich danke allen, die zur Entstehung dieser Arbeit beigetragen haben! Insbesondere:

Prof. Dr. Peter Kroth, für die hervorragende Betreuung, für die interessante und spannende Themenstellung, die konstruktiven Vorschläge, sowie die Gestaltungsfreiheiten, die ich während meiner Arbeit genießen durfte.

Prof. Dr. Iwona Adamska für die Übernahme der Zweitkorrektur dieser Arbeit und die unkomplizierte Zusammenarbeit, sowie Prof. Dr. Elisa May und Prof. Dr. Christof Hauck als weiteren Mitgliedern der Prüfungskommission.

Ein großer Dank gilt auch Ansgar Gruber. Danke für die zahlreichen Diskussionen und Anregungen die diese Arbeit begleitet und zu den Ergebnissen beigetragen haben. Für das Korrekturlesen dieser Arbeit sowie den Hilfestellungen im Labor.

Allen Mitgliedern der AG Kroth, für die schöne Zeit und das angenehme Arbeitsklima.

Ganz besonders danken möchte ich Doris Ballert die mir im Labor stets zur Seite stand.

Vorallem für ihren unermüdliche Einsatz bei den Transformationen und der Erhaltung jeder einzelnen Transformante. Vielen Dank auch an meine „Zellennachbarin“ Sabine Sturm, für die freundschaftliche und unkomplizierte Zusammenarbeit, aber auch für die lustigen und unterhaltsamen Laboralltage die nicht immer etwas mit der Forschung zu tun hatten.

Außerdem danke ich Caro Río Bártulos für die hilfreichen Vorschläge und Kommentare, aber auch für die legendären Frühstück-Sessions.

Ein Dankeschön auch an die Studenten die ich während der Vertiefungskurspraktika be-treuen durfte und mit denen ich während dieser Zeit viel Spaß hatte.

An dieser Stelle möchte ich zudem meiner Familie Vielen Dank sagen, vor allem: Meiner Mutter, die mir das Biologiestudium erst ermöglicht hat und mich während des Studiums und der Promotion in jeder Hinsicht unterstützte.

Mein ganz besonderer Dank gilt meiner Freundin Nicole, ohne ihrer fortwährenden Unter-stützung, Verständnis und Liebe diese Arbeit nie entstanden wäre.

Im Dokument Protein Targeting into Diatom Plastids (Seite 128-151)