• Keine Ergebnisse gefunden

Antibiotics have found to show an increasing stability and consistency within environmental samples. Partially metabolized and partially removed in WWTP processes, with an increasing antibiotic resistance trend and the potential ecotoxicological effects, it has become crucial to monitor them within the environment.

In the study the aim was to develop a proficient analytical method for the assessment of low antibacterial concentration of 3 classes of antibiotics; Fluoroquinolones (Ciprofloxacin, Enrofloxacin, Marbofloxacin, Ofloxacin, Norfloxacin), Sulfonamides (Sulfadimethoxine, Sulfamethoxazole) and Amphenicols (Florfenicol) in Tartu city river water body Emajogi.

Emajõgi is a river in Estonia which flows from Lake Võrtsjärv through Tartu County into Lake Peipsi, crossing the city of Tartu for 10 km and a length of approximately 100 km. The first-time analysis of river water samples in Tartu city with the developed offline solid phase extraction (SPE), LC-MS/MS method has shown to be able to detect and quantify antibiotics at low concentration levels within river water samples with good recovery and repeatability. The work done provided a reliable data that could be used to potentially monitor the selected antibacterial compounds in other river water environments and potentially lakes.

Initial results indicated good recovery of the selected analytes through solid phase extractions from river water samples at >5 °C. Precleaning and filtration of the samples before SPE extraction is crucial to minimize all potential matrix effects, a tedious, but otherwise necessary and efficient step. After the initial results, an ecotoxicological assessment was made considering the provided impactful concentrations. All antibiotics were found to be below the threshold limit.

The novelty of the method exists in its first-time applicability and first-time assessment of river water samples from Emajõgi. It could be potentially used for routine monitoring of these analytes within the river water throughout the year and to assess different concentration ranges and influences within the water and through it, the relative ecosystem.

28

Antimikroobsete ainete määramine jõevees kasutades tahke faasi ekstraktsiooni ja LC-MS/MS meetodit

Waseem Ahmad Iftikhar Kokkuvõte

Antimikroobsete ainete jääke leitakse järjest sagedamine keskkonnaproovides. Kuigi need ained osaliselt metaboliseeruvad ja osaliselt eraldatakse reoveepuhastites, siis ikkagi suureneb antibiootikumiresistentsuse ja ökotoksikoloogiliste mõjude risk. See toob kaasa vajaduse määrata nende ainete sisaldusi keskkonnaproovides.

Käesoleva töö eesmärgiks oli analüüsimetoodika arendamine kolme eri rühma kuuluvate antibiootikumide jääkide määramiseks jõevees; fluorokinoloonid (tsiprofloksatsiin, enrofloksatsiin, marbofloksatsiin, ofloksatsiin, norfloksatsiin), sulfoonamiidid (sulfadimetoksiin, sulfametoksasool) ja amfenikoolid (florfenikool).

Emajõgi on Eesti üks tuntumaid jõgesid, mis voolab Võrtsjärvest Peipsi järve ja läbib seejuures Tartu linna. Käesolevas töös arendatud metoodikat kasutati antibiootikumijääkide määramiseks Emajõe veeproovides, mis olid võetud Tartu reoveepuhastusjaama lähedalt ning sellest alla- ja ülesvoolu. Kasutatud tahke faasi ekstraktsiooni (SPE) ja LC-MS meetodit kasutav analüüsimetoodika võimaldas tuvastada antibiootikumijääkide madalaid sisaldusi hea saagise ja korratavusega. Arendatud metoodikat on võimalik kasutada antibiootikumide jääkide monitoorimiseks jõgedes ja tõenäoliselt ka järvede vees.

Valideerimise tulemusena selgus, et kasutatud SPE metoodikal on uuritud analüütide suhtes rahuldav saagis. Seejuures leiti, et maatriksiefektide alandamiseks on proovide SPE-eelne filtreerimine väga oluline. Selle mõju ekstraheerimise saagisele vajab siiski täiendavat uurimist.

Analüüsil leitud antibiootikumide kontsentratsioonidele anti ka esialgne ökotoksikoloogiline hinnang. Kõigi uuritud antibiootikumide sisaldused jäid allapoole kehtestatud piirnormi.

Arendatud metoodika oli uudne laborile, kus töö läbi viidi – varem ei ole seal uuritud ravimite jääkide sisaldust jõevees. Samuti lisandus uuritavate analüütide hulka kolm uut antibiootikumi.

Metoodikat saab edasi arendada lisades veelgi analüüte ja kontrollides selle toimivust ka teiste veekogude vete analüüsil. Arendatud metoodika võimaldab keskkonna seisundit paremini hinnata.

29

Acknowledgements

First, I would like to thank my parents for their ever-growing love, support and for teaching me values that have always proven to be useful. To my brothers Ijaz, Fraz, Rashid, Qamar, Umar and my sisters Khadijah and Maryam for always being there for me when I needed them and for never letting me settle for less.

I would like to very humbly and sincerely thank my supervisor, Professor Koit Herodes who has taught me the immense value of understanding through patience. Even when my knowledge would fail me, he would uphold me to do better and to try and think of a solution. He will always answer my questions no matter how basic or how trivial they may seem and always hear my concerns before providing a sound solution. You have been the best mentor I could have asked to learn from and I’m forever thankful that I had the chance to learn from the best.

I would like to thank Professor Ivo Leito for his immense wisdom and guidance through all matters of my student life and for helping me solve all the uncertainties in my student life. We always had you by our side to guide us through all the deviations, and for that I am grateful.

My other sources of knowledge and support have been immense, and I would like to thank them as well. I would like to thank Christina for sharing her knowledge with me and for always making sure I had the help I need, even on weekends. I would like to thank Toiv, Hanno, Anu for molding us into practical analytical chemists with a lot of patience and care put into our learning. Ernesto and Nhung for all your advice and help and for your candid impression of my work and what could be done better.

I would like to thank my dear friends, Helmi and Zen for their honest inputs. Finally, I would like to thank my lab mate Joshua for being a valuable friend and colleague. I would have never learnt as much as I did about LC-MS if it weren’t for our common passion for it and for our constant discussions back and forth. I appreciate and cherish all my time at the University of Tartu and firmly believe that my professors, colleagues and friends have imparted me with the gift of knowledge, humility and steadfastness in accepting and overcoming my limits. Thank you.

This work was supported by AMRITA project, which is financed by Estonian Research Council from ERF resources of RITA programme for Ministries of Rural Affairs, Environment and Social Affairs (contract no 7.2-2/19/5).

30

REFERENCES

[1] World Health Organization, Ed., Antimicrobial resistance: global report on surveillance.

Geneva, Switzerland: World Health Organization, 2014.

[2] C. S. McArdell, E. Molnar, M. J.-F. Suter, and W. Giger, “Occurrence and Fate of Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland,”

Environ. Sci. Technol., vol. 37, no. 24, pp. 5479–5486, Dec. 2003, doi: 10.1021/es034368i.

[3] T. Kivits, H. P. Broers, H. Beeltje, M. van Vliet, and J. Griffioen, “Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming,”

Environmental Pollution, vol. 241, pp. 988–998, Oct. 2018, doi:

10.1016/j.envpol.2018.05.085.

[4] N. M. Vieno, T. Tuhkanen, and L. Kronberg, “Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection,” Journal of Chromatography A, vol.

1134, no. 1–2, pp. 101–111, Nov. 2006, doi: 10.1016/j.chroma.2006.08.077.

[5] M. Stumpf, T. A. Ternes, R.-D. Wilken, Silvana Vianna Rodrigues, and W. Baumann, “Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil,” Science of The Total Environment, vol. 225, no. 1–2, pp. 135–141, Jan. 1999, doi: 10.1016/S0048-9697(98)00339-8.

[6] T. Ternes, M. Bonerz, and T. Schmidt, “Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography–electrospray tandem mass spectrometry,”

Journal of Chromatography A, vol. 938, no. 1–2, pp. 175–185, Dec. 2001, doi:

10.1016/S0021-9673(01)01205-5.

[7] D. W. Kolpin et al., “Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000: A National Reconnaissance,” Environ. Sci.

Technol., vol. 36, no. 6, pp. 1202–1211, Mar. 2002, doi: 10.1021/es011055j.

[8] T. L. Jones-Lepp, “Chemical markers of human waste contamination: Analysis of urobilin and pharmaceuticals in source waters,” J. Environ. Monit., vol. 8, no. 4, p. 472, 2006, doi:

10.1039/b512858g.

[9] J. F. Artiola, I. L. Pepper, and M. L. Brusseau, Eds., Environmental monitoring and characterization. Amsterdam ; Boston: Elsevier Academic Press, 2004.

31

[10] M. Hernando, M. Mezcua, A. Fernandezalba, and D. Barcelo, “Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments,”

Talanta, vol. 69, no. 2, pp. 334–342, Apr. 2006, doi: 10.1016/j.talanta.2005.09.037.

[11] C.-Y. Lin and S.-D. Huang, “Application of liquid–liquid–liquid microextraction and high-performance liquid-chromatography for the determination of sulfonamides in water,”

Analytica Chimica Acta, vol. 612, no. 1, pp. 37–43, Mar. 2008, doi:

10.1016/j.aca.2008.02.008.

[12] A. L. Batt, I. B. Bruce, and D. S. Aga, “Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges,” Environmental Pollution, vol. 142, no. 2, pp. 295–302, Jul. 2006, doi: 10.1016/j.envpol.2005.10.010.

[13] J.-F. Yang, G.-G. Ying, J.-L. Zhao, R. Tao, H.-C. Su, and F. Chen, “Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC–

MS/MS,” Science of The Total Environment, vol. 408, no. 16, pp. 3424–3432, Jul. 2010, doi:

10.1016/j.scitotenv.2010.03.049.

[14] L.-J. Zhou et al., “Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry,” Journal of Chromatography A, vol. 1244, pp. 123–

138, Jun. 2012, doi: 10.1016/j.chroma.2012.04.076.

[15] M. Ericsson and A. Colmsjö, “Dynamic Microwave-Assisted Extraction Coupled On-Line with Solid-Phase Extraction and Large-Volume Injection Gas Chromatography:

Determination of Organophosphate Esters in Air Samples,” Anal. Chem., vol. 75, no. 7, pp.

1713–1719, Apr. 2003, doi: 10.1021/ac026287v.

[16] E. Turiel, A. Martín-Esteban, and J. L. Tadeo, “Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils,” Journal of Chromatography A, vol. 1172, no. 2, pp. 97–104, Nov. 2007, doi: 10.1016/j.chroma.2007.10.003.

[17] M. Lillenberg et al., “Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry,” Journal of Chromatography A, vol. 1216, no. 32, pp. 5949–5954, Aug. 2009, doi: 10.1016/j.chroma.2009.06.029.

[18] A. V. Herrera-Herrera, L. M. Ravelo-Pérez, J. Hernández-Borges, M. M. Afonso, J. A.

Palenzuela, and M. Á. Rodríguez-Delgado, “Oxidized multi-walled carbon nanotubes for the

32

dispersive solid-phase extraction of quinolone antibiotics from water samples using capillary electrophoresis and large volume sample stacking with polarity switching,” Journal of Chromatography A, vol. 1218, no. 31, pp. 5352–5361, Aug. 2011, doi:

10.1016/j.chroma.2011.06.031.

[19] N. M. Kassab, M. S. do Amaral, A. K. Singh, and M. I. R. M. Santoro, “Development and validation of UV spectrophotometric method for determination of levofloxacin in pharmaceutical dosage forms,” Quím. Nova, vol. 33, no. 4, pp. 968–971, 2010, doi:

10.1590/S0100-40422010000400037.

[20] H. Yu, H. Mu, and Y.-M. Hu, “Determination of fluoroquinolones, sulfonamides, and tetracyclines multiresidues simultaneously in porcine tissue by MSPD and HPLC–DAD,”

Journal of Pharmaceutical Analysis, vol. 2, no. 1, pp. 76–81, Feb. 2012, doi:

S. M. Montenegro, “Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment,” Journal of Hazardous Materials, vol. 175, no. 1–3, pp. 45–95, Mar.

2010, doi: 10.1016/j.jhazmat.2009.10.100.

[23] Y. Kim, K. Choi, J. Jung, S. Park, P.-G. Kim, and J. Park, “Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea,” Environment International, vol. 33, no. 3, pp. 370–375, Apr. 2007, doi: 10.1016/j.envint.2006.11.017.

[24] R. A. Brain et al., “Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum,” Aquatic Toxicology, vol. 70, no. 1, pp. 23–40, Oct. 2004, doi: 10.1016/j.aquatox.2004.06.011.

[25] L. Migliore, C. Civitareale, S. Cozzolino, P. Casoria, G. Brambilla, and L. Gaudio,

“Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants,”

Chemosphere, vol. 37, no. 14–15, pp. 2957–2961, Dec. 1998, doi: 10.1016/S0045-6535(98)00336-1.

33

[26] L. Migliore, A. Rotini, N. L. Cerioli, S. Cozzolino, and M. Fiori, “Phytotoxic Antibiotic Sulfadimethoxine Elicits a Complex Hormetic Response in the Weed Lythrum Salicaria L.,”

Dose-Response, vol. 8, no. 4, p. dose-response.0, Oct. 2010, doi: 10.2203/dose-response.09-033.Migliore.

[27] M. Garcia-Käufer et al., “Genotoxic effect of ciprofloxacin during photolytic decomposition monitored by the in vitro micronucleus test (MNvit) in HepG2 cells,” Environ Sci Pollut Res, vol. 19, no. 5, pp. 1719–1727, Jun. 2012, doi: 10.1007/s11356-011-0686-y.

[28] L. Aristilde, A. Melis, and G. Sposito, “Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic,” Environ. Sci. Technol., vol. 44, no. 4, pp. 1444–1450, Feb. 2010, doi:

10.1021/es902665n.

[29] M. González-Pleiter et al., “Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment,” Water Research, vol. 47, no. 6, pp. 2050–2064, Apr. 2013, doi: 10.1016/j.watres.2013.01.020.

[30] M. Isidori, M. Lavorgna, A. Nardelli, L. Pascarella, and A. Parrella, “Toxic and genotoxic evaluation of six antibiotics on non-target organisms,” Science of The Total Environment, vol.

346, no. 1–3, pp. 87–98, Jun. 2005, doi: 10.1016/j.scitotenv.2004.11.017.

[31] E. J. Rosi-Marshall and T. V. Royer, “Pharmaceutical Compounds and Ecosystem Function: An Emerging Research Challenge for Aquatic Ecologists,” Ecosystems, vol. 15, no.

6, pp. 867–880, Sep. 2012, doi: 10.1007/s10021-012-9553-z.

[32] T. Schwartz, W. Kohnen, B. Jansen, and U. Obst, “Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms,” FEMS Microbiology Ecology, vol. 43, no. 3, pp. 325–335, Apr. 2003, doi: 10.1111/j.1574-6941.2003.tb01073.x.

[33] Veterinary Medicines Division, “Sales of veterinary antimicrobial agents in 31 European countries in 2017. Trends from 2010 to 2017,” European Medicines Agency, 9, EMA/294674 2019.

[34] M. Sammul, “Overview of the use of antibiotics for veterinary purposes in 2006–2016,”

Ravimiamet ( State Agency of Medicines), Estonia, 2016.

[35] R. Nageswara Rao, N. Venkateswarlu, and R. Narsimha, “Determination of antibiotics in aquatic environment by solid-phase extraction followed by liquid chromatography–

34

electrospray ionization mass spectrometry,” Journal of Chromatography A, vol. 1187, no. 1–

2, pp. 151–164, Apr. 2008, doi: 10.1016/j.chroma.2008.02.021.

[36] S. Thiele-Bruhn and M.-O. Aust, “Effects of Pig Slurry on the Sorption of Sulfonamide Antibiotics in Soil,” Arch Environ Contam Toxicol, vol. 47, no. 1, Jul. 2004, doi:

10.1007/s00244-003-3120-8.

[37] K. Kipper, K. Herodes, I. Leito, and L. Nei, “Two fluoroalcohols as components of basic buffers for liquid chromatography electrospray ionization mass spectrometric determination of antibiotic residues,” Analyst, vol. 136, no. 21, p. 4587, 2011, doi: 10.1039/c1an15123a.

[38] AOAC, “Guidelines for Standard Method Performance Requirements.” .

[39] P. J. Taylor, “Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry,” Clinical Biochemistry, vol. 38, no.

4, pp. 328–334, Apr. 2005, doi: 10.1016/j.clinbiochem.2004.11.007.

[40] “EUROPEAN COMMISSION, Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed., SANTE/11813/2017 (2018).” .

[41] J. Tell et al., “Science‐based Targets for Antibiotics in Receiving Waters from Pharmaceutical Manufacturing Operations,” Integr Environ Assess Manag, vol. 15, no. 3, pp.

312–319, May 2019, doi: 10.1002/ieam.4141.

35

Annexes

Annex 1: List of Figures and Tables.

Annex 2: Structure of Antibiotics.

Annex 3: Antibiotic resistance data from ECDC (European commission of disease prevention and control)

Annex 4: Sample collection points.

Annex 5: MRM Chromatograms of antibiotics in samples

36

Annex 1: List of Figures and Tables.

Figures:

Figure 1. Flow of the LC-MS Project. ... 12

Figure 2. Gradient elution method showing MRM of 8 different antibiotics. ... 17

Figure 3. Blank Chromatogram to check for possible carryover effects. ... 22

Figure 4. Process Efficiency ... 25

Tables: Table 1. Antibiotic Classification based on their mechanism of action ... 7

Table 2. LC-MS/MS Conditions for the analysis of antibiotics by MRM using Waters XBridge RP column... 16

Table 3. LC Gradient Elution for the analysis of antibiotics. ... 17

Table 4.Calibration Ranges, Regression coefficients and LOD and LOQ values. ... 19

Table 5. Antibiotics at Upstream, Midpoint and Downstream of the WWTP. (ND: Not detected, NA: Not applicable) ... 20

Table 6. Percentage Accuracy of spiked samples. ... 21

Table 7. Concentrations of Analytes before and after washing. ... 21

Table 8. Gradient to flush the column ... 22

Table 9. Matrix Effect Evaluation at different concentration levels. ... 23

Table 10. Recovery of antibiotics ... 24

Table 11. Ratio of Measured values and PNEC values to assess ecotoxicological and resistance promotion impact. ... 26

37

Annex 2: Structures of Antibiotic Compounds.

Sulfadimethoxine (SDM) | pKa – 2.11, pKa – 6.17 Sulfamethoxazole (SMX) | pKa - 1.97, pKa -6.67 Ofloxacin (OFL) | pKa – 5.45 pKa – 6.2

Florfenicol (FF) | pKa -3.4, pKa -8.49

38

Annex 3: ECDC Data plot showing the antibiotic resistance increase of some fluoroquinolones

45

Trends in Antibiotic Resistance Towards Fluoroquinolones

Acinetobacter spp.

39

Annex 4: Sample collection points.

WWTP

Upstream

Midpoint

Downstream

40

Annex 5. MRM Chromatograms of antibiotics found in samples.

Ciprofloxacin (CIP)

41 Sulfamethoxazole (SMX)

Sulfadimethoxine (SDM)

S N O

O N

H2

N

O CH3 H

O O N

N N H S

O CH3

O N

H2

CH3

42

Non-exclusive licence to reproduce thesis and make thesis public

I, Waseem Ahmad Iftikhar herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the purpose of preservation, including for adding to the DSpace digital archives until the expiry of the term of copyright,

DETERMINATION OF ANTIBACTERIALS IN RIVER WATER BY SOLID PHASE EXTRACTION USING LC-ESI-MS/MS

supervised by Associate professor, Dr. Koit Herodes_

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the public via the web environment of the University of Tartu, including via the DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving appropriate credit to the author, to reproduce, distribute the work and communicate it to the public, and prohibits the creation of derivative works and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellectual property rights or rights arising from the personal data protection legislation.

Waseem Ahmad Iftikhar

27/05/2020

43 INFORMATION SHEET

Determination of antibacterials in river water by solid phase extraction using LC -MS/MS

Analytical method was developed for the detection of fluoroquinolones (FQs), sulfonamides and Amphenicol in Emajogi river in Tartu City. The compounds were simultaneously extracted from river water using solid phase extraction (SPE). Identification and quantification was done through Liquid chromatography – tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring (MRM) mode.The recovery of FQs ranged 62% for Enrofloxacin to 76% Marbofloxacin and 68% Florfenicol ,69%

sulfamethoxazole. Limit of Quantification ranged from 0.1 ngg-1 for SA’s ,0.6 - 1.5 ngg-1 for FQ’s, and 0.9ngg-1 for FF. The method was developed and valdated for river water analysis of samples from upstream, midpoint and down stream of the WWTP. The method developed may be used for a more in-depth study on the occurence and fate of these commonly used pharmaceuticals in river water bodies.

Key words: antibiotic residue analysis, LC-MS, method development, solid phase extraction, river water analysis,

CERCS: P300 analytical chemistry. INFOLEHT

Antimikroobsete ainete määramine jõevees kasutades tahke faasi ekstraktsiooni ja LC-MS/MS meetodit

Käesolevad töös töötati välja analüüsimetoodika fluorokinoloonide, sulfoonamiidide ja amfenikoolide rühma kuuluvate antibiootikumide määramiseks jõevees. Analüüdid ekstraheeriti proovist korraga, kasutades tahke faasi ekstraktsiooni (SPE). Identifitseerimine ja kvantitatiivne analüüs teostati vedelikkromatograafia-massispektromeetria (LC-MS/MS) meetodit kasutades valitud ülemineku jälgimise režiimis (MRM). Analüütide saagised jäid vahemikku 62 kuni 78%, mida võib pidada rahuldavaks. Määramispiirid jäid vahemikku 0,1 kuni 1,5 ng g-1. Metoodika arendamisel ja valideerimisel kasutati Emajõe veeproove, mis olid võetud veepuhastusjaama lähistelt ning sellest üles- ja allavoolu. Töö tulemusi saab kasutada antibiootikumijääkide monitoorimiseks jõevees.

Märksõnad: antibiootikumijääkide analüüs, LC-MS, metoodika arendus,dsd tahke faasi ekstraktsioon, jõevee analüüs,

CERCS: P300 analüütiline keemia