• Keine Ergebnisse gefunden

Airway epithelial cells are equipped with a mucociliary clearance system to prevent the detrimental effect of microorganisms in the respiratory tract. The defence mechanism is based on mucus producing cells and ciliated cells. The latter cells are responsible for the transport of mucus out of the respiratory tract via ciliary activity.

In order to address the importance of the ciliary activity in preventing infection by microorganisms, porcine precision-cut lung slices were infected with a swine influenza A virus of the H3N2 subtype in the presence or absence of the ciliary activity for 20 min. The amount of virus released under ciliostatic conditions at 24 h or 48 h post-infection was around twofold or threefold higher compared to slices with ciliary activity. The results indicate that the protective function of the cilia beating is not restricted to the transport of mucus, The ciliary activity also impedes the infection by influenza A virus to some extent. Our protocol for analyzing influenza virus infection under ciliostatic conditions is applicable to infections by other viruses and by bacteria.

Pigs are an important host for influenza A viruses, and may play a role in the interspecies transmission. The influenza pandemic of 2009 was caused by a swine-origin H1N1 influenza A virus which was transmitted from a pig to humans. In order to characterize the 2009 pandemic virus and the viruses isolated in the following years, experimental infections in pigs and porcine air-liquid interface culture for differentiated airway epithelial cells were performed. In animal experiments, viruses isolated in 2009/2010 induced a higher dyspnea score, an increased rectal temperature, a higher viral lung load, and more lung lesions in infected pigs compared to viruses of 2014/2015. In the infection of air-liquid interface cultures, the loss of ciliated cells, the reduction of the epithelial thickness and the release of virus into the medium were more pronounced after infection by the viruses of 2009 /2010 than after infection by the 2014/2015 isolates. The effects of the viruses observed in animal experiments were paralleled by the effects of the viruses observed in in vitro infections. There are 20 amino acids changes shared by viruses of 2009/2010, which distinguish them from viruses of 2014/2015. Our results indicate that the virulence of pandemic H1N1 influenza A viruses has decreased from 2009 to 2015, which may be indicative of an

adaptation process.

Porcine precision-cut lung slices and air-liquid interface cultures are useful tools that can be used to analyze the interaction of airway cells and respiratory pathogens, to investigate the virulence as well as the effect of mutations on these properties of influenza A viruses.

RERERENCE

Abd El Rahman S, Winter C, El-Kenawy A, Neumann U, Herrler G. Differential sensitivity of well-differentiated avian respiratory epithelial cells to infection by different strains of infectious bronchitis virus. J Virol. 2010, 84(17):8949-8952.

Air GM. Influenza neuraminidase. Influenza Other Respir Viruses. 2012, 6(4):245- 256.

Air GM, Laver WG, Webster RG. Mechanism of antigenic variation in an individual epitope on influenza virus N9 neuraminidase. J Virol. 1990, 64(12):

5797-5803.

Aggarwal S, Bradel-Tretheway B, Takimoto T, Dewhurst S, Kim B. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex. PLoS One. 2010, 5(4):e10372.

Ali A, Avalos RT, Ponimaskin E, Nayak DP. Influenza virus assembly: effect of influenza virus glycoprotein on the membrane association of M1 protein. J Virol. 2000, 74(18):8709-8719.

Avalos RT, Yu Z, Nayak DP. Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. J Virol. 1997, 71(4):2947-2958.

Babar MM, Zaidi NU. Protein sequence conservation and stable molecular evolution reveals influenza virus nucleoprotein as a universal druggable target.

Infect Genet Evol. 2015, 34:200-210. X, Lemey P, Russell CA. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature. 2015, 523(7559):217-220.

Biswas SK, Boutz PL, Nayak DP. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J Virol. 1998, 72(7):5493-5501.

Brown IH, Harris PA, McCauley JW, Alexander DJ. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol. 1998, 79(Pt12):2947-2955.

Boek WM, Keleş N, Graamans K, Huizing EH. Physiologic and hypertonic saline solutions impair ciliary activity in vitro. Laryngoscope. 1999, 109(3):396-399.

Bossart-Whitaker P, Carson M, Babu YS, Smith CD, Laver WG, Air GM.

Three-dimensional structure of influenza a N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid. J Mol Biol.

1993, 232(4):1069-1083.

Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008, 26 Suppl 4:

D49-53.

Böttcher-Friebertshäuser E, Klenk HD, Garten W. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog Dis. 2013, 69(2):87-100.

Bullido R, Gómez-Puertas P, Albo C, Portela A. Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein. J Gen Virol. 2000, 81(Pt 1):135-142.

Cao S, Liu X, Yu M, Li J, Jia X, Bi Y, Sun L, Gao GF, Liu W. A nuclear export signal in the matrix protein of the influenza A virus is required for efficient virus replication. J Virol. 2012, 86(9):4883-4891.

Carr CM, Kim PS. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993, 73(4):823-832.

Castrucci MR, Campitelli L, Ruggieri A, Barigazzi G, Sidoli L, Daniels R, Oxford JS, Donatelli I. Antigenic and sequence analysis of H3 influenza virus haemagglutinins from pig in Italy. J Gen Virol. 1994, 75 ( Pt 2):371-379.

Castelán-Vega JA, Magaña-Hernández A, Jiménez-Alberto A, Ribas-Aparicio RM.

The hemagglutinin of the influenza A(H1N1)pdm09 is mutating towards stability.

Adv Appl Bioinform Chem. 2014, 7:37-44.

Chen BJ, Leser GP, Jackson D, Lamb RA. The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol. 2008, 82(20):10059-10070.

Chen GW, Yang CC, Tsao KC, Huang CG, Lee LA, Yang WZ, Huang YL, Lin TY, Shih SR. Influenza A virus PB1-F2 gene in recent Taiwanese isolates. Emerg Infect Dis. 2004, 10(4):630-636.

Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998, 95(3):409-417.

Chen R, Holmes EC. Avian influenza virus exhibits rapid evolutionary dynamics.

Mol Biol Evol. 2006, 23(12):2336-2341.

Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med. 2001, 7(12):1306-1312.

Cheng J, Zhang C, Tao J, Li B, Shi Y, Liu H. Effects of the S42 residue of the H1N1 swine influenza virus NS1 protein on interferon responses and virus replication.

Virol J. 2018, 15(1):57.

Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998, 351(9101):472-477.

Colman PM, Tulip WR, Varghese JN, Tulloch PA, Baker AT, Laver WG, Air GM, Webster RG. Three-dimensional structures of influenza virus neuraminidase- antibody complexes. Philos Trans R Soc Lond B Biol Sci. 1989, 323(1217):511-518.

Coloma R, Valpuesta JM, Arranz R, Carrascosa JL, Ortín J, Martín-Benito J. The structure of a biologically active influenza virus ribonucleoprotein complex.

PLoS Pathog. 2009, 5(6):e1000491.

Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 2007, 3(10):1414-1421.

Cotter CR, Jin H, Chen Z. A single amino acid in the stalk region of the H1N1pdm Influenza virus HA protein affects viral fusion, stability and infectivity. PLoS Pathog. 2014, 10(1):e1003831.

Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY, Bandaranayake D, Breiman RF, Brooks WA, Buchy P, Feikin DR, Fowler KB, Gordon A, Hien NT, Horby P, Huang QS, Katz MA, Krishnan A, Lal R, Montgomery JM, Mølbak K, Pebody R, Presanis AM, Razuri H, Steens A, Tinoco YO, Wallinga J, Yu H, Vong S, Bresee J, Widdowson MA. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modeling study. Lancet Infect Dis. 2012, 12(9):687-695.

de Jong JC, van Nieuwstadt AP, Kimman TG, Loeffen WL, Bestebroer TM, Bijlsma K, Verweij C, Osterhaus AD, Class EC. Antigenic drift in swine influenza H3 haemagglutinins with implications for vaccination policy. Vaccine. 1999, 17 (11-12):1321-1328.

Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009, 458(7240):914-918.

Digard P, Elton D, Bishop K, Medcalf E, Weeds A, Pope B. Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J Virol. 1999, 73(3):2222-2231.

Dijkman R, Jebbink MF, Koekkoek SM, Deijs M, Jónsdóttir HR, Molenkamp R, Ieven M, Goossens H, Thiel V, van der Hoek L. Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism. J Virol. 2013, 87(11):6081-6090.

Dortmans JC, Dekkers J, Wickramasinghe IN, Verheije MH, Rottier PJ, van Kuppeveld FJ, de Vries E, de Haan CA. Adaptation of novel H7N9 influenza A virus to human receptors. Sci Rep. 2013, 3:3058.

Duerrwald R, Schlegel M, Bauer K, Vissiennon T, Wutzler P, Schmidtke M. Efficacy of influenza vaccination and Tamiflu® treatment--Comparative studies with Eurasian swine influenza viruses in pigs. PLoS One. 2013, 8(4):e61597.

Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, Ghedin E, Nolting J, Swayne DE, Runstadler JA, Happ GM, Senne DA, Wang R, Slemons RD, Holmes EC, Taubenberger JK. The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog. 2008, 4(5):e1000076.

Dunham EJ, Dugan VG, Kaser EK, Perkins SE, Brown IH, Holmes EC, Taubenberger JK. Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses. J Virol. 2009, 83(11):5485-5494.

Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol. 2014, 95(Pt2):263-277.

Eisfeld AJ, Neumann G, Kawaoka Y. At the centre: influenza a virus ribonucleoproteins. Nat Rev Microbiol. 2015, 13(1):28-41. Ellison RT 3rd, Giehl TJ.

Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest. 1991, 88(4):1080-1091.

Elderfield RA, Watson SJ, Godlee A, Adamson WE, Thompson CI, Dunning J, Fernandez-Alonso M, Blumenkrantz D, Hussell T, MOSAIC Investigators, Zambon M, Openshaw P, Kellam P, Barclay WS. Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol. 2014, 88(22):13269-13283.

Fechter P, Mingay L, Sharps J, Chambers A, Fodor E, Brownlee GG. Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J Biol Chem. 2003, 278(22):20381-20388.

Finkenstädt Bf, Morton A, Rand DA. Modelling antigenic drift in weekly flu incidence. Stat Med. 2005, 24(22):3447-3461.

Fortes P, Beloso A, Ortin J. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J. 1994, 13(3):

704-712.

Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH. Well-differentiated human airway epithelial cell cultures. Methods Mol Med. 2005, 107:183-206.

Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU, Garcia-Sastre A. Influenza a virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 2009, 5(5):439-449.

Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem. 2010, 285(37):28403-28409.

Ganesan S, Comstock AT, Sajjan US. Barrier function of airway tract epithelium.

Tissue Barriers. 2013, 1(4):e24997.

Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol.

2003, 3(9):710-720.

Garcia-Sastre A. Inhibition of interferon-mediated antiviral responses by influenza a viruses and other negative-strand RNA viruses. Virology. 2001, 279(2):

375-384.

Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, López-Gatell H, Olivera H, López I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD Jr, Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler- Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009, 325(5937):197-201.

Garten W, Klenk HD. Understanding influenza virus pathogenicity. Trends microbiol. 1999, 7(3):99-100.

González S, Ortín J. Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. J Virol. 1999, 73(1):631-637.

González S, Ortín J. Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates. EMBO J. 1999, 18(13):3767-3775.

Gorai T, Goto H, Noda T, Watanabe T, Kozuka-Hata H, Oyama M, Takano R, Neumann G, Watanabe S, Kawaoka Y. F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding. Proc Natl Acad Sci USA. 2012, 109(12):4615-4620.

Goraya MU, Wang S, Munir M, Chen JL. Induction of innate immunity and its perturbation by influenza viruses. Protein Cell. 2015, 6(10):712-721.

Goris K, Uhlenbruck S, Schwegmann-Wessels C, Köhl W, Niedorf F, Stern M, Hewicker-Trautwein M, Bals R, Taylor G, Braun A, Bicker G, Kietzmann M, Herrler G. Differential sensitivity of differentiated epithelial cells to respiratory viruses reveals different viral strategies of host infection. J Virol. 2009, 83(4):1962-1968.

Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ, Cusack S. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol. 2008, 15(5):500-506.

Guo Z, Chen LM, Zeng H, Gomez JA, Plowden J, Fujita T, Katz JM, Donis RO, Sambhara S. NS1 protein of influenza a virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol. 2007, 36(3):

263-269.

Haesebrouck F, Biront P, Pensaert MB, Leunen J. Epizootics of respiratory tract disease in swine in Belgium dueto H3N2 influenza virus and experimental reproduction of disease. Am J Vet Res. 1985, 46(9):1926-1928.

Hale BG, Randall RE, Ortín J, Jackson D. The multifunctional NS1 protein of influenza A viruses. J Gen Virol. 2008, 89(Pt 10):2359-2376.

Hara K, Schmidt FI, Crow M, Brownlee GG. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol. 2006, 80(16):7789-7798.

Harkema JR, Mariassy SA, George J, Hyde DM, Plopper CG. Epithelial cells of the conducting airways: a species comparison. New york: Marcel Dekker, 1991.

Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M, White JM, Steven AC.

Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci USA. 2006, 103(50):19123-19127.

Harris A, Forouhar F, Qiu S, Sha B, Luo M. The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology. 2001, 289(1):34-44.

Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008, 1778(3):660- 669.

Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001, 293(5536):1840-1842.

Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, Jayaraman A, Viswanathan K, Raman R, Sasisekharan R, Bennink JR, Yewdell JW.

Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift.

Science. 2009, 326(5953):734-736.

Herz C, Stavnezer E, Krug R, Gurney T. Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell. 1981, 26:391-400.

Hirst M, Astell CR, Griffith M, Coughlin SM, Moksa M, Zeng T, Smailus DE, Holt RA, Jones S, Marra MA, Petric M, Krajden M, Lawrence D, Mak A, Chow R, Skowronski DM, Tweed SA, Goh S, Brunham RC, Robinson J, Bowes V, Sojonky K, Byrne SK, Li Y, Kobasa D, Booth T, Paetzel M. Novel avian influenza H7N3 strain outbreak, British Columbia. Emerg Infect Dis. 2004, 10(12):2192-2195.

Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y, St George K, Grenfell BT, Salzberg SL, Fraser CM, Lipman DJ, Taubenberger JK. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol. 2005, 3(9):e300.

Honda A, Ishihama A. The molecular anatomy of influenza virus RNA polymerase.

Biol Chem. 1997, 378(6):483-488.

Honda A, Mizumoto K, Ishihama A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells. 1999, 4(8):475-485.

Horimoto T, Kawaoka Y. Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev. 2001, 14(1):129-149.

Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol. 2005, 3(8):591-600.

Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a HotAntiviral Drug Target. Curr Top Med Chem. 2017, 17(20):2271-2285.

Ibrahim HR, Aoki T, Pellegrini A. Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules. Curr Pharm Des. 2002, 8(9):

671-693.

Imai M, Kawaoka Y. The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr Opin Virol. 2012, 2(2):160-167.

Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol. 1998, 72(9):7367-773.

Iwatsuki-Horimoto K, Horimoto T, Noda T, Kiso M, Maeda J, Watanabe S, Muramoto Y, Fujii K, Kawaoka Y. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J Virol. 2006, 80(11):5233-5240.

Jackson DA, Caton AJ, McCready SJ, Cook PR. Influenza virus RNA is synthesized at fixed sites in the nucleus. Nature. 1982, 296(5855):366-368.

Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012, 337 (6091): 199-204.

Jakeman KJ, Tisdale M, Russell S, Leone A, Sweet C. Efficacy of 2'-deoxy-2'- fluororibosides against influenza A and B viruses in ferrets. Antimicrob Agents Chemother. 1994, 38(8):1864-1867.

Jin H, Leser GP, Zhang J, Lamb RA. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J. 1997, 16(6):

1236-1247.

Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918–1920

“Spanish” influenza pandemic. Bull Hist Med. 2002, 76(1):105-115.

Karasin AI, Landgraf J, Swenson S, Erickson G, Goyal S, Woodruff M, Scherba G, Anderson G, Olsen CW. Genetic characterization of H1N2 influenza A viruses isolates from pigs throughout the United States. J Clin Microbiol. 2002, 40(3):

1073-1079.

Kawaguchi A, Naito T, Nagata K. Involvement of influenza virus PA subunit in assembly of functional RNA polymerase complexes. J Virol. 2005, 79(2):732-744.

Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol. 1989, 63(11): bovine respiratory disease complex apply different strategies to initiate infection.

Vet Res. 2014, 45:20.

Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002, 109(5):571-577.

Koch S, Nusrat A. Dynamic regulation of epithelial cell fate and barrier function by intercellular junctions. Ann N Y Acad Sci. 2009, 1165:220-227.

Koelle K, Cobey S, Grenfell B, Pascual M. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science. 2006, 314(5807):1898-1903.

Kota S, Sabbah A, Chang TH, Harnack R, Xiang Y, Meng X, Bose S. Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J Biol Chem. 2008, 283(33):22417-22429.

Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S, Yoshida M. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res. 1998, 242(2):540-547.

Kuntz-Simon G, Madec F. Genetic and antigenic evolution of swine influenza viruses in Europe and evaluation of their zoonotic potential. Zoonoses Public Health. 2009, 56(6-7):310-25.

Kyriakis CS, Brown IH, Foni E, Kuntz-Simon G, Maldonado J, Madec F, Essen SC, Chiapponi C, Van Reeth K. Virological surveillance and preliminary antigenic characterization of influenza viruses in pigs in five European countries from

2006 to 2008. Zoonoses Public Health. 2011, 58(2): 93-101.

Kyriakis CS, Rose N, Foni E, Maldonado J, Loeffen WL, Madec F, Simon G, Van Reeth K. Influenza A virus infection dynamics in swine farms in Belgium, France, Italy and Spain, 2006-2008. Vet Microbiol. 2013, 162(2-4):543-550.

Lamb RA, Choppin PW. The gene structure and replication of influenza virus.

Annu Rev Biochem. 1983, 52:467-506.

Lamb RA, Lai CJ. Sequence of interrupted and uninterrupted mRNAs and cloned DNA coding for the two overlapping nonstructural proteins of influenza virus.

Cell. 1980, 21(2):475-485.

Lambermont VA, Schlepütz M, Dassow C, König P, Zimmermann LJ, Uhlig S, Kramer BW, Martin C. Comparison of airway responses in sheep of different age in precision-cut lung slices (PCLS). PLoS One. 2014, 9(9):e97610.

Lee CW, Saif YM. Avian influenza virus. Comp Immunol Microbiol Infect Dis. 2009, 32(4):301-310.

Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT, Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Webster RG, Peiris JS. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 2004, 430(6996):209-213.

Li ML, Ramirez BC, Krug RM. RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO J. 1998, 17(19): chloride channels in human, pig, ferret, and mouse airway epithelia. Am J Respir Cell Mol Biol. 2007, 36(3):313-323.

Ma W, Kahn RE, Richt JA. The pig as a mixing vessel for influenza viruses:

human and veterinary implications. J Mol Genet Med. 2008, 3(1):158-166.

Maier HJ, Kashiwagi T, Hara K, Brownlee GG. Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding. Virology.

Maier HJ, Kashiwagi T, Hara K, Brownlee GG. Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding. Virology.