• Keine Ergebnisse gefunden

5. Summary and Outlook

genus going to infinity having a torsion divisor linear in the genus. This series is the characteristic zero analogon to a family of curves over finite fields given byscheidler. Furthermore, it is possible to useHensel’s Lemma to construct curves with aQ-rational torsion divisor in this case, too.

For hyperelliptic and superelliptic curves, we see that there is a close relation between the computation of a non-trivial unit in the coordinate ring of a curve and the order of a divisor supported only at infinity. For hyperelliptic curves such a unit can be computed by using continued fractions. For function fields which are degree three extensions of the rational function field, we are able to show a connection between the periodicity of the Voronoi algorithm and the order of a certain divisor. For this we need to assume a certain splitting behavior of the place at infinity namely to a rational place of degree one and a rational place of degree two. Using this approach, we are able to give a series of curves with a divisor of order quadratic in the genus.

In the last section we consider a special family of hyperelliptic curves and determine the specializations such that there exists point of given order on the specialization.

Further work: Since in this area of research still not much is known, there are a lot of questions yet to be answered. We have already seen in the introduction that there are a lot of open problems concerning the torsion subgroup of an abelian variety defined over a number field.

Problem. Given a positive integersN, g and a field K, is it possible to find an abelian variety A/K of dimension g such that

N|#Ators(K)?

In this thesis we construct curves of various genus with a rational point of prescribed order on the jacobian. Even in the dimension two case, it remains unclear whether a curve with a rational torsion point of orderN for any possible N is known. Furthermore, we just consider the case where we have one torsion point on the jacobian. It remains an open question whether we are able to construct a curve with a rational pointP of order N and a rational pointQof orderN0 on the jacobian. Another open question about this problem is whether it is possible to construct a three-dimensional family of curves with a rational point of orderN on the jacobian. This would be a rather large step towards a better understanding of the moduli space of these objects. Historically this would follow the path which is taken in the dimension one case. The examples found for genus two curves induce the expectation that the largest prime orderp of a rational point on the jacobian could bep= 29. Furthermore, it seems like the points of large order all lie on

156 Max Kronberg

the image of the curve under some embedding into the jacobian. It would be interesting to know whether this observation is at random or whether there is some reason behind it. For higher genus curves there are still only a few examples known for large torsion orders. We have tried to adapt the techniques of genus two curves to genus three curves, but we were not able to find any example for a large torsion point. A fruitful area of research is the development of techniques that apply for genus larger than two. Some of these questions perhaps can be tackled by similar techniques as presented in this thesis.

These presented questions about the explicit construction of torsion points on jacobians of curves are a good starting point for further research.

The next two open problems seem a lot harder than the first one.

Problem. Let A/K be an abelian variety of dimension g and P ∈Ators(K). Does there exist a number N0(K, g) such that

ord(P)≤N0(K, g)?

This problem, known as the Boundedness Conjecture, and its uniform version are at the moment the most prominent conjectures concerning the rational torsion subgroup of abelian varieties. A possible starting point is to prove the existence of such a constant restricting to jacobians of hyperelliptic curves of genus two over the rational numbers.

If we restrict to jacobians of hyperelliptic curves with complex multiplication, such a constant is already known. So restricting to hyperelliptic curves with real multiplication could be a possible next step.

Problem. Find explicit formulae for the moduli space describing abelian varieties of dimension g with a torsion point or a torsion subgroup of certain order.

This problem is as hard as the previous one. Only for smallN asN = 2,3andg= 2or for elliptic curves there are equations for the moduli space known. Questions concerning the moduli space of these objects can only be answered with a deep understanding of modular forms of higher dimension.

Summing up, we conclude that there is still a lot of interesting work to do in this area of research.

Max Kronberg 157

A. Magma Codes

A.1. 13-Torsion Following Leprévost

Lemma A.1. With the following Magma code we computed the family of hyperelliptic curves admitting a13-torsion point on its jacobian in Theorem 3.14.

//Setting up the rational function field K<p,t>:=RationalFunctionField(Rationals(),2);

R<x>:=PolynomialRing(K);

r:=0;

//Setting q:=-p^2 makes the first coefficient of a vanish q:=-p^2;

//Setting up the congruence modulo b

b:=x^4-(p^2-2*q)*x^3+(q^2-2*(p*r-t))*x^2-(r^2-2*q*t)*x+t^2;

R1:=x^3-(p^2-2*q)*x^2+(q^2-2*(p*r-t/2))*x-(r^2-q*t);

S:=quo<R|b>;

R1:=R1/(p*t);

//Lifting the congruence

R2:=R1-R!(S!((R!((R1^2-x)/b))/(2*R1)))*b;

S2:=quo<R|b^2>;

//Computing the defining polynomial a:=R!(S2!(R2^13));

f:=R!((a^2-x^13)/b^2);

//Computing the Igusa invariants IgusaClebschInvariants(f);

[

(2p^8t^3 - 2p^4t^4 - 2t^5)/p^12,

(1/4p^16t^6 - 23/4p^12t^7 + 25/2p^8t^8 + 23/4p^4t^9 + 1/4t^10)/p^24,

(1/8p^24t^9 173/64p^20t^10 + 75/16p^16t^11 559/32p^12t^12 -75/16p^8t^13 - 173/64p^4t^14 - 1/8t^15)/p^36,

(-1/16p^8t^19 + 349/256p^4t^20 + 1/16t^21)/p^44 ]

159

A. Magma Codes

A.2. 19-Torsion Family

Lemma A.2. The Magmacode for determining that there exist no isomorphism of our family and the family of Leprévost is the following,

//Constructing a rational function field in the indeterminates //a for our family

//and a2 for the family of Leprévost

K<a,a2>:=RationalFunctionField(Rationals(),2);

R<x>:=PolynomialRing(K);

//Setting up our family

t:=-4-(a^4 + 6*a^2+4*a+1)/a^3;

b:=-a-(4+t);

c:=6-a*b;

d:=-a*c-4;

A:=1/2*((a-b-1)*x^2-(a+c)*x-d);

f:=A^2-t*x^4*(x-1);

C:=HyperellipticCurve(f);

//Finished setting up our family //Compute absolute Igusa invariants ICI_c:=IgusaClebschInvariants(C);

absII_c:=[

ICI_c[2]/ICI_c[1]^2, ICI_c[3]/ICI_c[1]^3, ICI_c[4]/ICI_c[1]^5 ];

//Setting up Leprevost family

A2:=-(a2^10+6*a2^9+29*a2^8+168*a2^7+482*a2^6-348*a2^5+482*a2^4 +168*a2^3+29*a2^2+6*a2+1)*x^2

+2*(a2+1)^2*(a2^8+4*a2^7+20*a2^6+92*a2^5 +22*a2^4+92*a2^3+20*a2^2+4*a2+1)*x -(a2+1)^6*(a2^4+14*a2^2+1);

f2:=A2^2-1024*a2^4*(a2^2-1)^2*(a2^4+14*a2^2+1)^2*x^3*(x-1)^2;

C2:=HyperellipticCurve(f2);

//Finished setting up Lepre´vost family

//Compute absolute Igusa invariants for Leprévost family

160 Max Kronberg

A.3. 11-Torsion family

ICI_c2:=IgusaClebschInvariants(C2);

absII_c2:=[

ICI_c2[2]/ICI_c2[1]^2, ICI_c2[3]/ICI_c2[1]^3, ICI_c2[4]/ICI_c2[1]^5 ];

//taking the difference of the absolute Igusa invariants diff2:=[Numerator(absII_c[i]-absII_c2[i]): i in [1..3]];

//Setting up the scheme of parameters with //equal absolute Igusa invariants

AA:=AffineSpace(Parent(diff2[1]));

X:=Scheme(AA,diff2);

A.3. 11-Torsion family

Lemma A.3. With this Magma code we computed the family of hyperelliptic curves of genus two with a 11-torsion divisor on the image of the curve in its jacobian. The corresponding result in the thesis is Example 3.5.

//Constructing the rational function field

K<lambda,mu,eta>:=RationalFunctionField(Rationals(),3);

S<X>:=PolynomialRing(K);

//Setting the u-coordinate of the torsion divisor

xi:=eta^2+2*lambda*mu*eta-lambda+2*lambda^2*eta+lambda^2*mu^2 +2*lambda^3*mu +lambda^4;

u:=X+xi;

//Lifting the quadratic congruence with Hensel’s Lemma R:=X^2+mu*X+eta;

b:=X^3+(2*mu+lambda)*X^2+(2*eta+mu^2+2*lambda*mu+lambda^2)*X +2*mu*eta-1+2*lambda*eta+2*lambda^2*mu+lambda^3+lambda*mu^2;

S1:=quo<S|b>;

S2:=quo<S|b^2>;

lambda1:=X-lambda;

lambda2:=S!(S1!(-lambda1/(2*R)));

R2:=R+lambda2*b;

//Computing the defining polynomial with arbitrary u-coordinate F:=S!((S!(S2!(R2)^11)^2-u^11)/b^2);

R:=RingOfIntegers(K);

Max Kronberg 161

A. Magma Codes

//Computing the coefficients of F under the assumption that the //u-coordinate of the torsion divisor is equal to x

S:=quo<R|R!xi>;

R<x>:=PolynomialRing(S);

R!F;

A.4. 17-torsion over a Number Field

Lemma A.4. The Magma code for computing the defining equation for the 17-torsion example is the following.

//Setting up the rational function field

K<p,q,t,u>:=RationalFunctionField(Rationals(),4);

R<x>:=PolynomialRing(K);

//Setting up the congruence modulo Q r:=(-1/8*p^3 + 1/2*p*q + 2*u);

s:=(1/64*p^4 - 1/8*p^2*q + p*u + 1/4*q^2);

b:=x^6+p*x^5+q*x^4+r*x^3+s*x^2+t*x+u^2;

R1:=x^3+p/2*x^2+(q-1/4*p^2)/2*x+u;

S:=quo<R|b>;

//Lifting the congruence modulo Q to a congruence modulo Q^2 R2:=R1-R!(S!((R!((R1^2-(-1/4*p^2*u + q*u - t)*x)/b))/(2*R1)))*b;

S1:=quo<R|b^2>;

//Computing the defining polynomial a:=R!((S1!R2)^17);

F:=R!((a^2-((-1/4*p^2*u + q*u - t)*x)^17)/b^2);

162 Max Kronberg

A.5. 7-Torsion via Pells Equation

A.5. 7-Torsion via Pells Equation

Lemma A.5. The absolute Igusa invariants of Cλ in Theorem 3.37 are given by α(Cλ) = λ24+ 32λ22+ 436λ20+ 3431λ18+ 17663λ16+ 63280λ14+ 162608λ12

+302517λ10+807965

2 λ8+752535

2 λ6+3690073

16 λ4+ 82881λ2+ 13092

· 1

2612+ 16λ10+ 90λ8+ 265λ6+ 432λ4+ 14034 λ2+ 102)2, β(Cλ) =

λ36+ 48λ34+ 1038λ32+27097

2 λ30+241237

2 λ28+6266553 8 λ26 + 7732161

2 λ24+29762419

2 λ22+363095039

8 λ20+884972175 8 λ18 +863944095

4 λ16+2694007649

8 λ14+3323900783

8 λ12+6387815919 16 λ10 +4661354371

16 λ8+9936719491 64 λ6 +453675089

8 λ4+ 12631657λ2+ 1289688

· 1

2912+ 16λ10+ 90λ8+ 265λ6+ 432λ4+ 14034 λ2+ 102)3, γ(Cλ) = λ2+ 214

·

λ14+ 21λ12+ 160λ10+ 13012 λ8+31672 λ6+3733716 λ4+ 1921λ2+ 676 21412+ 16λ10+ 90λ8+ 265λ6+ 432λ4+14034 λ2+ 102)5 .

Max Kronberg 163

B. Formulae for the Kummer Surface

Let P := (κ1 :. . .:κ4)∈ K(Jac(C))be a point on theKummersurface of the jacobian of the genus two hyperelliptic curveC. Thenδ2(P) = (a1(P) :. . .:a4(P)) is given by the coordinates

a1(P) =4κ1κ34+ 4κ2421f2−κ2κ3f5−3κ23f6)

+ 4κ4(−4κ31f0f431f1f3−8κ21κ2f0f5−2κ21κ3f1f5−12κ1κ22f0f6−κ1κ22f1f5

−6κ1κ2κ3f1f6−2κ1κ2κ3f2f5−4κ1κ23f2f6−κ1κ23f3f5−2κ32f1f6−4κ22κ3f2f6

−6κ2κ23f3f6−8κ33f4f6+ 2κ33f52)

+ 4κ43f4f52+ 4κ41f12f4+ 4κ41f0f32−16κ43f2f62+ 4κ42f0f52−16κ43f42f6

−16κ2κ33f3f4f6−16κ41f02f6−16κ41f0f2f4−4κ21κ2κ3f1f3f5+ 4κ32κ3f1f52 + 4κ2κ33f3f52+ 4κ22κ23f2f52−16κ31κ2f0f1f6−32κ31κ2f0f2f5+ 8κ31κ2f12f5

+ 32κ31κ3f0f2f6−16κ31κ3f0f3f5−16κ31κ3f12f6−64κ21κ22f0f2f6−8κ21κ22f0f3f5

+ 12κ21κ22f12f6−16κ21κ2κ3f0f4f5−16κ21κ2κ3f1f2f6−48κ21κ23f0f4f6

+ 16κ21κ23f0f52+ 24κ21κ23f1f3f6−8κ21κ23f1f4f5−16κ21κ23f22f6−32κ1κ32f0f3f6

−16κ1κ22κ3f0f52−24κ1κ22κ3f1f3f6−16κ1κ2κ23f0f5f6

−8κ1κ2κ23f1f52−16κ1κ2κ23f2f3f6+ 32κ1κ33f0f62−16κ1κ33f1f5f6−8κ1κ33f32f6

−16κ42f0f4f6−16κ32κ3f0f5f6−16κ32κ3f1f4f6

−48κ22κ23f0f62−8κ22κ23f1f5f6−16κ22κ23f2f4f6−32κ2κ33f1f62+ 8κ43f3f5f6

a2(P) =4κ2κ3424(4κ21f1+ 8κ1κ2f2−8κ1κ3f3+ 5κ22f3+ 8κ2κ3f4+ 4κ23f5) + 2κ4(2κ31f0f3+ 8κ21κ2f0f421κ2f1f3−8κ21κ3f0f5+ 8κ21κ3f1f4

−6κ21κ3f2f3+ 4κ1κ22f0f5+ 4κ1κ22f1f4−24κ1κ2κ3f0f6 + 8κ1κ2κ3f1f5+ 8κ1κ2κ3f2f4−5κ1κ2κ3f32

−8κ1κ23f1f6+ 8κ1κ23f2f5−6κ1κ23f3f4+ 2κ32f1f5+ 4κ22κ3f1f6+ 4κ22κ3f2f5 + 8κ2κ23f2f62κ23f3f5+ 2κ33f3f6)

41f12f3+ 5κ21κ23f33+ 16κ43f1f6243f3f52+ 16κ41f02f5−8κ1κ22κ3f1f3f5

+ 32κ21κ2κ3f12f6−20κ1κ2κ23f1f3f6−4κ41f0f2f3+ 32κ31κ2f02f6+ 16κ31κ2f0f1f5

165

B. Formulae for the Kummer Surface

−4κ31κ2f0f32−32κ31κ3f0f2f5+ 16κ31κ3f0f3f4+ 16κ31κ3f12f5−6κ31κ3f1f32 + 32κ21κ22f0f1f6−4κ21κ22f0f3f4+ 4κ21κ22f12f5−64κ21κ2κ3f0f2f6

−20κ21κ2κ3f0f3f5

+ 32κ21κ2κ3f0f42+ 16κ21κ2κ3f1f2f5−12κ21κ2κ3f1f3f4−20κ21κ23f0f3f6

−14κ21κ23f1f3f5+ 16κ21κ23f1f42+ 16κ21κ23f22f5−20κ21κ23f2f3f4−4κ1κ32f0f3f5 + 8κ1κ32f12f6−56κ1κ22κ3f0f3f6+ 32κ1κ22κ3f0f4f5+ 32κ1κ22κ3f1f2f6

−64κ1κ2κ23f0f4f6+ 32κ1κ2κ23f0f52+ 16κ1κ2κ23f1f4f5+ 32κ1κ2κ23f22f6

−12κ1κ2κ23f2f3f5−32κ1κ33f1f4f6+ 16κ1κ33f1f52+ 16κ1κ33f2f3f6−6κ1κ33f32f5

−4κ42f0f3f6+ 8κ32κ3f0f52−4κ32κ3f1f3f6+ 32κ22κ23f0f5f6+ 4κ22κ23f1f52

−4κ22κ23f2f3f6+ 32κ2κ33f0f62+ 16κ2κ33f1f5f6−4κ2κ33f32f6−4κ43f3f4f6 a3(P) =4κ3κ34+ 4κ24(−3κ21f0−κ1κ2f123f4)

+ 4κ4(−8κ31f0f2+ 2κ31f12−6κ21κ2f0f3−4κ21κ3f0f4−κ21κ3f1f3−4κ1κ22f0f4

−6κ1κ2κ3f0f5−2κ1κ2κ3f1f4−2κ1κ23f1f5−2κ32f0f5−12κ22κ3f0f6−κ22κ3f1f5

−8κ2κ23f1f6−4κ33f2f633f3f5)

+ 4κ42f12f6−16κ41f02f4−16κ41f0f22+ 4κ43f2f52+ 4κ41f12f2+ 4κ43f32f6−16κ43f0f62

−8κ21κ23f1f2f5+ 4κ31κ2f12f3+ 4κ21κ22f12f4+ 4κ1κ32f12f5+ 8κ41f0f1f3

−32κ31κ2f02f5−4κ1κ2κ23f1f3f5−16κ31κ2f0f2f3+ 32κ31κ3f02f6−16κ31κ3f0f1f5

−8κ31κ3f0f32−48κ21κ22f02f6−8κ21κ22f0f1f5−16κ21κ22f0f2f4−16κ21κ2κ3f0f1f6

−16κ21κ2κ3f0f3f4−8κ21κ2κ3f12f5−48κ21κ23f0f2f6+ 24κ21κ23f0f3f5

−16κ21κ23f0f42+ 16κ21κ23f12f6−16κ1κ32f0f1f6−16κ1κ32f0f2f5

−24κ1κ22κ3f0f3f5−16κ1κ22κ3f12f6−16κ1κ2κ23f0f4f5−16κ1κ2κ23f1f2f6

+ 32κ1κ33f0f4f6−16κ1κ33f0f52−16κ1κ33f1f3f6−16κ42f0f2f6−32κ32κ3f0f3f6

−64κ22κ23f0f4f6+ 12κ22κ23f0f52−8κ22κ23f1f3f6−16κ2κ33f0f5f6

−32κ2κ33f1f4f6+ 8κ2κ33f1f52−16κ43f2f4f6

a4(P) =κ44+ 2κ24(4κ21f0f4−κ21f1f3+ 4κ1κ2f0f5+ 8κ1κ3f0f6+ 4κ22f0f6 + 4κ2κ3f1f6+ 4κ23f2f6−κ23f3f5)

+ 4κ4(−2κ33f32f6−2κ31f0f32−2κ33f2f52+ 8κ21κ3f0f2f6−2κ31f12f4 + 16κ1κ22f0f2f6

−4κ1κ22f12f61κ2κ3f1f3f5+ 8κ31f0f2f4+ 12κ21κ2f0f2f5−3κ21κ2f12f5

+ 4κ21κ3f0f3f5−2κ21κ3f12f6+ 2κ1κ22f0f3f5+ 20κ1κ2κ3f0f3f6+ 8κ1κ23f0f4f6

−2κ1κ23f0f52+ 4κ1κ23f1f3f6+ 4κ32f0f3f6+ 16κ22κ3f0f4f6−4κ22κ3f0f52 + 2κ22κ3f1f3f6+ 12κ2κ23f1f4f6−3κ2κ23f1f52+ 8κ33f2f4f6)

166 Max Kronberg

+ 16κ43f22f6243f32f52−2κ41f13f5+ 16κ42f02f6241f12f32+ 16κ41f02f42

−4κ41f0f12f6+ 16κ41f0f22f4+ 16κ21κ2κ3f0f1f52−16κ43f1f3f62−8κ1κ2κ23f0f3f52

−2κ43f1f53+ 16κ43f0f4f62+ 16κ41f02f2f642f12f52−16κ41f02f3f5+ 8κ41f0f1f2f5

−8κ41f0f1f3f4−4κ41f0f2f32−4κ41f12f2f4−32κ31κ2f02f3f6+ 32κ31κ2f02f4f5 + 32κ31κ2f0f1f2f6−16κ31κ2f0f1f3f5+ 32κ31κ2f0f22f5−8κ31κ2f13f6

−8κ31κ2f12f2f5−64κ31κ3f02f4f6+ 32κ31κ3f02f52+ 16κ31κ3f0f1f3f6

+ 16κ31κ3f0f2f3f5−4κ31κ3f12f3f5+ 32κ21κ22f02f4f6+ 16κ21κ22f02f52

−24κ21κ22f0f1f3f6+ 64κ21κ22f0f22f6+ 8κ21κ22f0f2f3f5−16κ21κ22f12f2f6

−2κ21κ22f12f3f5+ 64κ21κ2κ3f02f5f6−32κ21κ2κ3f0f1f4f6 + 64κ21κ2κ3f0f2f3f6+ 8κ21κ2κ3f0f32f5−8κ21κ2κ3f12f3f6 + 64κ21κ23f02f62+ 96κ21κ23f0f2f4f6−32κ21κ23f0f2f52

−16κ21κ23f0f32f6+ 8κ21κ23f0f3f4f5−32κ21κ23f12f4f6 + 12κ21κ23f12f52+ 8κ21κ23f1f2f3f6+ 32κ1κ32f02f5f6

+ 32κ1κ32f0f2f3f6−8κ1κ32f12f3f6+ 64κ1κ22κ3f02f62

+ 32κ1κ22κ3f0f1f5f6+ 48κ1κ22κ3f0f32f6+ 64κ1κ2κ23f0f1f62

−32κ1κ2κ23f0f2f5f6+ 64κ1κ2κ23f0f3f4f6+ 16κ1κ2κ23f12f5f6+ 8κ1κ2κ23f1f32f6

−64κ1κ33f0f2f62+ 16κ1κ33f0f3f5f6+ 32κ1κ33f12f62+ 16κ1κ33f1f3f4f6

−4κ1κ33f1f3f52+ 16κ42f0f2f4f6−4κ42f0f2f52−4κ42f12f4f6+ 32κ32κ3f0f1f62 + 32κ32κ3f0f3f4f6−8κ32κ3f0f3f52+ 32κ22κ23f0f2f62−24κ22κ23f0f3f5f6

+ 64κ22κ23f0f42f6−16κ22κ23f0f4f52+ 16κ22κ23f12f62+ 8κ22κ23f1f3f4f6−2κ22κ23f1f3f52

−32κ2κ33f0f3f62+ 32κ2κ33f0f4f5f6−8κ2κ33f0f53+ 32κ2κ33f1f2f62

−16κ2κ33f1f3f5f6+ 32κ2κ33f1f42f6−8κ2κ33f1f4f52−4κ43f0f52f6+ 8κ43f1f4f5f6

−8κ43f2f3f5f6+ 16κ43f2f42f6−4κ43f2f4f52−4κ43f32f4f6.

Max Kronberg 167

Bibliography

[Ada95] Brigitte Adam. Vorono˘ı-algorithm expansion of two families with period length going to infinity. Math. Comp., 64(212):1687–1704, 1995.

[AR80] William W. Adams and Michael J. Razar. Multiples of points on elliptic curves and continued fractions.Proc. London Math. Soc. (3), 41(3):481–498, 1980.

[Art24] E. Artin. Quadratische Körper im Gebiete der höheren Kongruenzen. II.

Math. Z., 19(1):207–246, 1924.

[BB66] Walter L. Jr. Baily and Armand Borel. Compactification of Arithmetic Quotients of Bounded Symmetric Domains. Annals of Mathematics, 84(3):

pp. 442–528, 1966.

[BGM96] Jr. George A. Baker and Peter Graves-Morris. Padé approximants, vol-ume 59 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1996.

[BL04] Christina Birkenhake and Herbert Lange.Complex abelian varieties, volume 302 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2004.

[BS10] Nils Bruin and Michael Stoll. The Mordell-Weil sieve: proving non-existence of rational points on curves. LMS Journal of Computation and Mathematics, 13:272–306, 2010. ISSN 1461-1570.

[Buc85] Johannes Buchmann. A generalization of Vorono˘ı’s unit algorithm. I. J.

Number Theory, 20(2):177–191, 1985.

[Can87] David G. Cantor. Computing in the Jacobian of a Hyperelliptic Curve.

Mathematics of Computation, 48(177):95–101, January 1987.

[Can94] David G. Cantor. On the analogue of the division polynomials for hyperel-liptic curves. J. Reine Angew. Math., 447:91–145, 1994.

169

Bibliography

[CF96] John W.S. Cassels and E. Victor Flynn. Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2. Cambridge Studies in Religious Traditions.

Cambridge University Press, 1996.

[CFA+05] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography.

Discrete Mathematics and Its Applications. Taylor & Francis, 2005.

[Cha41] Claude Chabauty. Sur les points rationnels des variétés algébriques dont l’irrégularité est supérieure à la dimension. C. R. Acad. Sci. Paris, 212:

1022–1024, 1941.

[CL12] Craig Costello and Kristin Lauter. Group law computations on jacobians of hyperelliptic curves. In Ali Miri and Serge Vaudenay, editors,Selected Areas in Cryptography, volume 7118 ofLecture Notes in Computer Science,

pages 92–117. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-28495-3.

URLhttp://dx.doi.org/10.1007/978-3-642-28496-0_6.

[Col85] Robert F. Coleman. Effective Chabauty. Duke Math. J., 52(3):765–770, 1985.

[DO14] Eduardo Ruiz Duarte and Octavio Páez Osuna. Explicit endomorphism of the jacobian of a hyperelliptic function field of genus 2 using base field operations. IACR Cryptology ePrint Archive, 2014:359, 2014. URL http:

//dblp.uni-trier.de/db/journals/iacr/iacr2014.html#DuarteO14.

[EH00] David Eisenbud and Joe Harris. The geometry of schemes Graduate Texts in Mathematics, 197. Springer Verlag, New York, 2000.

[Elk14] Noam D. Elkies. Simple genus-2 Jacobians with rational points of high or-der, July 2014. URLhttp://www.math.harvard.edu/~elkies/g2_tors.

html.

[Fal83] Gerd Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern.

Invent. Math., 73(3):349–366, 1983.

[Fly90] E. Victor Flynn. Large rational torsion on abelian varieties. J. Number Theory, 36(3):257–265, 1990.

[Fly91] E. Victor Flynn. Sequences of rational torsions on abelian varieties. Invent.

Math., 106(2):433–442, 1991.

[Fly93] E. Victor Flynn. The group law on the jacobian of a curve of genus 2.

Journal für die reine und angewandte Mathematik, 439:45–69, 1993.

170 Max Kronberg

Bibliography

[Gor02] Eyal Z. Goren. Lectures on Hilbert modular varieties and modular forms, volume 14 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2002. With the assistance of Marc-Hubert Nicole.

[Gra90] David Grant. Formal groups in genus two. J. Reine Angew. Math., 411:

96–121, 1990.

[Gra13] David Grant. On an analogue of the Lutz-Nagell theorem for hyperelliptic curves. J. Number Theory, 133(3):963–969, 2013.

[Gro60] Alexander Grothendieck. Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math., (4):228, 1960.

[Ham66] William F. Hammond. The Modular Groups of Hilbert and Siegel. Ameri-can Journal of Mathematics, 88(2):pp. 497–516, 1966.

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.

[Has00] Ki-ichiro Hashimoto. On Brumer’s family of RM-curves of genus two.

Tohoku Math. J. (2), 52(4):475–488, 2000.

[Hen18] Kurt Hensel. Eine neue theorie der algebraischen zahlen. Mathematische Zeitschrift, 2(3):433–452, 1918.

[HK89] Franz Halter-Koch. Reell-quadratische Zahlkörper mit großer Grundeinheit.

Abh. Math. Sem. Univ. Hamburg, 59:171–181, 1989.

[HLP00] Everett W. Howe, Franck Leprévost, and Bjorn Poonen. Large torsion subgroups of split Jacobians of curves of genus two or three. Forum Math., 12(3):315–364, 2000.

[HM98] Joe Harris and Ian Morrison. Moduli of Curves. Graduate Texts in Mathematics. Springer Verlag, 1998.

[How14] Everett W. Howe. Genus-2 Jacobians with torsion points of large order, July 2014. URL http://arxiv.org/abs/1407.2654v2;http://arxiv.

org/pdf/1407.2654v2.

[HW01] J. William Hoffman and Steven H. Weintraub. The Siegel modular variety of degree two and level three. Trans. Amer. Math. Soc., 353(8):3267–3305 (electronic), 2001.

Max Kronberg 171

Bibliography

[Igu60] Jun-ichi Igusa. Arithmetic variety of moduli for genus two. Ann. of Math.

(2), 72:612–649, 1960.

[Kan05] Naoki Kanayama. Division polynomials and multiplication formulae of Jacobian varieties of dimension 2. Math. Proc. Cambridge Philos. Soc., 139(3):399–409, 2005.

[Kos14] Christiaan Koster. On the units of coordinate rings of algebraic curves, 2014.

URL http://scripties.fwn.eldoc.ub.rug.nl/FILES/scripties/

Wiskunde/Masters/2014/Koster.C.J./Christiaan_Koster_WM_2014.

pdf.

[Kub76] Daniel S. Kubert. Universal bounds on the torsion of elliptic curves.

Proceedings of the London Mathematical Society, 3(2):193, 1976.

[Küh95] Josef Kühner. On a family of generalized continued fraction expansions with period length going to infinity. J. Number Theory, 53(1):1–12, 1995.

[Lan82] Serge Lang. Introduction to Algebraic and Abelian Functions, volume 89 ofGraduate Texts in Mathematics. Springer New York, 1982.

[Lan05] Tanja Lange. Formulae for arithmetic on genus 2 hyperelliptic curves.

Applicable Algebra in Engineering, Communication and Computing, 15 (5):295–328, 2005. ISSN 0938-1279. URLhttp://dx.doi.org/10.1007/

s00200-004-0154-8.

[Lep91a] Franck Leprévost. Famille de courbes de genre2 munies d’une classe de diviseurs rationnels d’ordre13. C. R. Acad. Sci. Paris Sér. I Math., 313 (7):451–454, 1991.

[Lep91b] Franck Leprévost. Familles de courbes de genre 2 munies d’une classe de diviseurs rationnels d’ordre 15, 17, 19 ou 21. C. R. Acad. Sci., Paris, Sér.

I, 313(11):771–774, 1991.

[Lep93] Franck Leprévost. Points rationnels de torsion de jacobiennes de certaines courbes de genre 2. C. R. Acad. Sci. Paris Sér. I Math., 316(8):819–821, 1993.

[Lep95] Franck Leprevost. Jacobiennes de certaines courbes de genre2: torsion et simplicité. J. Théor. Nombres Bordeaux, 7(1):283–306, 1995. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993).

172 Max Kronberg

Bibliography

[LPS04] Franck Leprévost, Michael Pohst, and Andreas M. Schöpp. Rational torsion of J0(N) for hyperelliptic modular curves and families of Jacobians of genus 2 and genus 3 curves with a rational point of order 5, 7 or 10. Abh.

Math. Sem. Univ. Hamburg, 74:193–203, 2004.

[LSY03] Yoonjin Lee, Renate Scheidler, and Christopher Yarrish. Computation of the fundamental units and the regulator of a cyclic cubic function field.

Experiment. Math., 12(2):211–225, 2003.

[Maz77] B. Mazur. Modular curves and the eisenstein ideal. Publications Mathé-matiques de l’Institut des Hautes Études Scientifiques, 47(1):33–186, 1977.

ISSN 0073-8301.

[Mes91] Jean-Francois Mestre. Familles de courbes hyperelliptiques à multiplica-tions réelles. InArithmetic algebraic geometry (Texel, 1989), volume 89 of Progr. Math., pages 193–208. Birkhäuser Boston, Boston, MA, 1991.

[Mil08] James S. Milne. Abelian Varieties (v2.00), 2008. URLhttp://www.jmilne.

org/math/.

[Mil11] James S. Milne. Algebraic Geometry (v5.21), 2011. URL http://www.

jmilne.org/math/.

[MP07] William Mccallum and Bjorn Poonen. The method of Chabauty and Coleman. Technical report, 2007. URL www-math.mit.edu/~poonen/

papers/chabauty.pdf.

[Mül10] Jan Steffen Müller. Explicit Kummer surface formulas for arbitrary char-acteristic. LMS J. Comput. Math., 13:47–64, 2010.

[Mum84] David Mumford. Tata lectures on theta, 2 : Jacobian theta functions and differential equations. Progress in mathematics. Birkhauser, Boston, Basel, Stuttgart, 1984. ISBN 0-8176-3110-0.

[Mum99] David Mumford. The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians. Lecture Notes in Mathematics. Springer Verlag, 1999.

[Neu99] Jürgen Neukirch. Algebraic number theory, volume 322 ofGrundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G.

Harder.

Max Kronberg 173

Bibliography

[Oga94] Hiroyuki Ogawa. Curves of genus2with a rational torsion divisor of order 23. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 70(9):295–298, 1994.

[Ôni02] Yoshihiro Ônishi. Determinant expressions for abelian functions in genus two. Glasg. Math. J., 44(3):353–364, 2002.

[Oor88] Frans Oort. Endomorphism algebras of abelian varieties. In Algebraic geometry and commutative algebra, pages 469–502. Kinokuniya, Tokyo, 1988.

[Pat07] Roger D. Patterson. Creepers: Real quadratic orders with large class number, March 2007. URLhttp://arxiv.org/pdf/math/0703519v1. [Poo06] Bjorn Poonen. Lectures on rational points on curves, 2006. URLhttp:

//math.mit.edu/~poonen/papers/curves.pdf.

[PvdPW07a] Roger D. Patterson, Alfred J. van der Poorten, and Hugh C. Williams.

Characterization of a generalized shanks sequence. Pacific J. Math, 230 (1):185–215, 2007.

[PvdPW07b] Roger D. Patterson, Alfred J. van der Poorten, and Hugh C. Williams.

Characterization of a generalized Shanks sequence. Pacific J. Math., 230 (1):185–215, 2007.

[PvdPW08] Roger D. Patterson, Alfred J. van der Poorten, and Hugh C. Williams.

Sequences of Jacobian varieties with torsion divisors of quadratic order.

Funct. Approx. Comment. Math., 39(part 2):345–360, 2008.

[Ray83] Michel Raynaud. Courbes sur une variété abélienne et points de torsion.

Inventiones mathematicae, 71:207–234, 1983.

[Rei85] Clifford Reiter. Effective lower bounds on large fundamental units of real quadratic fields. Osaka J. Math., 22(4):755–765, 1985.

[Run99] Bernhard Runge. Endomorphism rings of abelian surfaces and projective models of their moduli spaces. Tohoku Math. J. (2), 51(3):283–303, 1999.

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux, 7(1):219–254, 1995.

[Sch00] Renate Scheidler. Purely cubic complex function fields with small units.

Acta Arith., 95(4):289–304, 2000.

174 Max Kronberg

Bibliography

[Sch04] Renate Scheidler. Algorithmic aspects of cubic function fields. In Algorith-mic number theory, volume 3076 of Lecture Notes in Comput. Sci., pages 395–410. Springer, Berlin, 2004.

[Shi98] Goro Shimura. Abelian varieties with complex multiplication and mod-ular functions, volume 46 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1998.

[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.

[SS00] Renate Scheidler and Andreas Stein. Voronoi’s algorithm in purely cubic congruence function fields of unit rank1. Math. Comp., 69(231):1245–1266, 2000.

[Ste99] A. Stein. Introduction to continued fraction expansions in real quadratic function fields. Research report (University of Waterloo. Faculty of Mathe-matics), 1999.

[Sti09] Henning Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate Texts in Mathematics. Springer Verlag, Berlin, second edition, 2009.

[Sto01] Michael Stoll. Implementing 2-descent for Jacobians of hyperelliptic curves.

Acta Arith., 98(3):245–277, 2001.

[Sto13] Michael Stoll. Uniform Bounds for the Number of Rational Points on Hyperelliptic Curves of Small Mordell-Weil Rank, 2013. URL http://

arxiv.org/abs/1307.1773.

[Tan11] Adrian Tang.Infrastructure of Function Fields of Unit Rank One. ProQuest LLC, Ann Arbor, MI, 2011. 288 pp. Thesis (Ph.D.)–University of Calgary (Canada).

[Tat66] John Tate. Endomorphisms of abelian varieties over finite fields. Invent.

Math., 2:134–144, 1966.

[TTV91] Walter Tautz, Jaap Top, and Alain Verberkmoes. Explicit hyperelliptic curves with real multiplication and permutation polynomials. Canad. J.

Math., 43(5):1055–1064, 1991.

[vdG88] Gerard van der Geer. Hilbert modular surfaces, volume 16 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988.

Max Kronberg 175

Bibliography

[vdP04a] Alfred J. van der Poorten. Genus 2 curves, continued fractions, and Somos sequences, December 2004. URL http://arxiv.org/abs/math/

0412372v1.

[vdP04b] Alfred J. van der Poorten. Periodic continued fractions and elliptic curves, volume 41 of Fields Inst. Commun., pages 353–365. Amer. Math. Soc., Providence, RI, 2004.

[vdP05] Alfred J. van der Poorten. Elliptic Curves and Continued Fractions, 2005.

URLhttp://arxiv.org/pdf/math/0403225v3.pdf.

[Wei29] André Weil. L’arithmétique sur les courbes algébriques. Acta Mathematica, 52(1):281–315, 1929.

[Yam71] Yoshihiko Yamamoto. Real quadratic number fields with large fundamental units. Osaka J. Math., 8:261–270, 1971.

176 Max Kronberg

Bibliography

Selbstständigkeitserklärung

Hiermit versichere ich, Max Christian Kronberg, dass ich diese Dissertation selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Sie wurde weder in ihrer Gesamtheit noch in Teilen einer anderen wissenschaftlichen Hochschule zur Begutachtung in einem Promotionsverfahren vorgelegt.

Außerdem erkläre ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröffentlichung, wie sie in den Leitlinien guter wissenschaftlicher Praxis der Carl von Ossietzky Universität Oldenburgfestgelegt sind, befolgt habe.

Oldenburg, 18.Mai 2015

Max Kronberg 177