• Keine Ergebnisse gefunden

Tsüklilise adenosiinmonofosfaadi biosensori arendamine ja rakendamine G valguga seotud retseptorite

signaaliülekande uurimiseks

Maailma rahvastik on pidevas kasvus kuid ka vananemises ning sellest on tingitud mõnd haigust või sündroomi põdevate patsientide üha suurenev hulk.

Enamik haigustest on põhjustatud häiretest organismi metabolismi või rakkude signaaliülekande regulatsioonis. G valguga seotud retseptorid (GPCR) moo-dustavad suure rakkudevaheliste signaalide ülekannet reguleeriva valkude pere-konna. Inimese genoomist on leitud ligi 800 erineva GPCR-i geenijärjestused.

Keemilise signaaliülekande moduleerimine on levinud ravistrateegia, mida kin-nitab ka tõsiasi, et ligi kolmandik kõigist tänapäeva retseptiravimitest on suu-natud just GPCR-tele. Ravimid ehk bioaktiivsed ühendid on seega muutunud tänapäeva maailma asendamatuks osaks.

Uute molekulide otsinguil on väga olulisteks ühendite molekulaarne disain, farmakokineetiliste parameetrite ja bioloogilise aktiivsuse määramine ning katsetulemuste võrdlus struktuurselt sarnaste või kehaomaste signaalimoleku-lide omadustega. Ühendite süstemaatiliseks testimiseks on loodud mitmeid katsesüsteeme ning nende arendamine on väga aktuaalne ka täna. Käesolevas doktoritöös arendati välja katsesüsteem GPCR-te ligandide iseloomustamiseks lähtudes tsüklilise adenosiinmonofosfaadi (cAMP) signaaliraja aktivatsiooni jälgimisest.

cAMP on signaalimolekul, mis kannab rakus edasi paljude erinevate GPCR-de poolt vahendatud bioloogilisi teateid. Kui retseptorile seondunud ligand on aktiveeriva iseloomuga, suureneb või väheneb rakus cAMP sünteesi eest vastu-tavate ensüümide adenülaadi tsüklaaside aktiivsus ning muutus cAMP kont-sentratsioonis on võrdeline retseptori aktivatsiooniga. Rakendades cAMP suhtes tundlikke ja spetsiifilisi sensoreid, on võimalik jälgida retseptorile seostuvate ligandide bioloogilist aktiivsust elusrakkudes reaalajas. Käesolevas töös kasu-tatud biosensorid koosnevad cAMP siduvast peptiidijärjestusest ning kahest erinevate spektraalsete omadustega fluorestsentsvalgust. Puhkeolekus toimub kahe fluorofoori vahel Försteri resonantsenergia ülekanne (FRET). Ergastades biosensori fluorofoore kindla lainepikkusega valgusega (430 nm) on resonants-energia ülekande tulemusena võimalik määrata mõlema fluorofoori poolt kiira-tava valguse intensiivsust lainepikkustel 480 ja 530 nm. cAMP taseme suurene-misel rakus seostub signaalimolekul sensorile ning muudab fluorofooride oma-vahelist kaugust ja orientatsiooni võrreldes puhkeolekuga. Selle tulemusena väheneb fluorestsentsvalkude vaheline FRET ning muutub vastavatel laine-pikkustel detekteeritava valguse intensiivsuste suhe. FRET-l põhineva bio-sensoriga on seega võimalik mõõta cAMP muutust elusrakkudes vastusena raku pinnal asuvate retseptorite aktivatsioonile.

Biosensorite kasutamiseks on vajalik nende ekspressioon (rakud peaksid tootma sensorvalku ise, lähtudes seda kodeerivast geenijärjestusest).

Saavuta-maks biosensori ühtlast ekspressiooni erinevates uuritavates rakkudes loodi käesolevas töös bakuloviirustel põhinev BacMam ekspressioonisüsteem. Inime-sele ohutud putukaviirused transpordivad sensorit kodeeriva geenijärjestuse uuritavasse rakku, kus sellest sünteesitakse cAMP biosensorvalk. BacMam süsteem võimaldas reguleerida biosensori ekspressioonitaset, mille tulemuseks oli ühtlane ja hea korratavusega ekspressioon, mis lõi eelduse usaldusväärse katsesüsteemi loomiseks.

Töö käigus ekspresseeriti cAMP biosensorit mitmetes erinevates rakuliinides ning uuriti kolme erineva GPCR-i aktivatsiooni (melanokortiinne retseptor MC1R, dopamiini retseptor D1R ning inimese koorioni gonadotropiini ja luteni-seeriva hormooni LH retseptor). Need retseptorid seovad struktuurselt väga erinevaid ligande. MC1 retseptori ligandideks on peptiidid, D1 retseptor seob madalmolekulaarseid ühendeid ja LH retseptori ligandideks on mitmekümne kilodaltoni suurused glükoproteiinidest hormoonid. Leiti, et FRET sensoril põhinev katsesüsteem on sobilik kõigi nende GPCR-de ligandide bioloogilise aktiivsuse iseloomustamiseks, kusjuures süsteem võimaldab eristada nii osalisi kui ka täisagoniste (aktivaatoreid). Kuna loodud katsesüsteem on rakendatav nii cAMP tõusu kui languse määramiseks, siis võimaldas see määrata ka erinevate dopamiini retseptorite alatüüpe, mis nii aktiveerivad kui ka inhibeerivad ensüümi adenülaadi tsüklaas. Lisaks ligandide endi aktivatsioonile võimaldas katsesüsteem määrata ka ligandi seostumist moduleerivate komponentide mõju.

Näidati, et 1 mM Ca2+ või Mg2+ on vajalikud, et peptiidsed agonistid oleksid MC1 retseptoril efektiivsed. Katsesüsteemi tundlikkus (avastamispiir 5 pM) võimaldab seda kasutada aktiivsete hormoonide hulga määramiseks erinevates bioloogilistes proovides.

Käesolevas töös arendati välja FRET biosensoril põhinev katsesüsteem G valguga seotud retseptorite poolt reguleeritava cAMP taseme määramiseks elusrakkudes. Töö tulemusena on loodud tööriist, mille abil on võimalik mää-rata erinevate struktuursete omadustega ühendite bioloogilist aktiivsust vasta-vate retseptorite aktivatsiooni kaudu.

REFERENCES

Adams, Stephen R., Alec T. Harootunian, Ying Ji Buechler, Susan S. Taylor, and Roger Y. Tsien. “Fluorescence ratio imaging of cyclic AMP in single cells.” Nature 349, no. 6311 (1991): 694–697.

Ascoli, Mario, Francesca Fanelli, and Deborah L. Segaloff. “The lutropin/choriogon-adotropin receptor, a 2002 perspective.” Endocrine reviews 23, no. 2 (2002): 141–

174.

Baker, Jillian G., Ian P. Hall, and Stephen J. Hill. “Agonist and inverse agonist actions of β-blockers at the human β2-adrenoceptor provide evidence for agonist-directed signaling.” Molecular pharmacology 64, no. 6 (2003): 1357–1369.

Biosciences, Amersham. “High-throughput screening for cAMP formation by scintil-lation proximity radioimmunoassay.” Proximity News 23 (1996).

Beaulieu, Jean-Martin, and Raul R. Gainetdinov. “The physiology, signaling, and pharmacology of dopamine receptors.” Pharmacological reviews 63, no. 1 (2011):

182–217.

Beaulieu, Jean‐Martin, Stefano Espinoza, and Raul R. Gainetdinov. “Dopamine receptors–IUPHAR Review 13.” British Journal of Pharmacology 172, no. 1 (2015): 1–23.

Beavo, Joseph A., and Laurence L. Brunton. “Cyclic nucleotide research – still ex-panding after half a century.” Nature Reviews Molecular Cell Biology 3, no. 9 (2002): 710–718.

Becker, W. “Fluorescence lifetime imaging–techniques and applications.” Journal of microscopy 247, no. 2 (2012): 119–136.

Bender, Andrew T., and Joseph A. Beavo. “Cyclic nucleotide phosphodiesterases:

molecular regulation to clinical use.” Pharmacological reviews 58, no. 3 (2006):

488–520.

Boussif, Otmane, Frank Lezoualc'h, MARLA ANTONIETrA Zanta, MOJGAN DJA-VAHERI Mergny, Daniel Scherman, Barbara Demeneix, and Jean-Paul Behr. “A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.” Proceedings of the National Academy of Sciences 92, no.

16 (1995): 7297–7301.

Boute, Nicolas, Jockers, Ralf, and Tarik Issad. “The use of resonance energy transfer in high-throughput screening: BRET versus FRET.” Trends in pharmacological scien-ces 23, no. 8 (2002): 351–354.

Brady, Scott, George Siegel, R. Wayne Albers, and Donald Price, eds. Basic neuro-chemistry: principles of molecular, cellular, and medical neurobiology. Academic Press, 2011.

Bradley, Jonathan, Johannes Reisert, and Stephan Frings. “Regulation of cyclic nucleo-tide-gated channels.” Current opinion in neurobiology 15, no. 3 (2005): 343–349.

Brooker, Gary, J. F. Harper, W. L. Terasaki, and R. D. Moylan. “Radioimmunoassay of cyclic AMP and cyclic GMP.” Advances in cyclic nucleotide research 10 (1978): 1–

33.

Butler, Stephen A., Jameel Luttoo, Maísa OT Freire, Thomas K. Abban, Paola TA Bor-relli, and Ray K. Iles. “Human Chorionic Gonadotropin (hCG) in the Secretome of Cultured Embryos Hyperglycosylated hCG and hCG-Free Beta Subunit Are Poten-tial Markers for Infertility Management and Treatment.” Reproductive Sciences 20, no. 9 (2013): 1038–1045.

Carlsson, Arvid. “A paradigm shift in brain research.” Science 294, no. 5544 (2001):

1021–1024.

Casarini, Livio, Monica Lispi, Salvatore Longobardi, Fabiola Milosa, Antonio La Marca, Daniela Tagliasacchi, Elisa Pignatti, and Manuela Simoni. “LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling.” PloS one 7, no. 10 (2012): e46682.

Chen, Chi-Yuan, Chin-Yu Lin, Guan-Yu Chen, and Yu-Chen Hu. “Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications.” Biotechnology advances 29, no. 6 (2011): 618–631.

Chen, Linjie, Lili Jin, and Naiming Zhou. “An update of novel screening methods for GPCR in drug discovery.” Expert opinion on drug discovery 7, no. 9 (2012): 791–

806.

Choi, Janet, and Johan Smitz. “Luteinizing hormone and human chorionic gonado-tropin: origins of difference.” Molecular and cellular endocrinology 383, no. 1 (2014): 203–213.

Corbin, J. D., and E. G. Krebs. “A cyclic AMP-stimulated protein kinase in adipose tissue.” Biochemical and biophysical research communications 36, no. 2 (1969):

328–336.

Cox, Manon MJ. “Recombinant protein vaccines produced in insect cells.” Vaccine 30, no. 10 (2012): 1759–1766.

De Rooij, Johan, Fried JT Zwartkruis, Mark HG Verheijen, Robbert H. Cool, Sebastian MB Nijman, Alfred Wittinghofer, and Johannes L. Bos. “Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP.” Nature 396, no. 6710 (1998): 474–477.

De Rooij, Johan, Holger Rehmann, Miranda van Triest, Robert H. Cool, Alfred Witting-hofer, and Johannes L. Bos. “Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs.” Journal of Biological Chemistry 275, no. 27 (2000): 20829–

20836.

DiPilato, Lisa M., Xiaodong Cheng, and Jin Zhang. “Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments.” Proceedings of the National Academy of Sciences of the United States of America 101, no. 47 (2004): 16513–16518.

Donaldson, J. I. L. L., STEPHEN J. Hill, and ANTHONY M. Brown. “Kinetic studies on the mechanism by which histamine H1 receptors potentiate cyclic AMP accu-mulation in guinea pig cerebral cortical slices.” Molecular pharmacology 33, no. 6 (1988): 626–633.

Fagan, Kent A., Jerome Schaack, Adam Zweifach, and Dermot MF Cooper. “Adeno-virus encoded cyclic nucleotide-gated channels: a new methodology for monitoring cAMP in living cells.” FEBS letters 500, no. 1 (2001): 85–90.

Fesenko, Evgeniy E., Stanislav S. Kolesnikov, and Arkadiy L. Lyubarsky. “Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment.” (1985): 310–313.

Fredriksson, Robert, Malin C. Lagerström, Lars-Gustav Lundin, and Helgi B. Schiöth.

“The G-protein-coupled receptors in the human genome form five main families.

Phylogenetic analysis, paralogon groups, and fingerprints.” Molecular pharmacolo-gy 63, no. 6 (2003): 1256–1272.

Förster, Th. “Zwischenmolekulare energiewanderung und fluoreszenz.” Annalen der physik 437, no. 1‐2 (1948): 55–75.

Garland, Stephen L. “Are GPCRs still a source of new targets?.” Journal of biomole-cular screening (2013): 1087057113498418.

Gilman, Alfred G. “A protein binding assay for adenosine 3′: 5′-cyclic monophosphate.”

Proceedings of the National Academy of Sciences 67, no. 1 (1970): 305–312.

Gilman, Alfred G. “G proteins: transducers of receptor-generated signals.” Annual review of biochemistry 56, no. 1 (1987): 615–649.

Gloerich, Martijn, and Johannes L. Bos. “Epac: defining a new mechanism for cAMP action.” Annual review of pharmacology and toxicology 50 (2010): 355–375.

Godinho, Rosely O., Thiago Duarte, and Enio SA Pacini. “New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway.” Frontiers in pharmacology 6 (2015).

Goedhart, Joachim, Laura van Weeren, Mark A. Hink, Norbert OE Vischer, Kees Jalink, and Theodorus WJ Gadella. “Bright cyan fluorescent protein variants identi-fied by fluorescence lifetime screening.” Nature methods 7, no. 2 (2010): 137–139.

Gonzalez, Gustavo A., and Marc R. Montminy. “Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133.” Cell 59, no. 4 (1989): 675–680.

Graham, F. L., and A. J. Van der Eb. “A new technique for the assay of infectivity of human adenovirus 5 DNA.” Virology 52, no. 2 (1973): 456–467.

Gurevich, Eugenia V., John JG Tesmer, Arcady Mushegian, and Vsevolod V. Gurevich.

“G protein-coupled receptor kinases: more than just kinases and not only for GPCRs.” Pharmacology & therapeutics 133, no. 1 (2012): 40–69.

Harper, J. F., and G. Brooker. “Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution.”

Journal of cyclic nucleotide research 1, no. 4 (1974): 207–218.

Heim, Roger, and Roger Y. Tsien. “Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer.” Cur-rent Biology 6, no. 2 (1996): 178–182.

Heng, Boon Chin, Dominique Aubel, and Martin Fussenegger. “An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases.” Biotechnology advances 31, no. 8 (2013): 1676–1694.

Hill, Stephen J., Christine Williams, and Lauren T. May. “Insights into GPCR pharma-cology from the measurement of changes in intracellular cyclic AMP; advantages and pitfalls of differing methodologies.” British journal of pharmacology 161, no. 6 (2010): 1266–1275.

Holst, Birgitte, Christian E. Elling, and Thue W. Schwartz. “Metal ion-mediated ago-nism and agonist enhancement in melanocortin MC1 and MC4 receptors.” Journal of Biological Chemistry 277, no. 49 (2002): 47662–47670.

Houslay, Miles D. “Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown.” Trends in biochemical sciences 35, no. 2 (2010): 91–100.

Hrubu, Victor J., Dongsi Lu, Shubh D. Sharma, Ana de L. Castrucci, Robert A.

Kesterson, Fahad A. Al-Obeidi, Mac E. Hadley, and Roger D. Cone. “Cyclic lactam.

melanotropin analogs of Ac-Nle4-cyclo [Asp5, D-Phe7, Lys10]-. alpha.-melanocyte-stimulating hormone-(4–10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors.” Journal of medicinal chemistry 38, no. 18 (1995): 3454–3461.

Huang, M., H. Shimizu, and J. Daly. “Regulation of Adenosine Cyclic 3', 5'-Phosphate Formation in Cerebral Cortical Slices Interaction among Norepinephrine, Histamine, Serotonin.” Molecular pharmacology 7, no. 2 (1971): 155–162.

Janakiraman, Vasantharajan, William F. Forrest, Bernard Chow, and Somasekar Seshagiri. “A rapid method for estimation of baculovirus titer based on viable cell size.” Journal of virological methods 132, no. 1 (2006): 48–58.

Jares-Erijman, Elizabeth A., and Thomas M. Jovin. “FRET imaging.” Nature bio-technology 21, no. 11 (2003): 1387–1395.

Jiang, Lily I., Julie Collins, Richard Davis, Keng-Mean Lin, Dianne DeCamp, Tamara Roach, Robert Hsueh et al. “Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway.” Journal of Bio-logical Chemistry 282, no. 14 (2007): 10576–10584.

Kamimura, Kenya, Takeshi Suda, Guisheng Zhang, and Dexi Liu. “Advances in gene delivery systems.” Pharmaceutical medicine 25, no. 5 (2011): 293–306.

Kandel, Eric R. “The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB.” Mol Brain 5, no. 1 (2012): 14.

Kask, Ants, Felikss Mutulis, Ruta Muceniece, Rein Pähkla, Ilze Mutule, Jarl ES Wik-berg, Lembit Rägo, and Helgi B. Schiöth. “Discovery of a Novel Superpotent and Selective Melanocortin-4 Receptor Antagonist (HS024): Evaluation in Vitro and in Vivo 1.” Endocrinology 139, no. 12 (1998): 5006–5014.

Klarenbeek, Jeffrey B., Joachim Goedhart, Mark A. Hink, Theodorus WJ Gadella, and Kees Jalink. “A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range.” PLoS One 6, no. 4 (2011): e19170.

Klarenbeek, Jeffrey, Joachim Goedhart, Aernoud van Batenburg, Daniella Groenewald, and Kees Jalink. “Fourth-Generation Epac-Based FRET Sensors for cAMP Feature Exceptional Brightness, Photostability and Dynamic Range: Characterization of Dedicated Sensors for FLIM, for Ratiometry and with High Affinity.” PloS one 10, no. 4 (2015).

Kopanchuk, Sergei, Santa Veiksina, Ramona Petrovska, Ilze Mutule, Michael Szarde-nings, Ago Rinken, and Jarl ES Wikberg. “Co-operative regulation of ligand binding to melanocortin receptor subtypes: evidence for interacting binding sites.” European journal of pharmacology 512, no. 2 (2005): 85–95.

Kost, Thomas A., and J. Patrick Condreay. “Recombinant baculoviruses as mammalian cell gene-delivery vectors.” Trends in biotechnology 20, no. 4 (2002): 173–180.

Kost, Thomas A., J. Patrick Condreay, and Donald L. Jarvis. “Baculovirus as versatile vectors for protein expression in insect and mammalian cells.” Nature biotechnology 23, no. 5 (2005): 567–575.

Lakowicz, Joseph R. Principles of fluorescence spectroscopy. Third Edition. Springer Science & Business Media, 2007.

Lam, Amy J., François St-Pierre, Yiyang Gong, Jesse D. Marshall, Paula J. Cranfill, Michelle A. Baird, Michael R. McKeown et al. “Improving FRET dynamic range with bright green and red fluorescent proteins.” Nature methods 9, no. 10 (2012):

1005–1012.

Lambert Instruments BV, 2015, http://www.lambertinstruments.com/technologies-1/2014/12/4/frequency-domain-flim-for-beginners

Lin, H. H. “G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in Chemistry.” Biomedical journal 36, no. 3 (2013): 118.

Lohse, Martin J., Moritz Bünemann, Carsten Hoffmann, Jean-Pierre Vilardaga, and Viacheslav O. Nikolaev. “Monitoring receptor signaling by intramolecular FRET.”

Current opinion in pharmacology 7, no. 5 (2007): 547–553.

Lohse, Martin J., Susanne Nuber, and Carsten Hoffmann. “Fluorescence/biolumine-scence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.” Pharmacological reviews 64, no. 2 (2012): 299–336.

Matz, Mikhail V., Arkady F. Fradkov, Yulii A. Labas, Aleksandr P. Savitsky, Andrey G. Zaraisky, Mikhail L. Markelov, and Sergey A. Lukyanov. “Fluorescent proteins from nonbioluminescent Anthozoa species.” Nature biotechnology 17, no. 10 (1999): 969–973.

Mayr, Bernhard, and Marc Montminy. “Transcriptional regulation by the phosphory-lation-dependent factor CREB.” Nature Reviews Molecular Cell Biology 2, no. 8 (2001): 599–609.

McLoughlin, D. J., F. Bertelli, and C. Williams. “The A, B, Cs of G-protein-coupled receptor pharmacology in assay development for HTS.” (2007): 603–619.

Miyano, Kanako, Yuka Sudo, Akinobu Yokoyama, Kazue Hisaoka-Nakashima, Nori-mitsu Morioka, Minoru Takebayashi, Yoshihiro Nakata, Yoshikazu Higami, and Yasuhito Uezono. “History of the G Protein–Coupled Receptor (GPCR) Assays From Traditional to a State-of-the-Art Biosensor Assay.” Journal of pharmaco-logical sciences 126, no. 4 (2014): 302–309.

Mutulis, Felikss, Sviatlana Yahorava, Ilze Mutule, Aleh Yahorau, Edvards Liepinsh, Sergei Kopantshuk, Santa Veiksina et al. “New substituted piperazines as ligands for melanocortin receptors. Correlation to the X-ray structure of “THIQ”.” Journal of medicinal chemistry 47, no. 18 (2004): 4613–4626.

Müller, Thomas, Jörg Gromoll, and Manuela Simoni. “Absence of exon 10 of the human luteinizing hormone (LH) receptor impairs LH, but not human chorionic gonadotropin action.” The Journal of Clinical Endocrinology & Metabolism 88, no.

5 (2003): 2242–2249.

Naylor, Louise H. “Reporter gene technology: the future looks bright.” Biochemical pharmacology 58, no. 5 (1999): 749–757.

NEN Life Science Products. A novel adenylyl cyclase activation assay on FlashPlate (Flasplate File #1, Application Note). (NEN Life Science Products Inc., Boston, Massachusetts, 1998).

Newman, Robert H., Matthew D. Fosbrink, and Jin Zhang. “Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells.” Chemical reviews 111, no. 5 (2011): 3614–3666.

Nikolaev, Viacheslav O., Moritz Bünemann, Lutz Hein, Annette Hannawacker, and Martin J. Lohse. “Novel single chain cAMP sensors for receptor-induced signal propagation.” Journal of Biological Chemistry 279, no. 36 (2004): 37215–37218.

Nikolaev, Viacheslav O., and Martin J. Lohse. “Monitoring of cAMP synthesis and degradation in living cells.” Physiology 21, no. 2 (2006): 86–92.

Nikolaev, Viacheslav O., Stepan Gambaryan, and Martin J. Lohse. “Fluorescent sensors for rapid monitoring of intracellular cGMP.” Nature methods 3, no. 1 (2006): 23–25.

Nordstedt, Christer, and Bertil B. Fredholm. “A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body fluid.” Analytical biochemistry 189, no. 2 (1990): 231–234.

Okumoto, Sakiko, Alexander Jones, and Wolf B. Frommer. “Quantitative imaging with fluorescent biosensors.” Annual review of plant biology 63 (2012): 663–706.

Paul, Arghya, Anwarul Hasan, Laetitia Rodes, Mugundhine Sangaralingam, and Satya Prakash. “Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges.” Advanced drug delivery reviews 71 (2014): 115–130.

Pierce, Kristen L., Richard T. Premont, and Robert J. Lefkowitz. “Seven-transmembra-ne receptors.” Nature Reviews Molecular Cell Biology 3, no. 9 (2002): 639–650.

Ponsioen, Bas, Jun Zhao, Jurgen Riedl, Fried Zwartkruis, Gerard van der Krogt, Ma-nuela Zaccolo, Wouter H. Moolenaar, Johannes L. Bos, and Kees Jalink. “Detecting cAMP‐induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator.” EMBO reports 5, no. 12 (2004): 1176–1180.

Prinz, Anke, Mandy Diskar, Andrea Erlbruch, and Friedrich W. Herberg. “Novel, isotype-specific sensors for protein kinase A subunit interaction based on biolumine-scence resonance energy transfer (BRET).” Cellular signalling 18, no. 10 (2006):

1616–1625.

Prystay, Linda, Annie Gagne, Patricia Kasila, Li-An Yeh, and Peter Banks. “Homo-geneous cell-based fluorescence polarization assay for the direct detection of cAMP.” Journal of biomolecular screening 6, no. 2 (2001): 75–82.

Rall, T. W., Earl W. Sutherland, and Jacques Berthet. “The relationship of epinephrine and glucagon to liver phosphorylase IV. Effect of epinephrine and glucagon on the reactivation of phosphorylase in liver homogenates.” Journal of Biological Che-mistry 224, no. 1 (1957): 463–475.

Ramu, Sivakumar, Brian Acacio, Mark Adamowicz, Sylvia Parrett, and Rajasingam S.

Jeyendran. “Human chorionic gonadotropin from day 2 spent embryo culture media and its relationship to embryo development.” Fertility and sterility 96, no. 3 (2011):

615–617.

Reinart-Okugbeni, Reet. “Assay systems for characterisation of subtype-selective binding and functional activity of ligands on dopamine receptors.” PhD diss., 2012.

Reiter, Eric, and Robert J. Lefkowitz. “GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling.” Trends in endocrinology & metabolism 17, no.

4 (2006): 159–165.

Rich, Thomas C., E. Tse Tonia, Joyce G. Rohan, Jerome Schaack, and Jeffrey W.

Karpen. “In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide–gated channels as cAMP sensors.” The Journal of general physiology 118, no. 1 (2001): 63–78.

Rodrigues, Adriana R., Henrique Almeida, and Alexandra M. Gouveia. “Intracellular signaling mechanisms of the melanocortin receptors: current state of the art.” Cellu-lar and MolecuCellu-lar Life Sciences (2014): 1–15.

Rosenbaum, Daniel M., Søren GF Rasmussen, and Brian K. Kobilka. “The structure and function of G-protein-coupled receptors.” Nature 459, no. 7245 (2009): 356–

363.

Roy, Rahul, Sungchul Hohng, and Taekjip Ha. “A practical guide to single-molecule FRET.” Nature methods 5, no. 6 (2008): 507–516.

Rusanov, Alexander L., Tatiana V. Ivashina, Leonid M. Vinokurov, Ilya I. Fiks, Anna G. Orlova, Ilya V. Turchin, Irina G. Meerovich, Victorya V. Zherdeva, and Alexan-der P. Savitsky. “Lifetime imaging of FRET between red fluorescent proteins.”

Journal of biophotonics 3, no. 12 (2010): 774–783.

Sadana, Rachna, and Carmen W. Dessauer. “Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies.”

Neuro-signals 17, no. 1 (2009): 5.

Sawyer, Tomi K., Pauline J. Sanfilippo, Victor J. Hruby, Michael H. Engel, Christopher B. Heward, Jean B. Burnett, and Mac E. Hadley. “4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity.” Proceedings of the National Academy of Sciences 77, no. 10 (1980): 5754–5758.

Schenborn, Elaine T., and Virginia Goiffon. “DEAE-dextran transfection of mammalian cultured cells.” In Transcription Factor Protocols, pp. 147–153. Humana Press, 2000.

Seifert, Roland. “Functional selectivity of G-protein-coupled receptors: from recombi-nant systems to native human cells.” Biochemical pharmacology 86, no. 7 (2013):

853–861.

Sprenger, Julia U., and Viacheslav O. Nikolaev. “Biophysical techniques for detection of cAMP and cGMP in living cells.” International journal of molecular sciences 14, no. 4 (2013): 8025–8046.

Steiner, A. L., Ch W. Parker, and D. M. Kipnis. “The measurement of cyclic nucleo-tides by radioimmunoassay.” Advances in biochemical psychopharmacology 3 (1969): 89–111.

Stenman, Ulf-Håkan, and Henrik Alfthan. “Determination of human chorionic gonado-tropin.” Best Practice & Research Clinical Endocrinology & Metabolism 27, no. 6 (2013): 783–793.

Sutherland, Earl W. “Studies on the mechanism of hormone action.” American Asso-ciation for the Advancement of Science, 1972.

Szardenings, Michael, Ruta Muceniece, Ilze Mutule, Felikss Mutulis, and Jarl ES Wikberg. “New highly specific agonistic peptides for human melanocortin MC 1 receptor☆.” Peptides 21, no. 2 (2000): 239–243.

Tasken, Kjetil, and Einar Martin Aandahl. “Localized effects of cAMP mediated by

Tasken, Kjetil, and Einar Martin Aandahl. “Localized effects of cAMP mediated by