• Keine Ergebnisse gefunden

In this project, a panel of ten individual anti-Kv10.1 nanobodies was generated by phage display and subsequent screening on the fusion protein H1X. Molecular

4 Discussion 91

characterization of the binding properties revealed two clones, C4 and D9, detecting specifically Kv10.1 transfected HEK cells and the fusion protein H1X.

For a later in vivo tumor visualization applying the anti-Kv10.1 nanobodies C4 and D9, a clinical SPECT system was set up and the infrastructure for the handling and housing of radioactive animals was established. This allowed the in vivo tumor visualization on EGFR expressing tumors with the clinically applied anti-EGFR antibody 99mTc-Cetuximab and demonstrated as proof of principle the successful application of multi-pinhole SPECT. Tumors expressing high levels of EGFR and a volume above 100 mm3 were reliably detected by in vivo SPECT, whereas tumors with a relatively low EGFR expression showed a tumor uptake of 99mTc-Cetuximab similar to the unspecific accumulation of the 99mTc-isotype antibody.

The anti-EGFR nanobody D10 was used in vivo for the first time. It could be shown that

99mTc-D10 represents a versatile tool for the specific detection of small EGFR overexpressing tumor lesions and the assessment of EGFR expression in tumors by in vivo SPECT. The identification of tumors at the earliest stage with 99mTc-D10 allowed the acquisition of high contrast images with a high tumor to background background ratio shortly after probe administration, i.e. allowing imaging at the same day.

Therefore, 99mTc-D10 might be suitable in a clinical setting as non-invasive diagnostic tracer to not only detect small tumors but also to obtain information on the expression level of EGFR in heterogenic tumors at the time of diagnosis and during disease progression.

5 Outlook 92

5 Outlook

The anti-Kv10.1 nanobodies C4 and D9, that were generated in the course of this project, show very promising binding characteristics to this challenging target, but specific detection of the native ion channel remains to be validated. The successful application as in vivo tracers will depend on the tumor entity and the number of expressed potassium channels on the tumor cells as well as affinity of an engineered anti-Kv10.1 nanobody to its target protein. The application of the nanobodies as unmodified monomers might not lead to a successful tumor detection. However, genetically engineered bi- or trivalent nanobodies could facilitate this task.

The impact of the anti-Kv10.1 nanobodies on the potassium channel was not investigated yet. A possible impaired signaling due to the binding anti-Kv10.1 nanobodies C4 or D9 could refer to a therapeutic effect and an establishment of a specific Kv10.1 targeted therapy in future.

With the generation of the anti-Kv10.1 nanobodies C4 and D9, a versatile toolkit consisting of the two nanobodies with different fluorophores and enzymes for the detection of Kv10.1 are soon available for the integration in various laboratory methods like flow cytometry, immunofluorescence microscopy, histology, ELISA or Western blotting.

The anti-EGFR nanobody D10, which was applied in an in vivo SPECT approach for the first time, allowed a tumor visualization of small tumors with a high contrast shortly after administration. However, the high kidney uptake caused by the 6xHis tag remains problematic for further in vivo studies. Therefore, the nanobody needs to be reengineered and the use of different chelators might help to reduce the kidney uptake to continue the translation of D10 to larger tumor animal models.

Bibliography 93

Bibliography

1. Stewart, B. W.; Wild, C.; International Agency for Research on Cancer; World Health Organization, World cancer report 2014. p xiv, 630 pages.

2. Krause, B. J.; Beyer, T.; Bockisch, A.; Delbeke, D.; Kotzerke, J.; Minkov, V.; Reiser, M.;

Willich, N., [FDG-PET/CT in oncology. German Guideline]. Nuklearmedizin 2007, 46, 291-301.

3. Boellaard, R.; O'Doherty, M. J.; Weber, W. A.; Mottaghy, F. M.; Lonsdale, M. N.;

Stroobants, S. G.; Oyen, W. J.; Kotzerke, J.; Hoekstra, O. S.; Pruim, J.; Marsden, P. K.;

Tatsch, K.; Hoekstra, C. J.; Visser, E. P.; Arends, B.; Verzijlbergen, F. J.; Zijlstra, J. M.;

Comans, E. F.; Lammertsma, A. A.; Paans, A. M.; Willemsen, A. T.; Beyer, T.; Bockisch, A.; Schaefer-Prokop, C.; Delbeke, D.; Baum, R. P.; Chiti, A.; Krause, B. J., FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010, 37, 181-200.

4. Voet, D.; Voet, J. G.; Pratt, C. W.; Beck-Sickinger, A., Lehrbuch der Biochemie. 2., aktualisierte und erw. Aufl. ed.; Wiley-VCH-Verl.: Weinheim, 2010; p XXVI, 1253 S.

5. D'Huyvetter, M.; Xavier, C.; Caveliers, V.; Lahoutte, T.; Muyldermans, S.; Devoogdt, N., Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv 2014, 11, 1939-1954.

6. Hassanzadeh-Ghassabeh, G.; Devoogdt, N.; De Pauw, P.; Vincke, C.; Muyldermans, S., Nanobodies and their potential applications. Nanomedicine (Lond) 2013, 8, 1013-1026.

7. Gainkam, L. O.; Huang, L.; Caveliers, V.; Keyaerts, M.; Hernot, S.; Vaneycken, I.;

Vanhove, C.; Revets, H.; De Baetselier, P.; Lahoutte, T., Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med 2008, 49, 788-795.

8. Huang, L.; Gainkam, L. O.; Caveliers, V.; Vanhove, C.; Keyaerts, M.; De Baetselier, P.;

Bossuyt, A.; Revets, H.; Lahoutte, T., SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol 2008, 10, 167-175.

9. Pruszynski, M.; Koumarianou, E.; Vaidyanathan, G.; Revets, H.; Devoogdt, N.; Lahoutte, T.; Zalutsky, M. R., Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody. Nucl Med Biol 2013, 40, 52-59.

10. Vaneycken, I.; Devoogdt, N.; Van Gassen, N.; Vincke, C.; Xavier, C.; Wernery, U.;

Muyldermans, S.; Lahoutte, T.; Caveliers, V., Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J 2011, 25, 2433-2446.

11. Pardo, L. A.; Stuhmer, W., The roles of K(+) channels in cancer. Nat Rev Cancer 2014, 14, 39-48.

12. Wulff, H.; Castle, N. A.; Pardo, L. A., Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 2009, 8, 982-1001.

13. Hemmerlein, B.; Weseloh, R. M.; Mello de Queiroz, F.; Knotgen, H.; Sanchez, A.; Rubio, M. E.; Martin, S.; Schliephacke, T.; Jenke, M.; Heinz Joachim, R.; Stuhmer, W.; Pardo, L.

A., Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 2006, 5, 41.

14. Martin, S.; Lino de Oliveira, C.; Mello de Queiroz, F.; Pardo, L. A.; Stuhmer, W.; Del Bel, E., Eag1 potassium channel immunohistochemistry in the CNS of adult rat and selected regions of human brain. Neuroscience 2008, 155, 833-844.

15. Martin, S.; Lino-de-Oliveira, C.; Joca, S. R.; Weffort de Oliveira, R.; Echeverry, M. B.; Da Silva, C. A.; Pardo, L.; Stuhmer, W.; Bel, E. D., Eag 1, Eag 2 and Kcnn3 gene brain

Bibliography 94

16. Ludwig, J.; Weseloh, R.; Karschin, C.; Liu, Q.; Netzer, R.; Engeland, B.; Stansfeld, C.;

Pongs, O., Cloning and functional expression of rat eag2, a new member of the ether-a-go-go family of potassium channels and comparison of its distribution with that of eag1. Mol Cell Neurosci 2000, 16, 59-70.

17. Saganich, M. J.; Machado, E.; Rudy, B., Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain. J Neurosci 2001, 21, 4609-4624.

18. Meyer, R.; Schonherr, R.; Gavrilova-Ruch, O.; Wohlrab, W.; Heinemann, S. H., Identification of ether a go-go and calcium-activated potassium channels in human melanoma cells. J Membr Biol 1999, 171, 107-115.

19. Patt, S.; Preussat, K.; Beetz, C.; Kraft, R.; Schrey, M.; Kalff, R.; Schonherr, K.;

Heinemann, S. H., Expression of ether a go-go potassium channels in human gliomas.

Neurosci Lett 2004, 368, 249-253.

20. Mello de Queiroz, F.; Suarez-Kurtz, G.; Stuhmer, W.; Pardo, L. A., Ether a go-go potassium channel expression in soft tissue sarcoma patients. Mol Cancer 2006, 5, 42.

21. Wu, X.; Zhong, D.; Lin, B.; Zhai, W.; Ding, Z.; Wu, J., p38 MAPK regulates the expression of ether a go-go potassium channel in human osteosarcoma cells. Radiol Oncol 2013, 47, 42-49.

22. Lin, H.; Li, Z.; Chen, C.; Luo, X.; Xiao, J.; Dong, D.; Lu, Y.; Yang, B.; Wang, Z., Transcriptional and post-transcriptional mechanisms for oncogenic overexpression of ether a go-go K+ channel. PLoS One 2011, 6, e20362.

23. Downie, B. R.; Sanchez, A.; Knotgen, H.; Contreras-Jurado, C.; Gymnopoulos, M.;

Weber, C.; Stuhmer, W.; Pardo, L. A., Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 2008, 283, 36234-36240.

24. Herrmann, S.; Ninkovic, M.; Kohl, T.; Lorinczi, E.; Pardo, L. A., Cortactin controls surface expression of the voltage-gated potassium channel K(V)10.1. J Biol Chem 2012, 287, 44151-44163.

25. Ninkovic, M.; Mitkovski, M.; Kohl, T.; Stuhmer, W.; Pardo, L. A., Physical and functional interaction of KV10.1 with Rabaptin-5 impacts ion channel trafficking. FEBS Lett 2012, 586, 3077-3084.

26. Hammadi, M.; Chopin, V.; Matifat, F.; Dhennin-Duthille, I.; Chasseraud, M.; Sevestre, H.; Ouadid-Ahidouch, H., Human ether a-gogo K(+) channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry. J Cell Physiol 2012, 227, 3837-3846.

27. Ousingsawat, J.; Spitzner, M.; Puntheeranurak, S.; Terracciano, L.; Tornillo, L.;

Bubendorf, L.; Kunzelmann, K.; Schreiber, R., Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res 2007, 13, 824-831.

28. Asher, V.; Khan, R.; Warren, A.; Shaw, R.; Schalkwyk, G. V.; Bali, A.; Sowter, H. M., The Eag potassium channel as a new prognostic marker in ovarian cancer. Diagn Pathol 2010, 5, 78.

29. Agarwal, J. R.; Griesinger, F.; Stuhmer, W.; Pardo, L. A., The potassium channel Ether a go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia.

Mol Cancer 2010, 9, 18.

30. Menendez, S. T.; Villaronga, M. A.; Rodrigo, J. P.; Alvarez-Teijeiro, S.; Garcia-Carracedo, D.; Urdinguio, R. G.; Fraga, M. F.; Pardo, L. A.; Viloria, C. G.; Suarez, C.; Garcia-Pedrero, J. M., Frequent aberrant expression of the human ether a go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications. J Mol Med (Berl) 2012, 90, 1173-1184.

31. Toral, C.; Mendoza-Garrido, M. E.; Azorin, E.; Hernandez-Gallegos, E.; Gomora, J. C.;

Delgadillo, D. M.; Solano-Agama, C.; Camacho, J., Effect of extracellular matrix on adhesion, viability, actin cytoskeleton and K+ currents of cells expressing human ether a go-go channels. Life Sci 2007, 81, 255-265.

Bibliography 95

32. Roy, J.; Vantol, B.; Cowley, E. A.; Blay, J.; Linsdell, P., Pharmacological separation of hEAG and hERG K+ channel function in the human mammary carcinoma cell line MCF-7. Oncol Rep 2008, 19, 1511-1516.

33. Prenzel, N.; Fischer, O. M.; Streit, S.; Hart, S.; Ullrich, A., The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification.

Endocr Relat Cancer 2001, 8, 11-31.

34. Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H., A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005, 1, 2005 0010.

35. Jost, M.; Kari, C.; Rodeck, U., The EGF receptor - an essential regulator of multiple epidermal functions. Eur J Dermatol 2000, 10, 505-510.

36. Alberts, B., Molekularbiologie der Zelle. In 5. Aufl. ed.; Wiley-VCH: Weinheim, 2011.

37. Downward, J.; Parker, P.; Waterfield, M. D., Autophosphorylation sites on the epidermal growth factor receptor. Nature 1984, 311, 483-485.

38. Klein, S.; Levitzki, A., Targeting the EGFR and the PKB pathway in cancer. Curr Opin Cell Biol 2009, 21, 185-193.

39. Tebbutt, N.; Pedersen, M. W.; Johns, T. G., Targeting the ERBB family in cancer:

couples therapy. Nat Rev Cancer 2013, 13, 663-673.

40. Zhang, X.; Chang, A., Molecular predictors of EGFR-TKI sensitivity in advanced non-small cell lung cancer. Int J Med Sci 2008, 5, 209-217.

41. Liao, B. C.; Lin, C. C.; Yang, J. C., First-line management of EGFR-mutated advanced lung adenocarcinoma: recent developments. Drugs 2013, 73, 357-369.

42. Bria, E.; Milella, M.; Cuppone, F.; Novello, S.; Ceribelli, A.; Vaccaro, V.; Sperduti, I.;

Gelibter, A.; Scagliotti, G. V.; Cognetti, F.; Giannarelli, D., Outcome of advanced NSCLC patients harboring sensitizing EGFR mutations randomized to EGFR tyrosine kinase inhibitors or chemotherapy as first-line treatment: a meta-analysis. Ann Oncol 2011, 22, 2277-2285.

43. Wheeler, D. L.; Dunn, E. F.; Harari, P. M., Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 2010, 7, 493-507.

44. Geuna, E.; Montemurro, F.; Aglietta, M.; Valabrega, G., Potential of afatinib in the treatment of patients with HER2-positive breast cancer. Breast Cancer (Dove Med Press) 2012, 4, 131-137.

45. Schmitz, K. R.; Ferguson, K. M., Interaction of antibodies with ErbB receptor extracellular regions. Exp Cell Res 2009, 315, 659-670.

46. Caliceti, P.; Veronese, F. M., Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 2003, 55, 1261-1277.

47. Kijanka, M.; Dorresteijn, B.; Oliveira, S.; van Bergen en Henegouwen, P. M., Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond) 2015, 10, 161-174.

48. Vaneycken, I.; Govaert, J.; Vincke, C.; Caveliers, V.; Lahoutte, T.; De Baetselier, P.; Raes, G.; Bossuyt, A.; Muyldermans, S.; Devoogdt, N., In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT. J Nucl Med 2010, 51, 1099-1106.

49. Vincke, C.; Loris, R.; Saerens, D.; Martinez-Rodriguez, S.; Muyldermans, S.; Conrath, K., General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 2009, 284, 3273-3284.

50. Siontorou, C. G., Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomedicine 2013, 8, 4215-4227.

51. Evazalipour, M.; D'Huyvetter, M.; Tehrani, B. S.; Abolhassani, M.; Omidfar, K.; Abdoli, S.; Arezumand, R.; Morovvati, H.; Lahoutte, T.; Muyldermans, S.; Devoogdt, N., Generation and characterization of nanobodies targeting PSMA for molecular imaging

Bibliography 96

52. Xavier, C.; Vaneycken, I.; D'Huyvetter, M.; Heemskerk, J.; Keyaerts, M.; Vincke, C.;

Devoogdt, N.; Muyldermans, S.; Lahoutte, T.; Caveliers, V., Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med 2013, 54, 776-784.

53. Gainkam, L. O.; Caveliers, V.; Devoogdt, N.; Vanhove, C.; Xavier, C.; Boerman, O.;

Muyldermans, S.; Bossuyt, A.; Lahoutte, T., Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol Imaging 2011, 6, 85-92.

54. Holz, J. B., The TITAN trial--assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura.

Transfus Apher Sci 2012, 46, 343-346.

55. Ablynx Clinical Trials. http://www.ablynx.com/rd-portfolio/clinical-programmes/

(27.8.),

56. Sukhanova, A.; Even-Desrumeaux, K.; Kisserli, A.; Tabary, T.; Reveil, B.; Millot, J. M.;

Chames, P.; Baty, D.; Artemyev, M.; Oleinikov, V.; Pluot, M.; Cohen, J. H.; Nabiev, I., Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. Nanomedicine 2012, 8, 516-525.

57. Committee, N. R. C. U., Medical Isotope Production Without Highly Enriched Uranium.

2014/07/11 ed.; National Academy of Sciences: 2009.

58. Amato, I., NUCLEAR MEDICINE’S CONUNDRUM. Chemical & Engineering News Archive 2009, 87, 58-64.

59. Schwochau, K., Technetium Radiopharmaceuticals—Fundamentals, Synthesis, Structure, and Development. Angewandte Chemie International Edition in English 1994, 33, 2258-2267.

60. Saha, G. B., Fundamentals of nuclear pharmacy. 6. ed.; Springer: New York, NY ˆ[u.a.]‰, 2010; p XVIII, 409 S.

61. Liu, S.; Chakraborty, S., 99mTc-centered one-pot synthesis for preparation of 99mTc radiotracers. Dalton Trans 2011, 40, 6077-6086.

62. Liu, S., Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 2008, 60, 1347-1370.

63. Liu, S., The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chemical Society Reviews 2004, 33, 445-461.

64. Vallabhajosula, S., Molecular imaging : radiopharmaceuticals for PET and SPECT.

Springer: Dordrecht ; London, 2009; p xix, 371 p.

65. Eberle, A. N.; Mild, G., Receptor-mediated tumor targeting with radiopeptides. Part 1.

General principles and methods. J Recept Signal Transduct Res 2009, 29, 1-37.

66. Krause, W.; Alberto, R., Radiopharmaceuticals - from diagnostics to therapeutics.

Springer: Berlin ˆ[u.a.]‰, 2005; p VIII, 222 S.

67. Meszaros, L. K.; Dose, A.; Biagini, S. C.; Blower, P. J., Synthesis and evaluation of analogues of HYNIC as bifunctional chelators for technetium. Dalton Trans 2011, 40, 6260-6267.

68. Meszaros, L. K.; Dose, A.; Biagini, S. C. G.; Blower, P. J., Hydrazinonicotinic acid (HYNIC) – Coordination chemistry and applications in radiopharmaceutical chemistry.

Inorganica Chimica Acta 2010, 363, 1059-1069.

69. Waibel, R.; Alberto, R.; Willuda, J.; Finnern, R.; Schibli, R.; Stichelberger, A.; Egli, A.;

Abram, U.; Mach, J. P.; Pluckthun, A.; Schubiger, P. A., Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex.

Nat Biotechnol 1999, 17, 897-901.

70. Egli, A.; Alberto, R.; Tannahill, L.; Schibli, R.; Abram, U.; Schaffland, A.; Waibel, R.;

Tourwe, D.; Jeannin, L.; Iterbeke, K.; Schubiger, P. A., Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med 1999, 40, 1913-1917.

Bibliography 97

71. Schibli, R.; Katti, K. V.; Higginbotham, C.; Volkert, W. A.; Alberto, R., In vitro and in vivo evaluation of bidentate, water-soluble phosphine ligands as anchor groups for the organometallic fac-[99mTc(CO)3]+-core. Nucl Med Biol 1999, 26, 711-716.

72. Schibli, R.; La Bella, R.; Alberto, R.; Garcia-Garayoa, E.; Ortner, K.; Abram, U.; Schubiger, P. A., Influence of the denticity of ligand systems on the in vitro and in vivo behavior of (99m)Tc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjug Chem 2000, 11, 345-351.

73. Seo, Y.; Mari, C.; Hasegawa, B. H., Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 2008, 38, 177-198.

74. Granov, A. M.; Tiutin, L. A.; Schwarz, T.; Ohio Library and Information Network., Positron emission tomography. In Springer: Berlin ; New York, 2013; p 1 online resource.

75. Schering Stiftung, Ernst Schering Foundation symposium proceedings. In Springer:

Berlin ; Heidelberg, pp Online-Ressource.

76. Hutton, B. F.; Hudson, H. M.; Beekman, F. J., A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997, 24, 797-808.

77. Hudson, H. M.; Larkin, R. S., Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994, 13, 601-609.

78. Healthcare, S. Biograph TruePoint PET/CT.

http://www.healthcare.siemens.de/molecular-imaging/pet-ct/biograph-truepoint-petct (29.08.),

79. Mediso nanoScan PET/CT. http://www.mediso.de/nanoscan-pet-ct.htnl (29.08.), 80. HZDI https://www.hzdr.de/FWS/FWSF/messtechnik/pet/petschema_en.gif (29.08.), 81. Schober, O.; Riemann, B.; Ohio Library and Information Network., Molecular imaging in

oncology. In Recent results in cancer research v.187., Springer: Berlin ; London, 2013; p 1 online resource.

82. Beekman, F.; van der Have, F., The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. European Journal of Nuclear Medicine and Molecular Imaging 2007, 34, 151-161.

83. Mettler, F. A., Jr.; Huda, W.; Yoshizumi, T. T.; Mahesh, M., Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 2008, 248, 254-263.

84. DePuey, E. G. http://www.imagewisely.org/imaging-modalities/nuclear-medicine/articles/myocardial-perfusion-spect (29.08.),

85. Nuyts, J.; Vunckx, K.; Defrise, M.; Vanhove, C., Small animal imaging with multi-pinhole SPECT. Methods 2009, 48, 83-91.

86. Ivashchenko, O.; van der Have, F.; Goorden, M. C.; Ramakers, R. M.; Beekman, F. J., Ultra-high-sensitivity submillimeter mouse SPECT. J Nucl Med 2015, 56, 470-475.

87. Morton, C. L.; Houghton, P. J., Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2007, 2, 247-250.

88. Flanagan, S. P., 'Nude', a new hairless gene with pleiotropic effects in the mouse.

Genet Res 1966, 8, 295-309.

89. Murphy, K. P.; Travers, P.; Walport, M. J.; Janeway, C., Janeway Immunologie. 7. Aufl.

ed.; Spektrum Akad. Verl.: Heidelberg, 2009; p XXVI, 1093 S.

90. Kubota, T., Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem 1994, 56, 4-8.

91. Kuo, T. H.; Kubota, T.; Watanabe, M.; Furukawa, T.; Teramoto, T.; Ishibiki, K.; Kitajima, M.; Hoffman, R. M., Early resection of primary orthotopically-growing human colon tumor in nude mouse prevents liver metastasis: further evidence for patient-like

Bibliography 98

92. Kuo, T. H.; Kubota, T.; Watanabe, M.; Furukawa, T.; Kase, S.; Tanino, H.; Saikawa, Y.;

Ishibiki, K.; Kitajima, M.; Hoffman, R. M., Site-specific chemosensitivity of human small-cell lung carcinoma growing orthotopically compared to subcutaneously in SCID mice:

the importance of orthotopic models to obtain relevant drug evaluation data.

Anticancer Res 1993, 13, 627-630.

93. Kuo, T. H.; Kubota, T.; Watanabe, M.; Furukawa, T.; Teramoto, T.; Ishibiki, K.; Kitajima, M.; Moossa, A. R.; Penman, S.; Hoffman, R. M., Liver colonization competence governs colon cancer metastasis. Proc Natl Acad Sci U S A 1995, 92, 12085-12089.

94. Reilly, R. M.; Kiarash, R.; Sandhu, J.; Lee, Y. W.; Cameron, R. G.; Hendler, A.; Vallis, K.;

Gariepy, J., A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med 2000, 41, 903-911.

95. Haigler, H.; Ash, J. F.; Singer, S. J.; Cohen, S., Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci U S A 1978, 75, 3317-3321.

96. Nevoltris, D.; Lombard, B.; Dupuis, E.; Mathis, G.; Chames, P.; Baty, D., Conformational nanobodies reveal tethered epidermal growth factor receptor involved in EGFR/ErbB2 predimers. ACS Nano 2015, 9, 1388-1399.

97. Chames, P., Antibody engineering : methods and protocols. 2nd ed.; Humana Press:

New York, 2012; p xvi, 734 p.

98. Muyldermans, S., Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013, 82, 775-797.

99. Rucker, J.; Payne, R.; Baxter, S.; Tucker, D.; Willis, S. H.; Doranz, B. J., Generation of Antibodies Against Ion Channels Using Virus-Like Particles. Biophysical Journal 2011, 100, 91a.

100. Wilkinson, T. C.; Gardener, M. J.; Williams, W. A., Discovery of functional antibodies targeting ion channels. J Biomol Screen 2015, 20, 454-467.

101. Conn, P. M., Essential ion channel methods. Elsevier/Academic Press: Amsterdam, 2010; p xxi, 606 p.

102. Ablynx Nanobodies against difficult targets Tackling ion channels.

http://www.ablynx.com/uploads/data/files/collaborations-in-ion-channel-drug-discovery_19-june-2014.pdf (25.09.),

103. Fleetwood, F.; Klint, S.; Hanze, M.; Gunneriusson, E.; Frejd, F. Y.; Stahl, S.; Lofblom, J., Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity. Sci Rep 2014, 4, 7518.

104. Rudnick, S. I.; Adams, G. P., Affinity and avidity in antibody-based tumor targeting.

Cancer Biother Radiopharm 2009, 24, 155-161.

105. Hartung, F.; Stuhmer, W.; Pardo, L. A., Tumor cell-selective apoptosis induction through targeting of K(V)10.1 via bifunctional TRAIL antibody. Mol Cancer 2011, 10, 109.

106. Pardo, L. A.; Stuhmer, W., Eag1: an emerging oncological target. Cancer Res 2008, 68, 1611-1613.

107. Rodriguez-Rasgado, J. A.; Acuna-Macias, I.; Camacho, J., Eag1 channels as potential cancer biomarkers. Sensors (Basel) 2012, 12, 5986-5995.

108. Restrepo-Angulo, I.; Sanchez-Torres, C.; Camacho, J., Human EAG1 potassium channels in the epithelial-to-mesenchymal transition in lung cancer cells. Anticancer Res 2011, 31, 1265-1270.

109. Rousserie, G.; Grinevich, R.; Brazhnik, K.; Even-Desrumeaux, K.; Reveil, B.; Tabary, T.;

Chames, P.; Baty, D.; Cohen, J. H.; Nabiev, I.; Sukhanova, A., Detection of carcinoembryonic antigen using single-domain or full-size antibodies stained with quantum dot conjugates. Anal Biochem 2015, 478, 26-32.

110. Turini, M.; Chames, P.; Bruhns, P.; Baty, D.; Kerfelec, B., A FcgammaRIII-engaging bispecific antibody expands the range of HER2-expressing breast tumors eligible to antibody therapy. Oncotarget 2014, 5, 5304-5319.

Bibliography 99

111. Majidi, J.; Barar, J.; Baradaran, B.; Abdolalizadeh, J.; Omidi, Y., Target therapy of cancer: implementation of monoclonal antibodies and nanobodies. Hum Antibodies 2009, 18, 81-100.

112. Sihver, W.; Pietzsch, J.; Krause, M.; Baumann, M.; Steinbach, J.; Pietzsch, H. J., Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy. Pharmaceuticals (Basel) 2014, 7, 311-338.

113. Tijink, B. M.; Laeremans, T.; Budde, M.; Stigter-van Walsum, M.; Dreier, T.; de Haard, H. J.; Leemans, C. R.; van Dongen, G. A., Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol Cancer Ther 2008, 7, 2288-2297.

114. Greish, K., Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 2007, 15, 457-464.

115. Maeda, H.; Fang, J.; Inutsuka, T.; Kitamoto, Y., Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 2003, 3, 319-328.

116. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000, 65, 271-284.

117. Haag, R.; Kratz, F., Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 2006, 45, 1198-1215.

118. Lippert, H., Lehrbuch Anatomie 184 Tabellen. 5., völlig überarb. Aufl. ed.; Urban und Fischer: München ˆ[u.a.]‰, 2000; p XII, 803 S.

119. Choi, I.; Lee, S.; Hong, Y. K., The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med 2012, 2, a006445.

120. Shayan, R.; Achen, M. G.; Stacker, S. A., Lymphatic vessels in cancer metastasis:

bridging the gaps. Carcinogenesis 2006, 27, 1729-1738.

121. Rahbar, H.; Partridge, S. C.; Javid, S. H.; Lehman, C. D., Imaging axillary lymph nodes in patients with newly diagnosed breast cancer. Curr Probl Diagn Radiol 2012, 41, 149-158.

122. Scully, O. J.; Bay, B. H.; Yip, G.; Yu, Y., Breast cancer metastasis. Cancer Genomics Proteomics 2012, 9, 311-320.

123. Robbins, A. R.; Oliver, C.; Bateman, J. L.; Krag, S. S.; Galloway, C. J.; Mellman, I., A single mutation in Chinese hamster ovary cells impairs both Golgi and endosomal functions. J Cell Biol 1984, 99, 1296-1308.

124. Tesar, D. B.; Bjorkman, P. J., An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G. Curr Opin Struct Biol 2010, 20, 226-233.

125. Anderson, C. J.; Bulte, J. W.; Chen, K.; Chen, X.; Khaw, B. A.; Shokeen, M.; Wooley, K. L.;

VanBrocklin, H. F., Design of targeted cardiovascular molecular imaging probes. J Nucl Med 2010, 51 Suppl 1, 3S-17S.

126. Schoffelen, R.; Sharkey, R. M.; Goldenberg, D. M.; Franssen, G.; McBride, W. J.; Rossi, E. A.; Chang, C. H.; Laverman, P.; Disselhorst, J. A.; Eek, A.; van der Graaf, W. T.; Oyen, W. J.; Boerman, O. C., Pretargeted immuno-positron emission tomography imaging of carcinoembryonic antigen-expressing tumors with a bispecific antibody and a 68Ga- and 18F-labeled hapten peptide in mice with human tumor xenografts. Mol Cancer

126. Schoffelen, R.; Sharkey, R. M.; Goldenberg, D. M.; Franssen, G.; McBride, W. J.; Rossi, E. A.; Chang, C. H.; Laverman, P.; Disselhorst, J. A.; Eek, A.; van der Graaf, W. T.; Oyen, W. J.; Boerman, O. C., Pretargeted immuno-positron emission tomography imaging of carcinoembryonic antigen-expressing tumors with a bispecific antibody and a 68Ga- and 18F-labeled hapten peptide in mice with human tumor xenografts. Mol Cancer