• Keine Ergebnisse gefunden

We have studied non-adiabatic spin-dependent transport through ballistic conductors of different shape (straight and ring-type geometries) subject to inhomogeneous magnetic fields of varying strength. Our account generalizes studies of the regime of adiabatic spin-transport, widely discussed in the literature15,21,33,44. This regime is included here as the strong field limit.

For straight conductors we discussed several spin effects in the quantized conductance.

In particular we found a strong enhancement of the adiabatic spin channel each time a new transverse mode opens in the conductor, owing to the fact that electrons propagate slowly within the channel corresponding to the new mode.

For ring geometries we obtain numerically the explicit dependence of the transmission on the scaled field strength Q, which acts as an adiabaticity parameter, elucidating the rˆole of geometrical phases in ballistic quantum transport and possible experimental realizations.

Moreover, for in-plane field configurations and symmetric ballistic ring microstructures we demonstrate how an additional small flux φ can be used to control the spin dynamics and thereby tune the polarization of transmitted electrons25. This quantum mechanism, which is analytically investigated in detail in a subsequent paper1 does not require adiabaticity. We

0 1

(a)

0 1

〈Td(E,φ)〉E

(↓↑)d (↑↑)d

(↑↑+↓↑)d (b)

0 1

0 0.5 1

φ/φo (c)

FIG. 14: Diagonal contribution (in mode number) to the multichannel averaged tranmission of Fig. 13. The overall diagonal transmission hTdi (solid line) is split into its components hTd↑↑i = hT11↑↑i+hT22↑↑i(dashed) and hTd↓↑i=hT11↓↑i+hT22↓↑i (dotted). Note the similarity with the results of Fig. 7.

have also assessed in detail the range of validity of the spin-switch effect for various different situations relaxing constraints on symmetry, field configuration, and channel number. In combination with a spin detector such a device may be used to control spin polarized current, similar to the spin field-effect transistor proposed in Ref. 3. For metallic, generally diffusive conductors disorder breaks the spatial symmetry. We found numerically that the spin switch mechanism no longer prevails for diffusive rings51.

Finally, we point out that ballistic rings with Rashba (spin-orbit) interaction52, yielding an effective in-plane magnetic field in the presence of a vertical electric field, exhibit a similar spin-switch effect53.

0 0.8 (a)

0 0.8

〈Tnd(E,φ)〉E

(↓↑)nd (↑↑)nd

(↑↑+↓↑)nd (b)

0 0.8

0 0.5 1

φ/φo (c)

FIG. 15: Off-diagonal contribution (in mode number) to the multichannel averaged tranmission of Fig. 13. The overall off-diagonal transmission hTndi (solid line) is split into its components hTnd↑↑i =hT12↑↑i+hT21↑↑i (dashed) andhTnd↓↑i = hT12↓↑i+hT21↓↑i (dotted). Note the contrast with the complementary diagonal contribution in Fig. 14.

Acknowledgments

A larger part of this work was performed at the Max-Planck-Institut for the Physics of Complex Systemsin Dresden, Germany. We thank the institute and particularly P. Fulde for continuous support. We gratefully acknowledge financial support from the Alexander von Humboldt Foundationand theDeutsche Forschungsgemeinschaftthrough the research group Ferromagnet-Semiconductor Nanostructures. We also thank J. Fabian, H. Schomerus, and

D. Weiss for many useful discussions.

Present address: NEST-INFM & Scuola Normale Superiore, 56126 Pisa, Italy.

1 M. Hentschel, H. Schomerus, D. Frustaglia, and K. Richter, submitted to Phys. Rev. B, 2003.

First paper in the present series, referred to as paper I throughout the text.

2 Y. Aharonov and D. Bohm, Phys. Rev.115, 485 (1959).

3 S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

4 G. A. Prinz, Science282, 1660 (1998).

5 S. Das Sarma, J. Fabian, X. Hu, and I. ˇZuti´c, arXiv:cond-mat/9912040 (1999), Superlattices Microst. 27, 289 (2000).

6 J. M. Kikkawa and D. D. Awschalom, Nature 397, 139 (1999).

7 S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Moln´ar, M.L. Roukes, A.Y.

Chtchelkanova, and D.M. Trege, Science 294, 1488 (2001).

8 M. J. Gilbert and J. P. Bird, Appl. Phys. Lett.77, 1050 (2000).

9 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

10 A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

11 P. Samuelsson, E. V. Sukhorukov, and M. B¨uttiker, preprint arXiv:cond-mat/0303531 (2003).

12 D. S. Saraga and D. Loss, Phys. Rev. Lett. 90, 166803 (2003).

13 R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402 787 (1999); Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999); P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett.83, 203 (1999); C.-M. Hu, J. Nitta, A. Jensen, J. B. Hansen, and H. Takayanagi, Phys. Rev. B63, 125333 (2001).

14 E.I. Rashba, Fiz. Tverd. Tela (Leningrad)2, 1224 (1960) [Sov. Phys. Solid State2, 1109 (1960)];

Y.A. Bychkov and E.I. Rashba, J. Phys. C17, 6039 (1984).

15 M. V. Berry, Proc. Roy. Soc. London A392, 45 (1984).

16 A. Shapere and F. Wilczek (editors): Geometric Phases in Physics (World Scientific, Singapore, 1989).

17 P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl, and H. Nickel,

Phys. Rev. Lett.74, 3013 (1995).

18 P. D. Ye, S. Tarucha, and D. Weiss, in Proc. of the 24th Int. Conf. on “The Physics of Semi-conductors” (North Scientific, Singapore, 1998).

19 S. V. Dubonos, A. K. Geim, K. S. Novoselov, J. G. S. Lok, J. C. Maan and M. Henini, Physica E6, 746 (2000).

20 A. Nogaret, S. J. Bending, and M. Henini, Phys. Rev. Lett.84, 2231 (2000).

21 A. Stern, Phys. Rev. Lett.68, 1022 (1992).

22 D. Loss, H. Sch¨oller, and P. Goldbart, Phys. Rev. B48, 15218 (1993).

23 S. A. van Langen, H. P. A. Knops, J. C. J. Paasschens, and C. W. J. Beenakker, Phys. Rev. B 59, 2102 (1999); D. Loss, H. Sch¨oller, and P. Goldbart, Phys. Rev. B59, 13328 (1999).

24 M. Popp, D. Frustaglia, and K. Richter, Phys. Rev. B68, 041303(R) (2003).

25 D. Frustaglia, M. Hentschel, and K. Richter, Phys. Rev. Lett. 87, 256602 (2001).

26 R. Landauer, IBM J. Res. Dev.1, 233 (1957); M. B¨uttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207; Y. Imry, in Directions in Condensed Matter Physics, G. Grinstein and E. Mazenko, eds. (World Publishing, Singapore, 1986); for presentations in reviews see Refs. 27 or 30.

27 S. Datta, Electronic Transport in Mesoscopic Systems(Cambridge University Press, Cambridge, 1997).

28 D. S. Fisher and P. A. Lee, Phys. Rev. B23, 6851 (1981).

29 A. D. Stone and A. Szafer, IBM J. Res. Dev. 32, 384 (1988).

30 D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997).

31 H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and A. D. Stone, Phys. Rev. B 44, 10637 (1991).

32 Exceptions are e.g. the numerical study of Berry phase effects in adiabatic spin-dependent transport25,33 and Refs. 34,35 addressing spin-orbit effects in quantum transport.

33 D. Frustaglia and K. Richter, Foundations of Physics 31, 399 (2001); cond-mat/0011161.

34 B. K. Nikoli´c and J. K. Freericks, preprint, cond-mat/0111144.

35 T. P. Pareek and P. Bruno, Phys. Rev. B 65, 241305(R) (2002).

36 In the presence of a magnetic field B~ =∇ ×~ A~em the Rashba interaction takes the form Hso = αR[~σ×(~p+ (e/c)A~em)]z/~.

37 D. Frustaglia, PhD Thesis, Technische Universit¨at Dresden, 2001.

38 This generalizes the representation used by F. Mireles and G. Kirczenow39 to account for inho-mogeneous magnetic fields and arbitrary 2D geometries.

39 F. Mireles and G. Kirczenow, Phys. Rev. B64, 024426 (2001).

40 The choiceA~em=BiΘ(x) Θ(L−x) [z(1+(π/L)y) cos[(π/L)x] ˆx+y sin[(π/L)x] ˆz] generates the in-plane field atz= 0 introduced in Fig. 2. Theδ-function type fields arising from differentiation of the Heaviside step functions Θ cancel due to the vanishingz-component ofA~em at x= 0 and x=L. We further note that∇ ·~ A~em = 0 forz= 0.

41 B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988); D.A. Wharam, T. J.

Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988); L.I. Glazman, G.B. Lesovik, D.E. Khmel’nitskii, and R.I. Shekhter, Pis’ma Zh. Eksp. Teor. Fiz. 48, 218 (1988) [JETP Lett.

48, 238 (1988)].

42 In the considered case of Fig. 2 the region where the direction of the field changes significatively coincides with the entire length L of the conductor.

43 The nth mode propagates along the x-direction with velocity vx(n) = (v2F−v2n)1/2, where vF is the Fermi velocity, vn = (~/m)kn is the velocity in y-direction and kn = (π/w)n is the corresponding quantized wave number.

44 D. Loss, P. Goldbart, and A. V. Balatsky, Phys. Rev. Lett. 65, 1655 (1990).

45 H. Kohno, G. Tatara, and T. Ono, unpublished (2003).

46 Such fields, induced by currents through∼100 nm narrow pillars, were realized in the context of Oerstedt switching47. With current densities of order 107 A/cm2 one can achieve field strengths of a few hundred mT.

47 J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, and D.C. Ralph, Phys. Rev. Lett. 84, 3149 (2000).

48 M. Popp, D. Frustaglia, and K. Richter, Nanotechnology 14, 347 (2003); cond-mat/0301064.

49 S. Pedersen, A.E. Hansen, A. Kristensen, C.B. Sørensen, and P.E. Lindelof, Phys. Rev. B 61, 5457 (2000).

50 While y-polarized incoming spin-states (anti)aligned with the local magnetic field stay (anti)aligned along their orbital-paths in the adiabatic limit, z-oriented (orthogonal) initial

spin-states precess within a plane perpendicular to the local field during transport.

51 M. Popp, Diplomarbeit, Universit¨at Regensburg, unpublished (2002).

52 Interference in a 1D-ring with Rashba spin-orbit interaction for spin-unpolarized electrons was recently considered by J. Nitta, F.E. Meijer, and H. Takayanagi, Appl. Phys. Lett. 75, 695 (1999).

53 D. Frustaglia and K. Richter, submitted to Phys. Rev. B, cond-mat/0309228.

ÄHNLICHE DOKUMENTE