• Keine Ergebnisse gefunden

This study proved that cardiac- and neuro-inflammation can be assessed by TSPO targeted PET and gave insight into the heart-brain-network after MI. First, neuroinflammation post MI occurs independent from peripheral macrophages and derives from resident microglia. Second, peripheral macrophage depletion worsens early and late cardiac outcome and exaggerates acute neuroinflammation. This observation emphasizes the importance of balanced inflammation for adequate cardiac repair. Third, early treatment with enalapril to control inflammation lowers acute cardiac- and neuro-inflammation and improves cardiac function after MI. By contrast, delayed treatment with enalapril to attenuate remodeling lowers TSPO signal in remote myocardium in CHF, and improves contractile function. Fourth, TSPO may be a viable therapeutic target for chronic heart failure, acting independent of inflammation. Fifth, neuroinflammation in chronic heart failure is associated with declining cardiac function. Finally, whole body TSPO PET imaging provides quantitative non-invasive indication of peripheral macrophages and central microglial activation after acute MI, and may provide insight into altered mitochondrial biology in CHF. The systemic multi-organ-communication should be considered for application of heart failure therapy. TSPO PET provides a platform for image guided therapy after MI, in CHF, and neurodegenerative disease.

60 5.6.2 Future Direction

In this study, we did not measure cognitive response to MI, ACE inhibition, and TSPO inhibition. Earlier studies demonstrated impaired prefrontal memory in mice with CHF (130), which provides a framework for future experiments. The acute and chronic neuroinflammation observed here is consistent with mouse models of cognitive dysfunction (26,139). In addition, the cellular origin of the remote myocardial TSPO signal remains incompletely defined. However, immuno histology of heart failure remote myocardium also suggests localization to mitochondria in cardiomyocytes, which aligns with the upregulation of TSPO in CHF (90).

Because TSPO PET primarily reflects inflammation, we focused on these related mechanisms as influencing chronic cardiac function and recurrent neuroinflammation. Other factors, such as brain perfusion and sympathetic neuronal activation (97,105), may play a role in this observation, and should be investigated. Cardiac sympathetic activity could be assessed by performing PET scans using the tracer [18F]4F-MHPG (140). Whereas, brain sympathetic activity could be assessed e.g. by isolating hippocampal neurons from the animals post MI and performing patch-clamp studies (141,142).

In addition, one of the next steps could be to isolate and measure blood cytokines via liquid chromatography to identify upregulated cytokines post MI which may be responsible for the neuroinflammatory response. Finally, in the mouse model of myocardial infarction by ligation of the left coronary artery, the afferent and efferent nerve fibers are also ligated. This could affect the acute immune response in the infarct territory and influence the cardiac remodeling because of changes in the sympathetic innervation and changes in the neuropeptide signaling (101,117,143). TSPO PET scans could be done in a rat model of transthoracic, vascular-targeted, photo dynamically induced MI, which allows to occlude coronary arteries without injuring nerve fibers (144). Further investigations considering these points would give deeper insight into the connection of heart and brain after MI and improve therapeutic interventions.

61 6 Bibliography

1. Wilkins E, Wilson L, Wickramasinhe K, Bhatnagar P, Rayner M, Townsend N, et al. European Cardiovascular Disease Statistics 2017. Brussels: European Heart Network. 2017.

2. Puhl S-L, Steffens S. Neutrophils in Post-myocardial Infarction Inflammation: Damage vs.

Resolution? Frontiers in Cardiovascular Medicine. 2019;6(25).

3. Tourki B, Halade G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. Faseb j. 2017;31(10):4226-39. diseases. Role of oxidants. Cell Signal. 2000;12(9-10):607-17.

7. Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol. 2016;94:189-200.

8. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161-6.

9. Thackeray JT, Bengel FM. Molecular Imaging of Myocardial Inflammation With Positron Emission Tomography Post-Ischemia: A Determinant of Subsequent Remodeling or Recovery. JACC Cardiovasc Imaging. 2018;11(9):1340-55.

10. Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res. 2016;119(1):91-112.

11. Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res. 2010;107(11):1364-73.

12. Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, et al.

Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci.

2017;24(1):13.

13. Frodermann V, Nahrendorf M. Neutrophil-macrophage cross-talk in acute myocardial infarction. Eur Heart J. 2016.

14. Nahrendorf M, Swirski FK. Monocyte and macrophage heterogeneity in the heart. Circ Res.

2013;112(12):1624-33.

15. Sattler S, Rosenthal N. The neonate versus adult mammalian immune system in cardiac repair and regeneration. Biochim Biophys Acta. 2016;1863(7 Pt B):1813-21.

16. Fishbein MC, Maclean D, Maroko PR. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol. 1978;90(1):57-70.

17. Xu J-Y, Xiong Y-Y, Lu X-T, Yang Y-J. Regulation of Type 2 Immunity in Myocardial Infarction.

20. Richardson WJ, Clarke SA, Quinn TA, Holmes JW. Physiological Implications of Myocardial Scar Structure. Compr Physiol. 2015;5(4):1877-909.

21. Hare JM. Oxidative stress and apoptosis in heart failure progression. Circ Res. 2001;89(3):198-200.

22. Jonsson L, Wimo A. The cost of dementia in Europe: a review of the evidence, and methodological considerations. Pharmacoeconomics. 2009;27(5):391-403.

23. Russ TC, Murianni L, Icaza G, Slachevsky A, Starr JM. Geographical Variation in Dementia Mortality in Italy, New Zealand, and Chile: The Impact of Latitude, Vitamin D, and Air Pollution. Dement Geriatr Cogn Disord. 2016;42(1-2):31-41.

62 24. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101-12.

25. Gendron TF, Petrucelli L. The role of tau in neurodegeneration. Molecular neurodegeneration.

2009;4:13-.

26. Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, et al. Glial Activation and Glucose Metabolism in a Transgenic Amyloid Mouse Model: A Triple-Tracer PET Study. J Nucl Med.

2016;57(6):954-60.

27. Wakisaka Y, Furuta A, Tanizaki Y, Kiyohara Y, Iida M, Iwaki T. Age-associated prevalence and risk factors of Lewy body pathology in a general population: the Hisayama study. Acta Neuropathol.

2003;106(4):374-82.

28. Qiu C, Winblad B, Marengoni A, Klarin I, Fastbom J, Fratiglioni L. Heart failure and risk of dementia and Alzheimer disease: a population-based cohort study. Arch Intern Med.

2006;166(9):1003-8.

29. Ikram MA, van Oijen M, de Jong FJ, Kors JA, Koudstaal PJ, Hofman A, et al. Unrecognized myocardial infarction in relation to risk of dementia and cerebral small vessel disease. Stroke.

2008;39(5):1421-6.

30. Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer's disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis.

Alzheimers Dement (Amst). 2017;7:69-87.

31. Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. J Am Coll Cardiol. 2018;71(3):263-75.

32. Stranahan AM, Hao S, Dey A, Yu X, Baban B. Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J Cereb Blood Flow Metab. 2016;36(12):2108-21.

33. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci.

2018;21(10):1359-69.

34. Noh H, Jeon J, Seo H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int. 2014;69:35-40.

35. Silverman HA, Dancho M, Regnier-Golanov A, Nasim M, Ochani M, Olofsson PS, et al. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol Med. 2015;20:601-11.

36. Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood-brain barrier.

Neuroimmunomodulation. 1995;2(4):241-8.

37. Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007;48(6):18n, 21n.

38. Gustafsson T, Klintenberg M, Derenzo SE, Weber MJ, Thomas JO. Lu2SiO5 by single-crystal X-ray and neutron diffraction. Acta Crystallogr C. 2001;57(Pt 6):668-9.

39. Ollinger John M FJA. <ollinger-97-pet.pdf>. IEEE Signal PROCESSING MAGAZINE. 1997;1053-5888(97).

40. Bernassau JM, Reversat JL, Ferrara P, Caput D, Lefur G. A 3D model of the peripheral benzodiazepine receptor and its implication in intra mitochondrial cholesterol transport. J Mol Graph.

1993;11(4):236-44, 5.

41. Jaremko M, Jaremko L, Jaipuria G, Becker S, Zweckstetter M. Structure of the mammalian TSPO/PBR protein. Biochem Soc Trans. 2015;43(4):566-71.

42. Morin D, Musman J, Pons S, Berdeaux A, Ghaleh B. Mitochondrial translocator protein (TSPO):

From physiology to cardioprotection. Biochem Pharmacol. 2016;105:1-13.

43. Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA, et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab. 2017;37(8):2679-90.

44. Qi X, Xu J, Wang F, Xiao J. Translocator protein (18 kDa): a promising therapeutic target and diagnostic tool for cardiovascular diseases. Oxid Med Cell Longev. 2012;2012:162934.

63 45. Dickens AM, Vainio S, Marjamaki P, Johansson J, Lehtiniemi P, Rokka J, et al. Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180. J Nucl Med. 2014;55(3):466-72.

46. Herholz K, Heiss WD. Positron emission tomography in clinical neurology. Mol Imaging Biol.

2004;6(4):239-69.

47. Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur J Nucl Med Mol Imaging. 2015;42(5):771-80.

48. Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation.

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

2017;24(1):86-99.

49. Borchert T, Beitar L, Langer LBN, Polyak A, Wester H-J, Ross TL, et al. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. Journal of Nuclear Cardiology. 2019.

50. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med. 1993;329(22):1615-22.

51. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med. 1993;329(10):673-82.

52. ISIS-3: a randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. ISIS-3 (Third International Study of Infarct Survival) Collaborative Group. Lancet.

1992;339(8796):753-70.

53. Schjerning Olsen A-M, Gislason GH, McGettigan P, Fosbøl E, Sørensen R, Hansen ML, et al.

Association of NSAID Use With Risk of Bleeding and Cardiovascular Events in Patients Receiving Antithrombotic Therapy After Myocardial Infarction. Jama. 2015;313(8):805.

54. Moreira DM, Lueneberg ME, da Silva RL, Fattah T, Gottschall CAM. MethotrexaTE THerapy in ST-Segment Elevation MYocardial InfarctionS: A Randomized Double-Blind, Placebo-Controlled Trial (TETHYS Trial). J Cardiovasc Pharmacol Ther. 2017;22(6):538-45.

55. Qin CX, May LT, Li R, Cao N, Rosli S, Deo M, et al. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat Commun. 2017;8:14232.

56. Li Q, Cai H. Induction of cardioprotection by small netrin-1-derived peptides. Am J Physiol Cell Physiol. 2015;309(2):C100-6.

57. Toldo S, Van Tassell BW, Abbate A. Interleukin-1 Blockade in Acute Myocardial Infarction and Heart Failure: Getting Closer and Closer. JACC Basic Transl Sci. 2017;2(4):431-3.

58. Kobara M, Noda K, Kitamura M, Okamoto A, Shiraishi T, Toba H, et al. Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice.

Cardiovasc Res. 2010;87(3):424-30.

59. Jacobs M, Staufenberger S, Gergs U, Meuter K, Brandstatter K, Hafner M, et al. Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. J Mol Cell Cardiol.

1999;31(11):1949-59.

60. Paradis S, Leoni V, Caccia C, Berdeaux A, Morin D. Cardioprotection by the TSPO ligand 4'-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc Res. 2013;98(3):420-7.

61. Bae KR, Shim HJ, Balu D, Kim SR, Yu SW. Translocator protein 18 kDa negatively regulates inflammation in microglia. J Neuroimmune Pharmacol. 2014;9(3):424-37.

62. Korf-Klingebiel M, Reboll MR, Klede S, Brod T, Pich A, Polten F, et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat Med. 2015;21(2):140-9.

64 63. Satomi T, Ogawa M, Mori I, Ishino S, Kubo K, Magata Y, et al. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J Nucl Med. 2013;54(6):999-1004.

64. Huang X, Li Y, Fu M, Xin H-B. Polarizing Macrophages In Vitro. In: Rousselet G, editor.

Macrophages: Methods and Protocols. New York, NY: Springer New York; 2018. p. 119-26.

65. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res. 2004;95(2):187-95.

66. Wang K, Li Y, Song N, Che X, Hou K, Xu L, et al. Signal transducer and activator of transcription 3 inhibition enhances vemurafenib sensitivity in colon cancers harboring the BRAF(V600E) mutation. J Cell Biochem. 2019;120(4):5315-25.

67. Back SA, Khan R, Gan X, Rosenberg PA, Volpe JJ. A new Alamar Blue viability assay to rapidly quantify oligodendrocyte death. J Neurosci Methods. 1999;91(1-2):47-54.

68. Weisser SB, van Rooijen N, Sly LM. Depletion and reconstitution of macrophages in mice. J Vis Exp. 2012(66):4105.

69. Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med.

1999;340(17):1321-8.

70. Douillette A, Bibeau-Poirier A, Gravel SP, Clement JF, Chenard V, Moreau P, et al. The proinflammatory actions of angiotensin II are dependent on p65 phosphorylation by the IkappaB kinase complex. J Biol Chem. 2006;281(19):13275-84.

71. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation. 1995;91(3):802-12.

72. Derlin T, Sedding DG, Dutzmann J, Haghikia A, Konig T, Napp LC, et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [(68)Ga]pentixafor PET/CT. Eur J Nucl Med Mol Imaging. 2018;45(11):1934-44.

73. Allen AM, Taylor JM, Graham A. Mitochondrial (dys)function and regulation of macrophage cholesterol efflux. Clin Sci (Lond). 2013;124(8):509-15.

77. Berman DS, Kiat HS, Van Train KF, Germano G, Maddahi J, Friedman JD. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis of available imaging protocols. J Nucl Med. 1994;35(4):681-8.

78. Berman DS, Kiat H, Van Train K, Garcia E, Friedman J, Maddahi J. Technetium 99m sestamibi in the assessment of chronic coronary artery disease. Semin Nucl Med. 1991;21(3):190-212.

79. Aldrich S. <sigma-adrich-masson-trichrome-stain.pdf>.

80. Gontier G, George C, Chaker Z, Holzenberger M, Aid S. Blocking IGF Signaling in Adult Neurons Alleviates Alzheimer's Disease Pathology through Amyloid-beta Clearance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2015;35(33):11500-13.

81. Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, et al. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC Cardiovasc Imaging.

2015;8(12):1417-26.

82. Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective Evaluation of 18F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome.

Circ Cardiovasc Imaging. 2016;9(4):e004316.

65 83. Hyafil F, Pelisek J, Laitinen I, Schottelius M, Mohring M, Doring Y, et al. Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer (68)Ga-Pentixafor for PET. J Nucl Med.

2017;58(3):499-506.

84. Pedersen SF, Sandholt BV, Keller SH, Hansen AE, Clemmensen AE, Sillesen H, et al. 64Cu-DOTATATE PET/MRI for Detection of Activated Macrophages in Carotid Atherosclerotic Plaques:

Studies in Patients Undergoing Endarterectomy. Arterioscler Thromb Vasc Biol. 2015;35(7):1696-703.

85. Silvola JM, Saraste A, Laitinen I, Savisto N, Laine VJ, Heinonen SE, et al. Effects of age, diet, and type 2 diabetes on the development and FDG uptake of atherosclerotic plaques. JACC Cardiovasc Imaging. 2011;4(12):1294-301.

86. Frangogiannis NG. The mechanistic basis of infarct healing. Antioxid Redox Signal. 2006;8(11-12):1907-39.

87. Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, et al. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC Cardiovasc Imaging.

2015;8(12):1417-26.

88. Liehn EA, Tuchscheerer N, Kanzler I, Drechsler M, Fraemohs L, Schuh A, et al. Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. J Am Coll Cardiol.

2011;58(23):2415-23.

89. Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med.

2011;17(5):581-8.

90. Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. European Heart Journal. 2016;38(3):187-97.

91. Swirski FK, Nahrendorf M. Imaging macrophage development and fate in atherosclerosis and myocardial infarction. Immunol Cell Biol. 2013;91(4):297-303.

92. Yap J, Cabrera-Fuentes HA, Irei J, Hausenloy DJ, Boisvert WA. Role of Macrophages in Cardioprotection. Int J Mol Sci. 2019;20(10).

93. Sankowski R, Mader S, Valdes-Ferrer SI. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci.

2015;9:28.

94. Pan W, Kastin AJ. TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp Neurol. 2002;174(2):193-200.

95. Thai PN, Daugherty DJ, Frederich BJ, Lu X, Deng W, Bers DM, et al. Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure. Scientific reports. 2018;8(1):16213-.

96. Doehner W, Ural D, Haeusler KG, Celutkiene J, Bestetti R, Cavusoglu Y, et al. Heart and brain interaction in patients with heart failure: overview and proposal for a taxonomy. A position paper from the Study Group on Heart and Brain Interaction of the Heart Failure Association. Eur J Heart Fail.

2018;20(2):199-215.

97. Wolters FJ, Zonneveld HI, Hofman A, van der Lugt A, Koudstaal PJ, Vernooij MW, et al. Cerebral Perfusion and the Risk of Dementia: A Population-Based Study. Circulation. 2017;136(8):719-28.

98. Almeida OP, Garrido GJ, Beer C, Lautenschlager NT, Arnolda L, Flicker L. Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur Heart J. 2012;33(14):1769-76.

99. Cohen RA, Poppas A, Forman DE, Hoth KF, Haley AP, Gunstad J, et al. Vascular and cognitive functions associated with cardiovascular disease in the elderly. J Clin Exp Neuropsychol. 2009;31(1):96-110.

100. Ajijola OA, Wisco JJ, Lambert HW, Mahajan A, Stark E, Fishbein MC, et al. Extracardiac neural remodeling in humans with cardiomyopathy. Circ Arrhythm Electrophysiol. 2012;5(5):1010-116.

101. Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res. 2015;116(12):2005-19.

66 102. Wang HJ, Wang W, Cornish KG, Rozanski GJ, Zucker IH. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension. 2014;64(4):745-55.

103. La Rovere MT, Bigger JT, Jr., Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351(9101):478-84.

104. Chidsey CA, Harrison DC, Braunwald E. Augmentation of the plasma nor-epinephrine response to exercise in patients with congestive heart failure. N Engl J Med. 1962;267:650-4.

105. Hirooka Y. Brain perivascular macrophages and central sympathetic activation after myocardial infarction: heart and brain interaction. Hypertension. 2010;55(3):610-1.

106. Zucker IH. Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension.

2006;48(6):1005-11.

107. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, et al. Myocardial infarction accelerates atherosclerosis. Nature. 2012;487(7407):325-9.

108. Schomig A, Richardt G. Cardiac sympathetic activity in myocardial ischemia: release and effects of noradrenaline. Basic Res Cardiol. 1990;85 Suppl 1:9-30.

109. Gaemperli O, Liga R, Spyrou N, Rosen SD, Foale R, Kooner JS, et al. Myocardial beta-adrenoceptor down-regulation early after infarction is associated with long-term incidence of congestive heart failure. Eur Heart J. 2010;31(14):1722-9.

110. Ziegler KA, Ahles A, Wille T, Kerler J, Ramanujam D, Engelhardt S. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc Res. 2018;114(2):291-9.

111. Crowley SD, Rudemiller NP. Immunologic Effects of the Renin-Angiotensin System. Journal of the American Society of Nephrology : JASN. 2017;28(5):1350-61.

112. Curtiss C, Cohn JN, Vrobel T, Franciosa JA. Role of the renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation. 1978;58(5):763-70.

113. Sharpe DN, Douglas JE, Coxon RJ, Long B. Low-dose captopril in chronic heart failure: acute haemodynamic effects and long-term treatment. Lancet. 1980;2(8205):1154-7.

114. Kyne L, Hausdorff JM, Knight E, Dukas L, Azhar G, Wei JY. Neutrophilia and congestive heart failure after acute myocardial infarction. Am Heart J. 2000;139(1 Pt 1):94-100.

115. Gamboa JL, Pretorius M, Todd-Tzanetos DR, Luther JM, Yu C, Ikizler TA, et al. Comparative effects of angiotensin-converting enzyme inhibition and angiotensin-receptor blockade on inflammation during hemodialysis. J Am Soc Nephrol. 2012;23(2):334-42.

116. Vahid-Ansari F, Leenen FH. Pattern of neuronal activation in rats with CHF after myocardial infarction. Am J Physiol. 1998;275(6):H2140-6.

117. Zhang DY, Anderson AS. The sympathetic nervous system and heart failure. Cardiol Clin.

2014;32(1):33-45, vii.

118. Kang YM, Ma Y, Elks C, Zheng JP, Yang ZM, Francis J. Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: role of nuclear factor-kappaB.

Cardiovasc Res. 2008;79(4):671-8.

119. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol.

2012;30:313-35.

120. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell.

2006;124(2):407-21.

121. Leenen FH. Brain mechanisms contributing to sympathetic hyperactivity and heart failure. Circ Res. 2007;101(3):221-3.

122. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262(6 Pt 1):E763-78.

123. Wang Y, Seto S-W, Golledge J. Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Failure Reviews. 2014;19(2):187-98.

67 124. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest.

2018;128(9):3716-26.

125. Munzel T, Keaney JF, Jr. Are ACE inhibitors a "magic bullet" against oxidative stress?

125. Munzel T, Keaney JF, Jr. Are ACE inhibitors a "magic bullet" against oxidative stress?