• Keine Ergebnisse gefunden

Part V SiGe nanowires 115

9.5 Summary & Outlook

Part VI

Appendix

I

Appendix A

Precision of lattice constant determination

The lattice constant of a crystalline material can be determined from the position of the Bragg peak in a diffraction experiment. However, how accurate the peak position can be determined depends on how accurate all relevant parameters, such as the energy of the X-ray source, the precision of the angular movements of the goniometer and a possible misalignment of the centre of rotation (COR) are defined.

A.1 Relevant parameters

Energy

Usually the energy is determined with a reference crystal by comparing the measured Bragg angles with theoretical ones. In this way the energy can be given with an accu-racy up to ∼0.4 eV.

Remark: For beamlines such as ID13 where no motorized detector movement is avail-able and the Bragg peak position is used to calibrate the detector position, the given energy has to be believed or has to be determined with another method (powder diffraction with reference signal in primary beam for example).

Accuracy of angular movements

The accuracy of the angular movements depends on the used goniometer. For the relevant ω and 2θ movements this is usually in the order of 0.0001.

Misalignment

If the sample is aligned slightly out of the centre of rotation for example by misaligning the sample at half beam, the measured 2θvalue is incorrect. An exaggerated sketch of this situation is shown in Fig. A.1.

Resolution

Mainly the secondary beam resolution enters which is governed by the accuracy of the detector movements (see angular movements above), the size of the detector in the scattering plane and the distance between sample and detector. For a Maxipix or PIXcel detector a pixel is 55 µm which results in an accuracy of 0.0016 at a sample-detector distance of 1 m.

Refraction shifts

Refraction changes the actual angles under which the X-ray beam impinges onto and emerges from the probed lattice planes within the material. Additionally the wave-length in the material changes toλ= λn0.

III

Figure A.1: Misalignment of centre of rotation (COR) yields an offsetδin the detector angle 2θ.

Fitting accuracy

How accurate the position of a peak can be fitted depends on the shape and width of the Bragg peak. Heuristic investigations at one of the laboratory machines have shown that the peak position can not be defined better than 2/1000 of the peak width.

A.2 Error propagation in lattice constant determination

The lattice constants parallel and perpendicular to the inplane direction of a layer with cubic crystal structure and tetragonal distortion are given by

a= 2π Q

l (A.1)

ak = 2π Qk

ph2+k2 (A.2)

where Q⊥,k is the position of the Bragg peak in reciprocal space and h, k, and l are the Miller indices for the chosen reflection.

The Gaussian propagation of uncertainties is the effect of the variables uncertainties (or errors) on the uncertainty of a function based on them [132]. Measurement uncertainties propagate into the combination of variables in the function. The uncertainties of the inde-pendent variablesxi of a functionf(xi) are usually given by the standard deviationsσi and the propagation of uncertainties has the following form:

σf2 =X

i

(∂f

∂xi)2σi2

| {z }

σfxi

+cov(xi, xj) (A.3)

The cov(xi, xj) are the correlation terms of the errors of the different parameters.

For the error in lattice constant determination this gives a dependence only on the uncertainty in the Bragg peak determination in Q-space:

σ2a⊥,k=

"

Q2⊥,k

q

(h2+k2, l2)

#2

σQ2⊥,k (A.4)

A.2 Error propagation in lattice constant determination V Therefore, the accuracy of the real space parameters mentioned above have to be taken into account in the conversion from real to reciprocal space to determine σQ⊥,k. The conversion formulas within coplanar diffraction are given by

Q= 4π

λ sin(θ) cos(θ−ω) (A.5)

Qk = 4π

λ sin(θ) sin(θ−ω). (A.6)

The accuracy of the angular movements as well as the misalignment uncertainty can be considered to be uncorrelated. The error in the energy might not be uncorrelated to the misalignment and the angular uncertainties due to the way of energy determination at the synchrotron. Nevertheless, these correlations are neglected and a larger uncertainty is as-signed to the energy.

The total error inQ-space is therefor given by σ2Q⊥,k =σQ2E

⊥,k

+σ2Q

⊥,k

+σQ2ω

⊥,k+... (A.7)

where

σQ2E

⊥,k

=

∂Q⊥,k

∂E 2

σ2E, (A.8)

σ2Q

⊥,k

=

∂Q⊥,k

∂2θ 2

σ2 , (A.9)

σQ2ω

⊥,k =

∂Q⊥,k

∂ω 2

σ2ω. (A.10)

A.2.1 Energy uncertainty

With the relation λ= hcE the uncertainty in energy produces the following error:

σQ2E

=

hcsin(θ) cos(θ−ω) 2

σE2 (A.11)

σQ2E k

=

hcsin(θ) sin(θ−ω) 2

σE2 (A.12)

The energy and its uncertainty have to be given in eV and h and c are Planck’s constant and speed of light, respectively.

A.2.2 Angular uncertainties

Sample angle uncertainty

If the sample is big enough and homogeneous, the misalignment, which results in a change of the illuminated area on the sample, does not have an effect on the sample angle uncertainty.

The error in the sample rotation is then governed by the accuracy of theω-motor movement.

σQ2ω

=

λ sin(θ) sin(θ−ω) 2

σω2 (A.13)

σ2Qω

k =

λ sin(θ) cos(θ−ω) 2

σω2. (A.14)

Detector angle uncertainty

The uncertainty in the detector angle is governed by several effects: accuracy of the detector-motor movement, detector pixel size and sample misalignment. These errors can be consid-ered to be independent.

The alignment error δ (see Fig. A.1) can be calculated by the trigonometric cosine law cos(δ) = L2+|L−d|2d2

2L|L−d| (A.15)

withL= (sin(2θ0),cos(2θ0),0) anddis the displacement of the real centre of rotation. δ has its maximum value when d is perpendicular toL and therefor an upper limit can be given with

δ = arctan(d

L) (A.16)

Nevertheless this error is mostly corrected for when the position of a close-by substrate Bragg peak is used as a reference position. Then only the angular difference of the substrate peak and the peak of interest produces an error. This reduces the effective length of the misalignment roughly by a factor of sin(α) where α is the angular difference between the two peaks.

The total error in the detector angle is then given by

σ2 = (δ2+σaccuracy2 +σ2pixelsize) (A.17) For measurements where an analyzer is used theσpixelsizehas to be replaced by the acceptance angle of the analyzer.

The Q-uncertainty resulting from the 2θ uncertainty is then given by σ2Q

=

λ cos(2θ−ω) 2

σ2 (A.18)

σQ2 k

=

λ sin(2θ−ω) 2

σ2 . (A.19)

A.2.3 Systematic error due to refraction

Refraction changes the actual angles under which the X-ray beam impinges onto and emerges from the probed lattice planes within the material. Additionally the wavelength in the material changes toλ= λn0. This error can be corrected.

A.2 Error propagation in lattice constant determination VII

Figure A.2: Snell’s law for the case of X-rays, where n2 < n1. The refraction process is described by well known Snell’s law:

n1sin(β1) =n2sin(β2) (A.20) In 3D it is given by

k2 = n1

n2k1−sign(s·k1) n1

n2cos(β2)−cos(β1)

s (A.21)

where

cos(β1) =|s·k1| (A.22)

cos(β2) = s

1− n1

n2 2

(1−cos21)). (A.23)

Using the wavelength in the material the real ω and 2θ can be calculated:

2θ= 2 arcsin

λ|Q|

(A.24)

ω=θ±arccos(s·Q) (A.25)

The deviations ∆ω and ∆2θare in the order of 1 · 10−3 inω and 2 · 10−3 in 2θfor high incidence reflections.

A.2.4 Fitting error

The uncertainty in the fitting error depends on several things such as peak shape and width, signal to noise ratio, step-size of the scan etc. Usually a Gaussian peak is fitted into the measured data, even though a Gaussian shape is only valid for the centre of the peak. Since the central part carries the most of the intensity and information on the peak position, a Gaussian shape is nevertheless a good approximation. Usually the scans are chosen in a way that a reasonable signal to noise ratio is ensured. The step width is chosen according to the peak width in the correspondent direction. Studies at our Panalytical machine show, that the position of the peak can be fitted in the order of 2/1000 of the peak width. For

reasonable parameters (high signal to noise ratio and well defined peaks) the error can be estimated not to be higher as

σQfit

⊥,k

= 1 · 10−4 Å−1. (A.26)

A.3 Error propagation in strain determination

The in-plane and out of plane strain of a material with cubic crystal structure and tetragonal distortion is simply given by

εk = akabulk abulk

(A.27) ε= aabulk

abulk (A.28)

whereak,⊥and abulk are the determined in-plane, out of plane and bulk (unstrained) lattice constants, respectively.

Thus following the propagation of uncertainties (Eq. A.3) the error in the strain depends only on the error in lattice constant determination:

σεk,⊥ = ∂εk,⊥

∂ak,⊥

!

σk,⊥ (A.29)

leading to

σεk,⊥ = σk,⊥

abulk (A.30)

A.4 Exemplary uncertainties for different setups IX

A.4 Exemplary uncertainties for different setups

A.4.1 Panalytical MRD, Hybrid Monochromator, PIXCel detector

Energy (eV) 8048.000 σE (eV) 0.40 L (mm) 1000.00000 σaccuracy () 0.00010 COR (dmax) (mm) 0.10000 σfit −1) 0.00020

Table A.1: General parameters which influence the accuracy of the lattice parameter deter-mination. σfit was estimated with 0.0002 Å−1 since the peaks are often determined by hand.

Si (004) Si (224)

k k

ω|2θ() 34.5642 69.1285 79.2776 88.0291

σω() 0.00010

σQω −1) 0.00001 0.00000 0.00001 0.00001

σ() 0.00654

σQθ −1) 0.00013 0.00019 0.00004 0.00023 σQE −1) 0.00000 0.00023 0.00016 0.00023

σfit −1) 0.00020

σQtotal −1) 0.00024 0.00036 0.00026 0.00038

σa (Å) - 0.00042 0.00043 0.00045 σε(%) - 0.00778 0.00796 0.00825

Table A.2: Individual terms contributing to the final precision of the lattice parameter σa

and hence on the strain εk,⊥ at the angular position of the nominal Si (004) and (224) Bragg peaks.

Ge (004) Ge (224)

k k

ω|2θ() 32.9974 65.9947 77.0985 83.6753

σω() 0.00010

σQω −1) 0.00001 0.00000 0.00001 0.00001

σ() 0.00654

σQθ −1) 0.00013 0.00020 0.00003 0.00023 σQE −1) 0.00000 0.00022 0.00016 0.00022

σfit −1) 0.00020

σQtotal −1) 0.00024 0.00036 0.00026 0.00038

σa (Å) - 0.00045 0.00046 0.00048 σε(%) - 0.00835 0.00847 0.00885

Table A.3: Individual terms contributing to the final precision of the lattice parameter σa

and hence on the strain εk,⊥ at the angular position of the nominal Ge (004) and (224) Bragg peaks.

A.4.2 Beamline ID13 @ ESRF, nanofocus-endstation, Maxipix detector

Energy (eV) 15198.000 σE (eV) 3.00 L (mm) 1013.54000 σaccuracy () 0.03000 COR (dmax) (mm) 0.10000

Table A.4: General parameters which influence the accuracy of the lattice parameter determination.

Ge (008) Ge (228)

k k

ω|2θ() 35.2229 70.4457 57.1868 75.4317

σω() 0.03000

σQω −1) 0.00465 0.00000 0.00465 0.00164

σ() 0.03069

σQθ −1) 0.00119 0.00168 0.00065 0.00196 σQE −1) 0.00000 0.00175 0.00062 0.00175

σfit −1) 0.00300

σQtotal −1) 0.00566 0.00386 0.00561 0.00431

σa (Å) 0.00000 0.00246 0.01010 0.00275 σε(percent) 0.00000 0.04347 0.17851 0.04857

Table A.5: Individual terms contributing to the final precision of the lattice parameter σa and hence on the strain εk,⊥ at the angular position of the nominal Si (008) and (228) Bragg peaks.

A.4 Exemplary uncertainties for different setups XI

Ge (004) Ge (117)

k k

ω|2θ() 16.7616 33.5232 42.4098 61.9765

σω() 0.03000

σQω −1) 0.00233 0.00000 0.00407 0.00082

σ() 0.03069

σQθ −1) 0.00059 0.00197 0.00069 0.00194 σQE −1) 0.00000 0.00088 0.00031 0.00153

σfit −1) 0.00300

σQtotal −1) 0.00384 0.00370 0.00511 0.00398

σa (Å) 0.00000 0.00471 0.01842 0.00289 σε(percent) 0.00000 0.08323 0.32555 0.05115

Table A.6: Individual terms contributing to the final precision of the lattice parameter σa

and hence on the strain εk,⊥ at the angular position of the nominal Ge (004) and (117) Bragg peaks.

Acknowledgements

First and foremost I would like to thank Julian Stangl for supervising this thesis and the great support in all belongings. In this respect I also want to thank Günther Bauer and Václav Holý for taking care of me whenever it was needed.

Furthermore, my dearest thanks go to all present and former colleagues of the X-ray group, Dominik Kriegner, Mario Keplinger, Nina Hrauda, Bernhard Mandl, Dorian Ziss, Eugen Wintersberger, Marc Watzinger and Raphael Grifone for their great support and the amazing times we spent together on beamtimes, conferences and all kind of group activities. You all are friends to me rather than colleagues. The same holds for all other former and present members of the OOCE, Elisabeth Lausecker, Alisha Truhlar, Markus Steindl and Thomas Lettner, thank you for the fun in the office.

Many thanks also to the great staff at the semiconductor devision, without whom successful work would not be possible. Susanne Schwind, Fritz Binder, Ernst Vorhauer, Stefan Bräuer and Alma Halilovic, thank you for your support.

A big big thank you goes to Magdalena Schatzl for the everlasting friendship and support in every circumstance.

I also would like to acknowledge the many people involved in the different collaborations:

Within the GREEN Si project special thanks go to Stefano Cecchi, Danny Chrastina and Giovanni Isella for the growth of the samples, Elisabeth Müller for the TEM analysis and Douglas Paul, Antonio Samarelli and Lourdes Ferre Llin for the fabrication and characteri-zation of the devices.

Concerning the magic superlattices I’d like to thank Stefano Cecchi and Giovanni Isella for the idea and the growth of the structures, Mohammad Ahmadpor Monazam for the theoretical calculations and Eleonore Gatti and Fabio Pezolli for the PL investigations.

My gratitude goes to Martin Süess and Andi Wyss for providing the Ge microbridges, the support at the beamtimes and the following never ending teamwork. In this respect I’d also like to thank Ana Diaz for the great support.

Many thanks also to the beamline staff at ID01 and ID13 at the ESRF in Grenoble and P08 at DESY in Hamburg.

Finally, I would like to thank also my dear friends Sylvia Viertlmayr and Katrin Baumgartner for the open ears in all and every belongings and the exhilarating discussions on physics-topics in a non physicists way.

Last but not least I would like to thank my family for the incredible support during my whole life, no matter which decisions I made.

XIII

Curriculum Vitae

Personal Data

Name Tanja Etzelstorfer

Address Römerstr. 23, 4020 Linz, AUSTRIA

Telephone +43 650 4950200

E-Mail tanja.etzelstorfer@gmx.at

Date an place of birth 30.03.1987 in Linz, AUSTRIA grown up in St. Oswald b. Fr.

Education

01/2012 – 08/2015 Doctorate Degree Studies in Technical Sciences Institute of Semiconductor and Solid State Physics Johannes Kepler University Linz, Austria

Major field of study: Technical Physics

Topic of PhD thesis: „X-ray based investigations of semiconductor multilayer and microbridges“

10/2006 – 12/2011 Diploma Degree in Technical Physics

Institute of Semiconductor and Solid State Physics Johannes Kepler University Linz, Austria

Title of diploma thesis: „Structural investigations of nanomaterials for renewable energy applications“

10/2009 – 07/2010 Study abroad in Great Britain Lancaster University, Lancaster, UK

09/2001 – 06/2006 Vocational education and training college Leonding HTBLA Leonding, Austria

Major field of study: Data processing & Organisation

Awards

05/2015 IRIS 2015 Recognition-Prize

environmental prize of the city of Linz

04/2012 Wilhelm-Macke-Recognition-Prizefor outstanding diploma theses of the Wilhelm Macke foundation

Teaching Experience

since summer term 2014 Access to Higher Education Diplomain Physics, JKU Linz since summer term 2012 Practical in X-ray Diffraction, JKU Linz

2009-2011 European Computer Driving Licence(ECDL), BBRZ Linz

Computer Skills

Programming Python, Matlab, C, C++, Java, Fortran

Other Software Latex, Comsol Multiphysics (Finite Element Modelling software), Office, various imaging editing software

Qualifications

Languages German (native), English (fluent)

Personal Interests

Mountaineering, Travelling, Gardening, Music XV

List of publications

T. Etzelstorfer, M.R. Ahmadpor Monazam, S. Cecchi, D. Kriegner, D. Chrastina, E. Gatti, E. Grilli, N. Rosemann, S. Chatterjee, V. Holý, F. Pezzoli, G. Isella, and J. Stangl. Structural investigations of the α12 Si-Ge superstructure. Journal of Applied Crystallography, 48(1):

262–268, Feb 2015. doi: 10.1107/S1600576715000849. URLhttp://dx.doi.org/10.1107/

S1600576715000849

T. Etzelstorfer, M.J. Süess, G.L. Schiefler, V.L.R. Jacques, D. Carbone, D. Chrastina, G. Isella, R. Spolenak, J. Stangl, H. Sigg, and A. Diaz. Scanning X-ray strain microscopy of inhomogeneously strained Ge micro-bridges. Journal of Synchrotron Radiation, 21(1):

111–118, Jan 2014. doi: 10.1107/S1600577513025459. URLhttp://dx.doi.org/10.1107/

S1600577513025459

H.I.T. Hauge, M.A. Verheijen, S. Conesa-Boj, T. Etzelstorfer, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino, S. Kölling, A. Li, S. Assali, J. Stangl, and E.P.A.M. Bakkers. Hexagonal Silicon Realized. Nano Letters, 0(0):null, 2015. doi: 10.1021/

acs.nanolett.5b01939. URLhttp://dx.doi.org/10.1021/acs.nanolett.5b01939. PMID:

26230363

A. Samarelli, L.Ferre Llin, S. Cecchi, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, E.Muller Gubler, J.M.R. Weaver, P. Dobson, and D.J. Paul. Multilayered Ge/SiGe Material in Microfabricated Thermoelectric Modules. Journal of Electronic Materials, 43(10):3838–

3843, 2014. ISSN 0361-5235. doi: 10.1007/s11664-014-3233-z. URL http://dx.doi.org/

10.1007/s11664-014-3233-z

A. Samarelli, L.Ferre Llin, S. Cecchi, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, E.Muller Gubler, J.M.R. Weaver, P. Dobson, and D.J. Paul. Multilayered Ge/SiGe Material in Microfabricated Thermoelectric Modules. Journal of Electronic Materials, 43(10):3838–

3843, 2014. ISSN 0361-5235. doi: 10.1007/s11664-014-3233-z. URL http://dx.doi.org/

10.1007/s11664-014-3233-z

A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, D. Chrastina, G. Isella, E. Müller Gubler, T. Etzelstorfer, J. Stangl, Y. Zhang, J.M.R. Weaver, P.S. Dobson, and D.J. Paul. Prospects for SiGe thermoelectric generators. Solid-State Electronics, 98(0):70 – 74, 2014. ISSN 0038-1101. doi: http://dx.doi.org/10.1016/j.sse.2014.04.003. URL http://www.sciencedirect.

com/science/article/pii/S0038110114000513. Selected Papers from {ULIS} 2013 Con-ference

A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller Gubler, J.n Stangl, D. Chrastina, G. Isella, and D. Paul. (Invited) The Thermoelectric Properties of Ge/SiGe Based Superlattices: from Materials to Energy Harvesting Modules. ECS Trans-actions, 64(6):929–937, 2014. doi: 10.1149/06406.0929ecst. URLhttp://ecst.ecsdl.org/

XVII

content/64/6/929.abstract

S. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L. Ferre Llin, D. Chrastina, G. Isella, J. Stangl, J.M.R. Weaver, P. Dobson, and D.J. Paul. Ge/SiGe Superlattices for Ther-moelectric Devices Grown by Low-Energy Plasma-Enhanced Chemical Vapor Deposition.

Journal of Electronic Materials, 42(7):2030–2034, 2013. ISSN 0361-5235. doi: 10.1007/

s11664-013-2511-5. URLhttp://dx.doi.org/10.1007/s11664-013-2511-5

S. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L. Ferre Llin, D. Chrastina, G. Isella, J. Stangl, and D.J. Paul. Ge/SiGe superlattices for thermoelectric energy conversion de-vices. Journal of Materials Science, 48(7):2829–2835, 2013. ISSN 0022-2461. doi: 10.1007/

s10853-012-6825-0. URLhttp://dx.doi.org/10.1007/s10853-012-6825-0

L. Ferre Llin, A. Samarelli, S. Cecchi, T. Etzelstorfer, E. Müller Gubler, D. Chrastina, G. Isella, J. Stangl, J. M. R. Weaver, P. S. Dobson, and D. J. Paul. The cross-plane ther-moelectric properties of p-Ge/Si_0.5Ge_0.5 superlattices. Applied Physics Letters, 103(14):

143507, 2013. doi: http://dx.doi.org/10.1063/1.4824100. URLhttp://scitation.aip.org/

content/aip/journal/apl/103/14/10.1063/1.4824100

A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller, Y. Zhang, J. R.

Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, and D. J.

Paul. The thermoelectric properties of Ge/SiGe modulation doped superlattices. Journal of Applied Physics, 113(23):233704, 2013. doi: http://dx.doi.org/10.1063/1.4811228. URL http://scitation.aip.org/content/aip/journal/jap/113/23/10.1063/1.4811228 D. Chrastina, S. Cecchi, J.P. Hague, J. Frigerio, A. Samarelli, L. Ferre–Llin, D.J. Paul, E. Müller, T. Etzelstorfer, J. Stangl, and G. Isella. Ge/SiGe superlattices for nanostruc-tured thermoelectric modules. Thin Solid Films, 543(0):153 – 156, 2013. ISSN 0040-6090.

doi: http://dx.doi.org/10.1016/j.tsf.2013.01.002. URL http://www.sciencedirect.com/

science/article/pii/S0040609013000473. International Conference NanoSEA (NANOs-tructures {SElf} Assembly) 2012

L. Ferre Llin, A. Samarelli, Y. Zhang, J.M.R. Weaver, P. Dobson, S. Cecchi, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, E.Muller Gubler, and D.J. Paul. Thermal Conductiv-ity Measurement Methods for SiGe Thermoelectric Materials. Journal of Electronic Ma-terials, 42(7):2376–2380, 2013. ISSN 0361-5235. doi: 10.1007/s11664-013-2505-3. URL http://dx.doi.org/10.1007/s11664-013-2505-3

N Hrauda, J J Zhang, H Groiss, T Etzelstorfer, V Holý, G Bauer, C Deiter, O H Seeck, and J Stangl. Strain relief and shape oscillations in site-controlled coherent SiGe islands.

Nanotechnology, 24(33):335707, 2013. URLhttp://stacks.iop.org/0957-4484/24/i=33/

a=335707

N. Hrauda, J. J. Zhang, H. Groiss, J. C. Gerharz, T. Etzelstorfer, J. Stangl, V. Holý, C. Deiter, O. H. Seeck, and G. Bauer. Closely spaced sige barns as stressor structures for strain-enhancement in silicon. Applied Physics Letters, 102(3):032109, 2013. doi: http://

dx.doi.org/10.1063/1.4789507. URL http://scitation.aip.org/content/aip/journal/

apl/102/3/10.1063/1.4789507

XIX

Dominik Kriegner, Simone Assali, Abderrezak Belabbes, Tanja Etzelstorfer, Václav Holý, Tobias Schülli, Friedhelm Bechstedt, Erik P. A. M. Bakkers, Günther Bauer, and Julian Stangl. Unit cell structure of the wurtzite phase of GaP nanowires: X-ray diffraction studies and density functional theory calculations. Phys. Rev. B, 88:115315, Sep 2013. doi: 10.1103/

PhysRevB.88.115315. URL http://link.aps.org/doi/10.1103/PhysRevB.88.115315 D. Kriegner, J.M. Persson, T. Etzelstorfer, D. Jacobsson, J. Wallentin, J.B. Wagner, K. Dep-pert, M.T. Borgström, and J. Stangl. Structural investigation of GaInP nanowires using X-ray diffraction. Thin Solid Films, 543:100 – 105, 2013. ISSN 0040-6090. doi: http:

//dx.doi.org/10.1016/j.tsf.2013.02.112. URL http://www.sciencedirect.com/science/

article/pii/S0040609013003829. International Conference NanoSEA (NANOstructures {SElf} Assembly) 2012

A. Samarelli, L.Ferre Llin, Y. Zhang, J.M.R. Weaver, P. Dobson, S. Cecchi, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, E.Müller Gubler, and D.J. Paul. Power Factor Charac-terization of Ge/SiGe Thermoelectric Superlattices at 300 K. Journal of Electronic Ma-terials, 42(7):1449–1453, 2013. ISSN 0361-5235. doi: 10.1007/s11664-012-2287-z. URL http://dx.doi.org/10.1007/s11664-012-2287-z

D Jacobsson, J M Persson, D Kriegner, T Etzelstorfer, J Wallentin, J B Wagner, J Stangl, L Samuelson, K Deppert, and M T Borgström. Particle-assisted GaxIn1−xP nanowire growth for designed bandgap structures. Nanotechnology, 23(24):245601, 2012. URLhttp:

//stacks.iop.org/0957-4484/23/i=24/a=245601

N. Hrauda, J.J. Zhang, E. Wintersberger, T. Etzelstorfer, B. Mandl, J. Stangl, D. Car-bone, V. Holý, V. Jovanović, C. Biasotto, L. K. Nanver, J. Moers, D. Grützmacher, and G. Bauer. X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor. Nano Lett., 11:2875–2880, 2011

Bibliography

[1] R.H. Havemann and J.A. Hutchby. High-performance interconnects: an integration overview. Proceedings of the IEEE, 89(5):586–601, May 2001. ISSN 0018-9219. doi:

10.1109/5.929646.

[2] G. Chen, H. Chen, M. Haurylau, N.A. Nelson, D.H. Albonesi, P.M. Fauchet, and E.G. Friedman. Predictions of {CMOS} compatible on-chip optical interconnect.

Integration, the {VLSI} Journal, 40(4):434 – 446, 2007. ISSN 0167-9260. doi:

http://dx.doi.org/10.1016/j.vlsi.2006.10.001. URLhttp://www.sciencedirect.com/

science/article/pii/S016792600600085X.

[3] J. Michel, J. Liu, and L.C. Kimerling. High-performance Ge-onSi photodetectors.

Nature Photonics, 4:527–534, 2010. doi: 10.1038/nphoton.2010.157.

[4] M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto. Near-Infrared Sub-Bandgap All-Silicon Photodetectors: State of the Art and Perspectives. Sensors, 10:

10571–10600, 2010. doi: 10.3390/s101210571.

[5] G.T. Reed, G. Mashanovich, F.Y. Gardes, and D.J. Thomson. Silicon optical modu-lators. Nature Photonics, 4:518–526, 2010. doi: 10.1038/nphoton.2010.179.

[6] J. Leuthold, C. Koos, and W. Freude. Nonlinear silicon photonics. Nature Photonics, 4:535–544, 2010. doi: 10.1038/nphoton.2010.185.

[7] L. Tsybeskov and D.J. Lockwood. Silicon-Germanium Nanostructures for Light Emit-ters and On-Chip Optical Interconnects. Proceedings of the IEEE, 97(7):1284–1303, July 2009. ISSN 0018-9219. doi: 10.1109/JPROC.2009.2020711.

[8] P.K. Basu, N.R. Das, B. Mukhopadhyay, G. Sen, and M.K. Das. Ge/Si photodetec-tors and group IV alloy based photodetector materials. In Numerical Simulation of Optoelectronic Devices, 2009. NUSOD 2009. 9th International Conference on, pages 79–80, 2009. doi: 10.1109/NUSOD.2009.5297214.

[9] Y. Ishikawa and K. Wada. Germanium for silicon photonics. Thin Solid Films, 518(6, Supplement 1):S83 – S87, 2010. ISSN 0040-6090. doi: http://dx.doi.org/

10.1016/j.tsf.2009.10.062. URLhttp://www.sciencedirect.com/science/article/

pii/S0040609009017052. Sixth International Conference on Silicon Epitaxy and Het-erostructures.

[10] J. Liu, R. Camacho-Aguilera, J.T. Bessette, X. Sun, X. Wang, Y. Cai, L.C. Kimerling, and J. Michel. Ge-on-Si optoelectronics. Thin Solid Films, 520(8):3354 – 3360, 2012.

ISSN 0040-6090. doi: http://dx.doi.org/10.1016/j.tsf.2011.10.121. URLhttp://www.

sciencedirect.com/science/article/pii/S004060901101861X. ICSI-7.

[11] Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report. Au-gust 2015. URL http://www.ise.fraunhofer.de/en/downloads-englisch/

pdf-files-englisch/photovoltaics-report-slides.pdf.

XXI

[12] G.J. Snyder and E. S. Toberer. Complex thermoelectric materials. Nature Materials, 7(2):105–114, 2008. doi: http://dx.doi.org/10.1038/nmat2090.

[13] M. Dresselhaus and L.D. Hicks. Effect of quantum-well on the thermoelectric figure of merit. Phys. Rev. B, 47(12727), 1993.

[14] N. F. Mott. Electrons in disordered structures. Advances in Physics, 16(61):49–144, 1967.

[15] P. Vogl, M. M. Rieger, J.A. Majewski, and G. Abstreiter. How to convert group-IV semiconductors into light emitters. Phys. Scr., 1993(T49B):476, 1993. URL http:

//stacks.iop.org/1402-4896/1993/i=T49B/a=017.

[16] M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, and T. Koga.

Low-dimensional thermoelectric materials. Physics of the Solid State, 41(5):679–682, 1999. ISSN 1063-7834. doi: 10.1134/1.1130849. URLhttp://dx.doi.org/10.1134/

1.1130849.

[17] X. Sun, S.B. Cronin, J. Liu, K.L. Wang, T. Koga, M.S. Dresselhaus, and G. Chen.

Experimental study of the effect of the quantum well structures on the thermoelectric figure of merit in Si/Si1−xGex system. InThermoelectrics, 1999. Eighteenth Interna-tional Conference on, pages 652–655, Aug 1999. doi: 10.1109/ICT.1999.843472.

[18] M.P. Singh and C.M. Bhandari. Thermoelectric properties of bismuth telluride quantum wires. Solid State Communications, 127(9–10):649–654, 2003. ISSN 0038-1098. doi: http://dx.doi.org/10.1016/S0038-1098(03)00520-9. URL http://www.

sciencedirect.com/science/article/pii/S0038109803005209.

[19] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F.

Ren, J.P. Fleureial, and P. Gogna. New directions for low-dimensional thermoelec-tric materials. Advanced Materials, 19(8):10431053, 2007. ISSN 1521-4095. doi:

10.1002/adma.200600527. URL http://dx.doi.org/10.1002/adma.200600527.

[20] P. Chen, N.A. Katcho, J.P. Feser, W. Li, M. Glaser, O.G. Schmidt, D.G. Cahill, N. Mingo, and A. Rastelli. Role of Surface-Segregation-Driven Intermixing on the Thermal Transport through Planar Si/Ge Superlattices. Phys. Rev. Lett., 111:115901, Sep 2013. doi: 10.1103/PhysRevLett.111.115901. URL http://link.aps.org/doi/

10.1103/PhysRevLett.111.115901.

[21] S.T. Huxtable, A.R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J.E. Bowers, A. Shakouri, and E.T. Croke. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Applied Physics Letters, 80(10):1737–1739, 2002. doi:

http://dx.doi.org/10.1063/1.1455693. URL http://scitation.aip.org/content/

aip/journal/apl/80/10/10.1063/1.1455693.

[22] A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller, Y. Zhang, J. R. Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, and D. J. Paul. The thermoelectric properties of Ge/SiGe modula-tion doped superlattices. Journal of Applied Physics, 113(23):233704, 2013. doi:

http://dx.doi.org/10.1063/1.4811228. URL http://scitation.aip.org/content/

aip/journal/jap/113/23/10.1063/1.4811228.

[23] Pablo Ferrando-Villalba, AitorF. Lopeandía, FrancescXavier Alvarez, Biplab Paul, Carla de Tomás, MariaIsabel Alonso, Miquel Garriga, AlejandroR. Goñi, Jose San-tiso, Gemma Garcia, and Javier Rodriguez-Viejo. Tailoring thermal conductivity