• Keine Ergebnisse gefunden

STATISTICS OF THE HYDROGRAPHIC DATA

Im Dokument 3D1 I iTH-'EeR- m (Seite 90-129)

I n t h i s chapter diagrams of mean p r o f i l e s w i t h t h e i r standard d e v i a t i o n s w i l l be shown. A comparison between data averaged on constant d e n s i t y w i t h d a t a averaged on constant p r e s s u r e w i l l be made, to show how much of the observed v a r i a b i l i t y i s due t o i n t e r n a l waves and how much i s due t o f r o n t a l p r o c e s s e s .

Histograms of s a l i n i t y , temperature and normalized i s o p y c n a l s p a c i n g on s u r f a c e s of constant d e n s i t y are a l s o shown.

T-S diagrams are presented t o i l l u s t r a t e water mass c h a r a c t e r i s t i c s .

8.1 Mean and standard d e v i a t i o n p r o f i l e s a ) F r o n t a l Survey

From the f r o n t a l area s e c t i o n s C311 and C312 a r e a g a i n shown. Mean p r o f i l e s f o r the c o l d and warm s i d e of the f r o n t are presented and can be compared w i t h those from the r e g i o n of maximum t h e r m o c l i n i c i t y . As i n the s e r i e s of o f f s e t p r o f i l e s shown i n paragraph 6.2 t h e averaging i n t e r v a l s were chosen to be 20 p r o f i l e s ( 7 - 8 km).

F i g u r e s 8.1.1 and 8.1.2 show mean p r o f i l e s w h i t h t h e i r standard d e v i a -t i o n s of -tempera-ture, s a l i n i -t y and d e n s i -t y averaged on cons-tan-t p r e s s u r e . The s t a t i s t i c a l s i g n i f i c a n c e of these p r o f i l e s can be seen

from the number of c o n t r i b u t i o n s . The v a r i a b i l i t y i n these p r o f i l e s i s i n d i c a t e d by t h e i r standard d e v i a t i o n s , b e i n g p a r t l y i n t e r n a l wave induced and p a r t l y due t o t h e f r o n t a l v a r i a b i l i t y . The v a r i a b i l i t y i s s t r o n g e s t a t the t h e r m o c l i n i c i t y maximum and i t i s i n t e r e s t i n g t o note t h a t a w e l l developed mixed l a y e r can o n l y be d e t e c t e d a t the warm and c o l d s i d e of the f r o n t .

I n order t o remove most of the i n t e r n a l wave s i g n a l f i g u r e s 8.1.3 and 8.1.4 show the s e t of p r o f i l e s averaged on c o n s t a n t at. N o t i c e the remarkable d i f f e r e n c e i n the standard d e v i a t i o n s of t h e ' f r o n t ' compared w i t h the o t h e r regimes, which means, that t h e r e i s a very narrow T-S r e l a t i o n s h i p on both s i d e s of the f r o n t w i t h a h i g h l y v a r i a b l e t r a n s i t i o n zone in-between. As a l r e a d y mentioned t h e thermohaline d i f f e r e n c e between these r e g i o n s i s i n c r e a s i n g w i t h depth.

F o r comparison of the i n t e r n a l wave-induced v a r i a b i l i t y w i t h t h a t of the f r o n t , mean and standard d e v i a t i o n p r o f i l e s of temperature and s a l i n i t y

were averaged along constant OJ-, but p l o t t e d versus the mean p r e s s u r e of the d e n s i t y l a y e r i n q u e s t i o n ( f i g u r e s 8.1.5, 8.1.6). This procedure l e d to a r e d u c t i o n of the v a r i a b i l i t y e s p e c i a l l y a t the c o l d and warm s i d e s . b) Long S e c t i o n s

L a r g e - s c a l e v a r i a b i l i t y along s e c t i o n B102 can be seen from a s e r i e s of mean p r o f i l e s and t h e i r standard d e v i a t i o n s of temperature and s a l i n i t y (8.1.7., 8.1.8). Each of the p r o f i l e s represent the average c o n d i t i o n s f o r each degree of l a t i t u d e , beginning j u s t n o r t h o f the Azores 38° N up t o 55° N. The averaging was performed on s u r f a c e s of constant o^ t o reduce the i n t e r n a l wave s i g n a l , but temperature and s a l i n i t y a r e presented as a f u n c t i o n of t h e i r mean p r e s s u r e s .

Most of the standard d e v i a t i o n s of the averaged p r o f i l e s a r e l a r g e r o r s m a l l e r depending on the i n t e n s i t y of eddies and mesoscale f r o n t s i n t h e l a t i t u d e i n t e r v a l . Only the averages centred a t 46.5°, 48.5°, 50.5° and 51.5° N which i n c l u d e the main branches of the P o l a r Front have c l e a r l y l a r g e r standard d e v i a t i o n s and a d i f f e r e n t s l o p e of the mean p r o f i l e . To show the c l e a r d i f f e r e n c e s of regimes r e g a r d l e s s of t h e i r s i t u a t i o n i n g e o g r a p h i c a l i n t e r v a l s , f o u r of the s e l e c t e d s e t s d e s c r i b e d i n paragraph 6.1 were averaged along I s o p y c n a l s and presented v e r s u s p r e s s u r e i n f i g u r e 8.1.10 analogous t o the mean p r o f i l e s of the f r o n t a l survey.

The low standard d e v i a t i o n s i n t h e averages of s e t 1 and 5 i n d i c a t e t h e i r s i t u a t i o n i n i s o p y c n i c a l l y homogeneous regimes. Set 1 s i t u a t e d i n sub-t r o p i c a l wasub-ters I s sub-t h e r m a l l y s sub-t r o n g e r s sub-t r a sub-t i f i e d sub-than s e sub-t 5 l y i n g i n s u b p o l a r water. But the p o s i t i v e s a l i n i t y g r a d i e n t i n s e t 1 reduces the s t a b i l i t y , w h i l e the n e g a t i v e s a l i n i t y g r a d i e n t i n s e t 5 supports the thermal s t r a t i f i c a t i o n .

The l a r g e standard d e v i a t i o n s of s e t 3 and 4 i n d i c a t e the h i g h h o r i z o n t a l v a r i a b i l i t y i n the regions of maximum t h e r m o c l i n i c i t y along t h e s e c t i o n . I n both p r o f i l e s they have maxima a t about 30 and 50 m. The d r a s t i c decrease a t the top of t h e p r o f i l e s show how the s t r o n g t h e r m o c l i n i c i t y i n the thermocline i s hidden from the s u r f a c e by a h o r i z o n t a l l y much more h o r i z o n t a l l y homogeneous mixed l a y e r .

A c l e a r l y d i s t i n g u i s h a b l e c o l d e r and f r e s h e r water mass i n the upper 45 m l e a d s t o the bending of the mean p r o f i l e s .

S e c t i o n B102 was averaged along constant d e n s i t i e s i n i n t e r v a l s of 1° of l a t i t u d e .

S t a t i s t i c a l moments of the i s o p y c n i c d i s t r i b u t i o n of p r e s s u r e , temperature, s a l i n i t y and the spacing between OJ- = - 0.05 kg m~ 3 a r e l i s t e d i n t a b l e s 8.1.1 - 17 f o r i s o p y c n a l s being 0.1 kg m~3 a p a r t .

The uppermost value of any p r o f i l e was excluded from a v e r a g i n g , to a v o i d the contamination of the s t a t i s t i c s by values of the mixed l a y e r . U n l i k e temperature and s a l i n i t y where r e g i o n s of r e l a t i v e l y u n i f o r m w a t e r mass can c l e a r l y be d i s t i n g u i s h e d from r e g i o n s of v a r y i n g w a t e r masses, the p r e s s u r e d i s t r i b u t i o n and the i s o p y c n a l spacing do not show obvious c o r r e l a t i o n s w i t h the hydrographic f e a t u r e s .

The v a r i a b i l i t y of p r e s s u r e i s g r e a t e s t near the A z o r e s . I n the f r o n t a l r e g i o n i t i n c r e a s e s o n l y i n the lower l a y e r s at s t r o n g f r o n t s . The s p a c i n g shows some i s o l a t e d , h e a v i l y skewed d i s t r i b u t i o n s w i t h h i g h k u r t o s i s .

8.2 P r o b a b i l i t y d i s t r i b u t i o n s on s u r f a c e s of c o n s t a n t d e n s i t y

I n t h i s s e c t i o n p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n s (PDF) of temperature ( f i g u r e 8.2.1), s a l i n i t y ( f i g u r e 8.2.2) and p r e s s u r e ( f i g u r e 8.2.3) on s u r f a c e s of constant d e n s i t y w i l l be shown. Each PDF r e p r e s e n t s a l l data p o i n t s i n the f r o n t a l r e g i o n on a d i s t i n c t ot- s u r f a c e . The number of p o i n t s I n each window i s n o r m a l i z e d by the t o t a l number of p o i n t s on t h a t s u r f a c e . The PDF's of s a l i n i t y and temperature show a bimodal s t r u c t u r e i n d i c a t i n g the two water masses observed i n t h a t a r e a . This bimodal s t r u c t u r e Is not observed i n the p r e s s u r e d i s t r i b u t i o n , furthermore the p r e s s u r e d i s t r i b u -t i o n i s n e a r l y G a u s s i a n , e s p e c i a l l y on -the s u r f a c e s Oj. ~ 26.6 kg m~3 and

ot * 26.3 kg m~3 where the k u r t o s i s i s around three ( t a b l e 8.2.1) and the skewness i s very s m a l l . PDF's of n o r m a l i z e d t h i c k n e s s ( s p a c i n g between p a i r s of i s o p y c n a l s being 0.1 kg m~3 a p a r t ) a r e a l s o shown. To remove the e f f e c t of changes i n the mean v e r t i c a l d e n s i t y g r a d i e n t , the t h i c k n e s s i s n o r m a l i z e d w i t h regard t o i t s mean v a l u e (see t a b l e 8.2.1). The r e s u l t i n g PDF's ( f i g u r e 8.2.4) show a very skewed d i s t r i b u t i o n , up t o f o u r times i t s mean v a l u e .

8.3 T-S Diagrams a) Front Regions

One of the most c l a s s i c diagrams I n oceanography i s t h a t of the T-S r e l a t i o n s h i p , which a g a i n i s presented f o r t y p i c a l r e g i o n s named "C",

"F", "W" from s e c t i o n s C311 and C312 ( f i g u r e 8.3.1, 8.3.2.). The averaging was c a r r i e d out along d e n s i t y s u r f a c e s and the bars i n the f i g u r e s denote

standard d e v i a t i o n s of t y p i c a l p l a c e s i n the T-S domain. The t o t a l range i n s a l i n i t y i s 34.5 • 1 0 "3 - 35.5 • 1 0 "3 and 9 °C t o about 15 °G.

Comparing the T-S diagrams from "C" and "W" i t can be seen t h a t the s a l i n i t i e s - as w e l l as the temperatures - a r e c l o s e r t o each o t h e r above at = 26.0 k g m~3 a r i Q d e v i a t e more t o about o^ = 26.9 kg m"3, where the warm s i d e shows a s t r o n g s a l i n i t y maximum. T h i s maximum c o u l d a l s o be

d e t e c t e d i n the r e g i o n of the t h e r m o c l i n i c i t y maximum. Furthermore the T-S p r o f i l e i n t h a t r e g i o n shows s t r o n g s i m i l a r i t i e s t o t h a t of the warm s i d e although the thermohaline v a r i a b i l i t y , shown by t h e standard d e v i a t i o n bars i s much s t r o n g e r a t the t h e r m o c l i n i c i t y maximum. Another n o t a b l e f e a t u r e i s the very f r e s h water i n the top l a y e r s of the thermo-c l i n i thermo-c i t y maximum r e g i o n whithermo-ch thermo-can be e x p l a i n e d by a phase s h i f t of the t h e r m o c l i n i c i t y s i g n a l w i t h depth and the very f r e s h band of water seen on the c o l d s i d e of the t h e r m o c l i n i c i t y maximum i n the s e c t i o n p l o t s ( f i g u r e 7.2.1).

b) Long S e c t i o n s

The same p r e s e n t a t i o n f o r the f o u r t y p i c a l s e t s of the long s e c t i o n B102 i s used i n f i g u r e 8.3.3. I n the regions w i t h r e l a t i v e l y uniform w a t e r masses, No 1 and No 5, where the standard d e v i a t i o n bars are s m a l l , the d e n s i t y s t r a t i f i c a t i o n i s mainly due t o the p o s i t i v e temperature g r a d i e n t . The s a l i n i t y p r o v i d e s i n r e g i o n No 1 a s l i g h t r e d u c t i o n of the s t a b i l i t y w i t h i t s p o s i t i v e g r a d i e n t and i n r e g i o n No 5 a n i n c r e a s e i n s t a b i l i t y w i t h a weak negative g r a d i e n t . The two examples, chosen from r e g i o n s w i t h maximum h o r i z o n t a l temperature and s a l i n i t y g r a d i e n t s show s i m i l a r i t i e s , t o o . The upper p a r t i s mainly t h e r m a l l y s t r a t i f i e d u n t i l a c l e a r Increase of s a l i n i t y i n d i c a t e s the t r a n s i t i o n t o a d i f f e r e n t water mass I n which the p r o f i l e continues a g a i n i n n e a r l y v e r t i c a l d i r e c t i o n . The mixed l a y e r represented by the uppermost standard d e v i a t i o n b a r has a much lower h o r i z o n t a l v a r i a b i l i t y than the t h e r m o c l i n e .

Table 8.1.1 - 17

S t a t i s t i c s of dependent v a r i a b l e s on i s o p y c n a l s u r f a c e s from s e c t i o n B102, NOA '81 f o r one degree i n t e r v a l s .

t a b l e 8.1.1: 38° N to 39° N, 26°06' W to 26°40* tf t a b l e 8.1.2: 39° N to 40° N, 26°40' W to 27°14' W t a b l e 8.1.3: 40° N t o 41° N, 27°14* W t o 27°50' W t a b l e 8.1.4: 41° N to 42° N, 27°50' W t o 28°25' W t a b l e 8.1.5: 42° N to 43° N, 28°25* W t o 29°01« W t a b l e 8.1.6: 43° N to 44° N, 29°01' W t o 29°38* W t a b l e 8.1.7: 44° N t o 45° N, 29°23' W t o 30°15' W t a b l e 8.1.8: 45° N to 46° N, 30°15' W to 30°56' W t a b l e 8.1.9: 46° N to 47° N, 30°56' W t o 31°32' W t a b l e 8.1.10: 47° N to 48° N, 31°32' W t o 32°11' W t a b l e 8.1.11: 48° N to 49° N, 32°11' w t o 32°52* w t a b l e 8.1.12: 49° N t o 50° N, 32°52" w t o 33°33' w t a b l e 8.1.13: 50° N to 51° N, 33°33' w to 34°15' w t a b l e 8.1.14: 51° N to 52° N» 34°15' w t o 34°57» w t a b l e 8.1.15: 52° N t o 53° N, 34°57' w t o 35°41« w t a b l e 8.1.16: 53° N t o 54° N, 35°41* w t o 36°26' w t a b l e 8.1.17: 54° N t o 55° N, 36°26* w t o 3 701 1 ' w PRES : Pressure / 10*• Pa

TEM1 : Temperature / °C of sensor 1 SI : S a l i n i t y x 1 03 of sensor p a i r 1

PDIF : Pressure d i f f e r e n c e / 10** Pa between i s o p y c n a l s p l u s and minus Aot • 0.05 k g m~3 the o^.-surface i n q u e s t i o n .

S u r f a c e

S i g a a t - 2 5 . 4 0 0

S u r f a c e

Surface P a r a m e t e r Mean Minimum Maximum S t . D e v . Skewness K u r t o s i s D a t a p o i n t s

S I 35.864 35.779 35.964 0.049 0.388 1.849 189.

PDIP 9.710 1.994 24.950 4.259 0.981 4.100 157.

PRES 68.440 49.000 80.160 7.666 - 0 . 8 6 2 2.943 103.

TEMl 14.700 14.410 15.040 0.153 0.351 1.822 103.

S 1 35.858 35.777 35.953 0.043 0.359 1.830 103.

PDIP 15.480 2.982 24.750 5.770 - 0 . 2 6 2 2.150 30.

S u r f a c e

Sigaat - 25.400

S u r f a c e P a r a m e t e r Mean Minimum Maximum S t . D e v . Skewness K u r t o s l s D a t a p o i n t s

Surface

S u r f a c e

S u r f a c e P a r a m e t e r Mean Minimum Maximum S t . D e v . Skewness K u r t o s i s D a t a p o i n t s

S i g m a t - 2 5 . 9 0 0

Surface P a r a » t e r

S u r f a c e

Surface

S u r f a c e P a r a m e t e r Mean Minimum Maximum S t . D e v . Skewness K u r t o s i s D a t a p o i n t s

S u r f a c e P a r a m e t e r Mean Minimum Maximum S t . D e v . Skewness K u r t o s i s D a t a p o i n t s S i g m a t - 2 6 . 6 0 0

S i g m a t - 2 6 . 7 0 0

S i g m a t - 2 6 . 8 0 0

S i g n e t - 2 6 . 9 0 0

S i g a a t - 2 7 . 0 0 0

S i g a a t - 2 7 . 1 0 0

S i g a a t - 2 7 . 2 0 0

S i g a a t - 2 7 . 3 0 0

PRES 2 3 . 5 2 0 1 2 . 3 2 0 3 6 . 3 3 0 4 . 5 1 8 0 . 1 1 7 2 . 7 3 6 1 6 5 . TEMl 1 0 . 4 7 0 1 0 . 3 8 0 1 0 . 6 7 0 0 . 0 4 6 0 . 8 2 0 4 . 5 4 1 1 6 5 . S 1 3 4 . 6 5 4 3 4 . 6 3 3 3 4 . 6 9 8 0 . 0 1 0 0 . 8 3 5 4 . 5 9 0 1 6 5 . PDIF 7 . 7 7 0 2 . 8 5 0 1 8 . 7 5 0 4 . 8 1 9 0 . 8 1 6 2 . 4 6 9 2 1 .

PRES 2 9 . 0 8 0 1 4 . 2 6 0 4 3 . 8 8 0 4 . 8 6 3 0 . 0 1 1 3 . 2 5 7 2 4 1 . T E M l 9 . 9 0 0 9 . 6 6 0 1 0 . 0 9 0 0 . 0 5 8 - 0 . 3 8 4 5 . 0 2 8 2 4 1 . S 1 3 4 . 6 5 4 3 4 . 6 0 3 3 4 . 6 9 6 0 . 0 1 3 - 0 . 3 6 2 5 . 0 2 0 2 4 1 . P D I F 5 . 5 4 0 1.401 1 4 . 3 9 0 2 . 3 5 2 0 . 9 9 0 4 . 1 6 7 2 3 7 .

PRES 3 4 . 2 2 0 2 2 . 2 6 0 4 6 . 0 0 0 4 . 8 7 8 0 . 0 2 3 2 . 6 0 7 2 4 2 . TEMl 9 . 3 8 0 9 . 1 3 0 9 . 5 8 0 0 . 0 7 9 - 0 . 8 1 3 3 . 3 6 7 2 4 2 . S 1 3 4 . 6 7 1 3 4 . 6 2 1 3 4 . 7 1 4 0 . 0 1 6 - 0 . 8 0 1 3 . 3 4 0 2 4 2 . P D I F 5 . 1 1 0 0 . 7 3 7 1 5 . 8 2 0 2 . 5 5 1 1.178 5 . 0 3 0 2 4 2 .

PRES 4 0 . 2 2 0 2 5 . 4 0 0 5 5 . 5 4 0 5 . 5 0 7 - 0 . 0 3 3 3 . 2 4 7 2 4 2 . T E M l 8 . 8 3 0 8 . 6 6 0 9 . 0 1 0 0 . 0 6 2 - 0 . 5 2 2 4 . 1 1 7 2 4 2 . S 1 3 4 . 6 8 7 3 4 . 6 5 3 3 4 . 7 2 3 0 . 0 1 3 - 0 . 5 0 1 4 . 0 9 0 2 4 2 . P D I F 6 . 4 1 0 0 . 7 3 3 2 1 . 3 3 0 3 . 2 1 4 1.301 5 . 4 9 8 2 4 2 .

PRES 4 6 . 2 5 0 3 0 . 9 9 0 6 5 . 7 8 0 6 . 3 2 6 0 . 3 8 9 ' 3 . 2 5 0 2 4 3 . T E M l 8 . 2 9 0 8 . 0 9 0 8 . 4 2 0 0 . 0 4 9 - 0 . 4 1 6 4 . 0 0 0 2 4 3 . S 1 3 4 . 7 0 6 3 4 . 6 6 7 3 4 . 7 3 2 0 . 0 0 9 - 0 . 3 9 7 4 . 0 0 0 2 4 3 . P D I F 5 . 7 7 0 1.721 1 7 . 6 9 0 2 . 7 1 1 1.151 5 . 0 5 5 2 4 2 .

PRES 5 2 . 2 0 0 3 6 . 5 7 0 7 0 . 8 9 0 6 . 9 6 6 0 . 2 6 0 2 . 4 0 0 2 4 5 . TEMl 7 . 7 2 0 7 . 5 2 0 7 . 8 4 0 0 . 0 5 0 - 0 . 3 0 9 3 . 9 7 0 2 4 5 . S 1 3 4 . 7 2 6 3 4 . 6 8 9 3 4 . 7 4 9 0 . 0 0 9 - 0 . 2 9 2 3 . 9 3 0 2 4 5 . P D I F 6 . 6 2 0 1.533 1 4 . 1 8 0 2 . 7 5 5 0 . 5 1 2 2 . 7 0 2 2 4 0 .

PRES 5 9 . 7 2 0 4 1 . 4 6 0 7 8 . 3 9 0 7 . 8 3 3 0 . 2 9 1 2 . 4 0 5 2 3 1 . T E M l 7 . 1 5 0 7 . 0 3 0 7 . 2 8 0 0 . 0 5 4 0 . 2 6 8 2 . 5 0 7 2 3 1 . S 1 3 4 . 7 4 9 3 4 . 7 2 7 3 4 . 7 7 3 0 . 0 1 0 0 . 2 7 8 2 . 4 6 0 2 3 1 . P D I F 9 . 5 1 0 2 . 8 1 9 2 4 . 2 8 0 3 . 6 2 9 0 . 6 7 2 3 . 9 1 8 1 9 8 .

PRES 6 9 . 1 0 0 4 9 . 9 9 0 8 1 . 3 3 0 5 . 5 8 9 - 0 . 4 7 5 2 . 9 7 8 1 3 7 . T E M l 6 . 5 8 0 6 . 4 4 0 6 . 7 2 0 0 . 0 6 9 0 . 1 5 1 2 . 3 0 2 1 3 7 . S 1 3 4 . 7 7 7 3 4 . 7 5 2 3 4 . 7 9 9 0 . 0 1 2 0 . 1 6 3 2 . 2 8 0 1 3 7 . P D I F 1 7 . 9 7 0 8 . 3 4 2 3 1 . 8 2 0 5 . 1 6 6 0 . 3 7 6 2 . 9 1 6 3 3 .

S u r f a c e P a r a m e t e r Mean Minimum Maximum S t - D e v . Skewness K u r t o s i s D a t a p o i n t s S i g m a t » 2 6 . 7 0 0

S i g m a t •= 2 6 . 8 0 0

S i g m a t » 2 6 . 9 0 0

S i g m a t - 2 7 . 0 0 0

S i g m a t - 2 7 . 1 0 0

S i g m a t - 2 7 . 2 0 0

S i g m a t - 2 7 . 3 0 0

PRES 3 0 . 0 4 0 1 8 . 2 2 0 4 4 . 4 9 0 4 . 7 9 6 0 . 3 4 0 3 . 6 0 6 2 3 5 . TEMl 9 . 8 8 0 9 . 6 1 0 1 0 . 2 3 0 0 . 1 0 9 - 0 . 1 2 3 3 . 1 1 2 2 3 5 . S 1 3 4 . 6 5 1 3 4 . 5 9 2 3 4 . 7 2 8 0 . 0 2 4 - 0 . 1 0 2 3 . 1 1 4 2 3 5 . PDIF 4 . 8 6 0 0 . 8 6 0 1 4 . 1 4 0 2 . 7 0 8 1.348 4 . 6 7 5 1 4 6 .

PRES 3 3 . 8 6 0 1 9 . 4 0 0 4 8 . 1 6 0 5 . 2 3 7 - 0 . 0 8 9 3 . 1 6 8 2 5 8 . TEMl 9 . 3 4 0 9 . 0 0 0 9 . 6 6 0 0 . 1 2 4 - 0 . 5 9 8 3 . 1 8 7 2 5 8 . S 1 3 4 . 6 6 3 3 4 . 5 9 3 3 4 . 7 3 2 0 . 0 2 6 - 0 . 5 7 1 3 . 1 6 3 2 5 8 . PDIF 4 . 9 8 0 0 . 7 2 O 1 4 . 8 8 0 2 . 6 5 2 0 . 9 7 6 3 . 7 5 7 2 5 8 .

PRES 3 9 . 7 2 0 2 0 . 7 8 0 5 3 . 0 1 0 6 . 1 3 9 - 0 . 4 8 2 2 . 9 3 0 2 5 9 . TEMl 8 . 7 9 0 8 . 3 9 0 9 . 0 5 0 0 . 1 4 3 - 1 . 0 3 6 3 . 6 5 2 2 5 9 . S 1 3 4 . 6 7 8 3 4 . 6 0 0 3 4 . 7 3 2 0 . 0 2 9 - 1 . 0 1 1 3 . 6 1 2 2 5 9 . PDIF 5 . 9 7 0 1.620 1 7 . 3 8 0 2 . 6 2 2 0 . 9 0 5 4 . 1 6 7 2 5 9 .

PRES 4 5 . 0 9 0 2 5 . 4 6 0 5 6 . 9 7 0 6 . 1 2 8 - 0 . 6 9 6 3 . 3 2 5 2 5 9 . TEMl 8 . 2 6 0 7 . 8 5 0 8 . 5 2 0 0 . 1 3 5 - 1 . 6 9 4 5 . 2 4 7 2 5 9 . S 1 3 4 . 7 0 0 3 4 . 6 2 2 3 4 . 7 53 0 . 0 2 6 - 1 . 6 7 2 5 . 1 9 7 2 5 9 . PDIF 4 . 9 6 0 1.420 1 4 . 1 6 0 2 . 2 8 8 1.021 4 . 3 3 0 2 5 9 .

PRES 5 0 . 1 4 0 3 0 . 7 8 0 6 2 . 1 1 0 5.891 - 0 . 6 0 1 3 . 4 3 8 2 5 9 . TEMl 7 . 7 0 0 7 . 3 0 0 7 . 8 7 0 0 . 1 4 0 - 1 . 8 4 9 5 . 3 8 8 2 5 9 . S 1 3 4 . 7 2 2 3 4 . 6 4 8 3 4 . 7 5 4 0 . 0 2 6 - 1 . 8 3 3 5 . 3 4 5 2 5 9 . PDIF 5 . 8 8 0 1.260 1 6 . 3 1 0 2 . 4 1 1 0 . 9 8 8 4 . 4 7 4 2 5 9 .

PRES 5 7 . 3 1 0 3 8 . 2 4 0 7 2 . 9 6 0 5 . 9 9 9 - 0 . 1 9 3 3 . 4 1 5 2 5 9 . T E M l 7 . 1 3 0 6 . 6 7 0 7 . 2 9 0 0 . 1 4 4 - 2 . 0 6 4 6 . 2 2 0 2 5 9 . S 1 3 4 . 7 4 5 3 4 . 6 6 5 3 4 . 7 7 4 0 . 0 2 5 - 2 . 0 4 6 6 . 1 6 6 2 5 9 . PDIF 8 . 4 5 0 2 . 8 5 0 2 0 . 3 2 0 3 . 2 5 8 0 . 7 7 1 3 . 5 9 9 2 5 4 .

PRES 6 6 . 6 9 0 5 2 . 2 2 0 7 9 . 2 6 0 5 . 3 3 5 - 0 . 1 2 3 2 . 6 4 0 2 2 9 . T E M l 6 . 5 2 0 6 . 0 5 0 6 . 7 2 0 0 . 1 6 2 - 1 . 4 8 1 4 . 4 0 5 2 2 9 . S I 3 4 . 7 6 7 3 4 . 6 8 9 3 4 . 7 9 9 0 . 0 2 7 - 1 . 4 5 4 4 . 3 4 0 2 2 9 . PDIF 1 3 . 5 2 0 5 . 7 3 0 2 3 . 9 6 0 4 . 1 0 4 0 . 3 4 8 2 . 3 3 8 1 5 0 .

Area Surface Parameter Mean Mln. Max. Variance Stdev Skewness Kur tos Is No of Pos.

-C3- at - 26.3 kg T l [•cl 13.12 11.13 15.47 0.99 0.99 -0.19 1.81 4938

t

- 26.3 kg

SI * 1 03 34.92 34.42 35.56 0.07 0.26 -0.13 1.84 4938

P [ l O V a ] 29.67 6.39 53.84 44.88 6.70 -0.12 3.20 4938

DP

[ l O V a ]

2.30 0.04 29.83 6.98 2.64 4.29 27.76 4830

« 26,6 kg a" 3 T l 12.00 9.90 14.78 1.29 1.13 -0.08 2.03 5326

t

« 26,6 kg

SI 35.02 34.53 35.75 0.08 0.28 0.02 2.13 5326

P 38.68 11.98 68.14 59.26 7.70 0.07 3.39 5326

DP 3.94 0.32 25.65 5.91 2.43 1.62 8.06 5225

- 26.9 kg m-3 T l 10.88 8.08 13.14 1.42 1.19 -0.51 2.11 5147

- 26.9 kg

SI 35.14 34.54 35.69 0.07 0.27 0.42 2.07 5147

P 57.03 23.34 90.96 121.23 11.01 0.17 2.57 5147

DP 10.94 0.66 45.72 58.67 7.66 1.42 4.69 4001

25.8 26.3 26.6 27.0 0 4 8 12 16 20

8.1.2: Mean and s t a n d a r d d e v i a t i o n p r o f i l e s f o r t h r e e s e l e c t e d r e g i o n s of s e c t i o n C312; averaged on s u r f a c e s of c o n s t a n t p r e s s u r e .

Section C311 Mean ProfHes NOA '81

2 5 A I 1 1 I | J 1 1 1 25.8

26.0

26.2

26.4

J L

10.0 12.0 14.0 T e m p e r a t u r e / » C

16.0 34.0 3 4 . 5 35.0 35.5 S a l i n i t y « 1 03

F i g . 8.1.3:

Mean and standard d e v i a t i o n p r o f i l e s f o r three s e l e c t e d r e g i o n s of s e c t i o n C311; averaged on s u r f a c e s of con-s t a n t d e n con-s i t y and p l o t t e d versus ot«

26.6

26.8

J I I L

- 26.6

10.0 12.0 14.0 T e m p e r a t u r e / ">C

16.0 34.0 3 4 . 5 35.0 35.5 S a l i n i t y » 1 03

25.8

26.0

26.2

F i g . 8.1.4:

Mean and standard d e v i a t i o n p r o f i l e s f o r t h r e e s e l e c t e d r e g i o n s of s e c t i o n C312; averaged on s u r f a c e s of con-s t a n t d e n con-s i t y and p l o t t e d v e r s u s O j - .

F i g . 8.1.6: Mean and standard d e v i a t i o n p r o f i l e s f o r t h r e e s e l e c t e d r e g i o n s o f s e c t i o n C312; averaged on s u r f a c e s of constant d e n s i t y and p l o t t e d v e r s u s the mean depth of the d e n s i t y s u r f a c e i n q u e s t i o n .

T e m p e r a t u r e / ° C

, 1 5 , , i , 2 0 , S e c t i o n B102 N O A '81

0 I 1 1 1 1 1 1 1—• 1

8 0

1 0 0

T e m p e r a t u r e / ° C

10 15 2 0

F i g . 8.1.7: Mean and standard d e v i a t i o n p r o f i l e s of temperature averaged on c o n s t a n t Oj.-surfaces over 1° of l a t i t u d e a l o n g s e c t i o n B102 and p l o t t e d versus the mean pressure of the d e n s i t y s u r f a c e s .

A V E R A G E D O F F S E T - P R O F I L E S

S a l i n i t y » 1 03

35.6 36.0

o r — — : 1 ' '

S e c t i o n B 1 0 2 N O A '81

38.5'N

3 8 . 5 ' N 40.5" N

4 1 . 5 ° N 42.5 *N 4 3 . 5 ' N 4 4-5* N \\\

4 5 . 5 ° N

34.6

S a l i n i t y * 1 03

35.0 35.5 36.0

0. 20r

*0\

x 6 0 h

8 0 \

4 6 . 5 ' N

4 7 . 5 ' N 4 8 . 5 ' N 4 9 . 5 ' N

100

F i g . 8.1.8: Mean and standard d e v i a t i o n p r o f i l e s of s a l i n i t y averaged on c o n s t a n t o^-surfaces over 1° of l a t i t u d e a l o n g s e c t i o n B102 and p l o t t e d versus the mean p r e s s u r e o f the d e n s i t y s u r f a c e s .

A V E R A G E D O F F S E T - P R O F I L E S

D e n s i t y [ öt]

25.0 2^.o 27.0 S e c t i o n B 102 N O A ' 8 1

o i ' L- • —• ' 1 ' ' 1 ' I

100

D e n s i t y [<S j]

25.0 26.0 27.0 o r ' • ' '= z^

-100

F i g . 8.1.9: Mean p r o f i l e s of (\ averaged on constant ^ . - s u r f a c e s over 1" of l a t i t u d e along s e c t i o n B102 and p l o t t e d v e r s u s the mean p r e s s u r e on t h e o^-surfaces.

8.1.10: Mean and standard d e v i a t i o n p r o f i l e s o f temperature and s a l i n i t y o f s e l e c t e d s e t s no. 1, 3, 4, 5 on s e c t i o n B102 averaged on c o n s t a n t d e n s i t y s u r f a c e s and p l o t t e d v e r s u s the mean pressure on the o L - s u r f a c e s .

C3-MAP NGA'81

6,= 26.3 k g m - 3

o\ = 26.6 kgm"

ö > 2 6 . 9 k g r r f

8 9 10 11 12 13 14 15 16

T e m p e r a t u r e / °C

. 8.2.1: Histograms of temperature on three i s o p y c n a l s from the f r o n t a l survey. The number of c o n t r i b u t i n g data p o i n t s i n each c l a s s (0.2 K) was normalized by the t o t a l number of data p o i n t s on the surface i n q u e s t i o n .

P R O B A B I L I T Y D E N S I T Y

C3-MAP NOA'81

n / N

dt= 26-3 k g m - 3

<5t = 2 6 . 6 k g m '

.05--0 dt = 26.9kg

m-34 m-34.25 m-34.5 m-34.75 35 35.25 35.5 35.75 36 S a l i n i t y * 1 0 " 3

P i g . 8.2.2: Histograms of s a l i n i t y on three i s o p y c n a l s from the f r o n t a l s u r v e y . The number of c o n t r i b u t i n g d a t a p o i n t s i n each c l a s s

(0.05 x 10*) was n o r m a l i z e d by the t o t a l number of d a t a p o i n t s on t h e s u r f a c e i n q u e s t i o n .

P R O B A B I L I T Y D E N S I T Y

C3-MAP NOA'81

n / N

dt= 26.3 kgm'

<5= 26.6kgm t - 3

<5t = 26.9kgm"

10 20 30 40 50 SO 70 80 P r e s s u r e / 1 0 " 4 P a

F i g . 8.2.3: Histograms of the depth of three s e l e c t e d i s o p y c n a l s from the f r o n t a l survey^ The number of c o n t r i b u t i n g data p o i n t s i n each c l a s s (2 x 10 Pa) was normalized by the t o t a l number of data p o i n t s on the s u r f a c e i n q u e s t i o n .

P R O B A B I L I T Y D E N S I T Y

C3-MAP NOA'81

dt = 26.3kgm"

dt = 26.6 kgm - 3

dt = 26.9kg m - 3

n o r m a l i z e d T h i c k n e s s

8.2.4: Histograms of n o r m a l i z e d s p a c i n g between i s o p y c n a l s being 0.1 k g m~3 a p a r t and c e n t r e d around t h e l a b e l l e d i s o p y c n a l . The s p a c i n g was n o r m a l i z e d by i t s ensemble mean. The number of c o n t r i b u t i n g data p o i n t s i n each window (0.2) was n o r m a l i z e d by the t o t a l number of data p o i n t s on t h e s u r f a c e i n q u e s t i o n .

8.3.1 una 8.3.2: Mean T-S diagrams f o r s e l e c t e d r e g i o n s of the p a r a l l e l s e c t i o n s C311 and C312. The data were averaged on i s o p y c n a l s and the standard d e v i a t i o n bars I n d i c a t e the v a r i a b i l i t y w i t h i n each i n t e r v a l .

Im Dokument 3D1 I iTH-'EeR- m (Seite 90-129)