• Keine Ergebnisse gefunden

O(xAi , xBi ) = Trf11(xAi )f˙1 ˙1(xBi ) = 1

2f11a(xAi )fa˙1 ˙1(xBi ) (7.1) in the light-cone gauge, the correspondingn-point correlator that is connected in the local limit, xAi =xBi =xi, takes the form:

hO(xA1, xB1). . . O(xAn, xBn)i= 1 n

1 2n

n

X

i1=1

. . .

n

X

in=1

i16=i26=...6=in

hf11ai1(xAi1)f˙1 ˙1ai2(xBi2)i

hf11ai2(xAi2)fa˙1 ˙1i3(xBi3)i. . .hf11ain(xAin)f˙1 ˙1ai1(xBi1)i (7.2) The factor of n1 arises because, if the first index — for example i1 = 1 — is kept fixed, there are only (n−1)! Wick contractions that contribute to the connected correlator. A nicer — but completely equivalent — formula is written in terms of permutations. If we denote byPn the set of permutations of 1. . . n, it follows identically:

hO(xA1, xB1). . . O(xAn, xBn)i= 1 n

1 2n

X

σ∈Pn

hf11aσ(1)(xAσ(1))fa˙1 ˙1σ(2)(xBσ(2))i

hf11aσ(2)(xAσ(2))fa˙1 ˙1σ(3)(xBσ(3))i. . .hf11aσ(n)(xAσ(n))f˙1 ˙1aσ(1)(xBσ(1))i (7.3) Besides, eq. (B.4) reads:

hf11a(xi)f˙1 ˙1b (xj)i=−∂x+ i x+

j

δab

2|xixj|2 (7.4) Hence, for the balanced operators with even s, we get in the light-cone gauge:

hOs1(x1). . .Osn(xn)i= 1 2nG

5 2

s1−2(∂xA+ 1 , ∂xB+

1

). . .G

5 2

sn−2(∂xA+ n , ∂xB+

n ) hf11a1(xA1)fa˙1 ˙11(xB1). . . f11an(xAn)f˙1 ˙1an(xBn)i

A=B

(7.5) where:

G

5 2

s−2(∂x+

i , ∂x+

j

) = is−2Γ(3)Γ(s+ 3) Γ(5)Γ(s+ 1)

s−2

X

k=0

s k

! s k+ 2

!

(−1)s−k←−

s−k−2

x+i

kx+ j

= 2is−2(s+ 1)(s+ 2) 4!

s−2

X

k=0

s k

! s k+ 2

!

(−1)s−k←−

s−k−2

x+i

kx+ j

(7.6)

JHEP08(2021)142

It follows from eq. (5.5) that, correspondingly, the n-point correlator contains factors of the form:

si−ki−2

x+i kj

x+jx+

i x+

j

1 4π2|xixj|2

= 1

2(−1)si−ki(siki+kj)! 2si−ki+kj (xixj)s+i−ki+kj

(|xixj|2)si−ki+kj+1 (7.7) Therefore, we get:

hOs1(x1). . .Osn(xn)iconn= (−1)n (4π2)n

N2−1 2n iP

n

l=1slΓ(3)Γ(s1+3)

Γ(5)Γ(s1+1). . .Γ(3)Γ(sn+3) Γ(5)Γ(sn+1)

1 n

X

σ∈Pn sσ(1)−2

X

kσ(1)=0

. . .

sσ(n)−2

X

kσ(n)=0

sσ(1) kσ(1)

! sσ(1) kσ(1)+2

!

(−1)sσ(1)−kσ(1). . . sσ(n) kσ(n)

! sσ(n) kσ(n)+2

!

(−1)sσ(n)−kσ(n)

2sσ(1)−kσ(1)+kσ(2)(−1)sσ(1)−kσ(1)(sσ(1)−kσ(1)+kσ(2))! (xσ(1)−xσ(2))s+σ(1)−kσ(1)+kσ(2) |xσ(1)−xσ(2)|2sσ(1)−kσ(1)+kσ(2)+1 . . .2sσ(n)−kσ(n)+kσ(1)(−1)sσ(n)−kσ(n)(sσ(n)−kσ(n)+kσ(1))! (xσ(n)−xσ(1))s+σ(n)−kσ(n)+kσ(1)

|xσ(n)−xσ(1)|2sσ(n)−kσ(n)+kσ(1)+1 (7.8) where we have set xAi = xBi = xi in order to implement the local limit of the bilocal operators. The color factor comes from the contraction of the n Kronecker delta:

N2−1 =δaσ(1)aσ(2)δaσ(2)aσ(3). . . δaσ(n)aσ(1) (7.9) The overall factor of (−1)noccurs because of the factor of i−2, which is a partial factor of is−2 in eq. (7.6).

After cancelling between themselves the pairs of factors of the kind (−1)sa−ka in eq. (7.8), and moving out of the sum over the permutations the product of the binomial coefficients, since it is independent of the permutations, we obtain:

hOs1(x1). . .Osn(xn)iconn = 1 (4π2)n

N2−1 2n 2P

n l=1sliP

n l=1sl

Γ(3)Γ(s1+ 3)

Γ(5)Γ(s1+ 1). . .Γ(3)Γ(sn+ 3) Γ(5)Γ(sn+ 1)

s1−2

X

k1=0

. . .

sn−2

X

kn=0

s1

k1

! s1

k1+ 2

!

. . . sn

kn

! sn

kn+ 2

!

(−1)n n

X

σ∈Pn

(sσ(1)kσ(1)+kσ(2))!. . .(sσ(n)kσ(n)+kσ(1))!

(xσ(1)xσ(2))s+σ(1)−kσ(1)+kσ(2) |xσ(1)xσ(2)|2sσ(1)−kσ(1)+kσ(2)+1

. . . (xσ(n)xσ(1))s+σ(n)−kσ(n)+kσ(1) |xσ(n)xσ(1)|2sσ(n)−kσ(n)+kσ(1)+1

(7.10)

Actually, if n is even, eq. (7.10) also holds for the n-point correlator of the operators ˜Os, with the only difference that their collinear spin is odd.

JHEP08(2021)142

Otherwise, ifnis odd, the correlator vanishes. To verify it, it suffices to notice that, in the sum over the permutations, for every permutation the inverse permutation also occurs with the opposite sign. For example, for 3-point correlators we get pairs of terms of the kind:

s1−2

X

k1=0 s2−2

X

k2=0 s3−2

X

k3=0

. . .(s1k1+k2)!(s2k2+k3)!(s3k3+k1)!

(x1x2)s1−k1+k2(x2x3)s2−k2+k3(x3x1)s3−k3+k1 +

s1−2

X

k1=0 s2−2

X

k2=0 s3−2

X

k3=0

. . .(s2k2+k1)!(s3k3+k2)!(s1k1+k3)!

(x2x1)s2−k2+k1(x3x2)s3−k3+k2(x1x3)s1−k1+k3 (7.11) Employing the substitutionki0 =si−2−ki, we obtain for the last term above:

s1−2

X

k1=0 s2−2

X

k2=0 s3−2

X

k3=0

. . .(−1)s1+s2+s3(s1k1+k2)!(s2k2+k3)!(s3k3+k1)!

(x1x2)s1−k1+k2(x2x3)s2−k2+k3(x3x1)s3−k3+k1 (7.12) that cancels the first term in eq. (7.11).

The same reasoning applies to the n+ 2m+ 1-point correlators of balanced operators:

hOs1(x1). . .Osn(xn) ˜Osn+1(xn+1). . .sn+2m+1(xn+2m+1)iconn = 0 (7.13) Otherwise, we get:

hOs1(x1). . .Osn(xn) ˜Osn+1(xn+1). . .sn+2m(xn+2m)iconn

= 1

(4π2)n+2m

N2−1

2n+2m 2Pn+2ml=1 sliPn+2ml=1 slΓ(3)Γ(s1+ 3)

Γ(5)Γ(s1+ 1). . .Γ(3)Γ(sn+2m+ 3) Γ(5)Γ(sn+2m+ 1)

s1−2

X

k1=0

. . .

sn+2m−2

X

kn+2m=0

s1 k1

! s1 k1+ 2

!

. . . sn+2m kn+2m

! sn+2m kn+2m+ 2

!

(−1)n+2m n+ 2m

X

σ∈Pn+2m

(sσ(1)kσ(1)+kσ(2))!. . .(sσ(n+2m)kσ(n+2m)+kσ(1))!

(xσ(1)xσ(2))s+σ(1)−kσ(1)+kσ(2) |xσ(1)xσ(2)|2sσ(1)−kσ(1)+kσ(2)+1

. . . (xσ(n+2m)xσ(1))s+σ(n+2m)−kσ(n+2m)+kσ(1) |xσ(n+2m)xσ(1)|2sσ(n+2m)−kσ(n+2m)+kσ(1)+1

(7.14) For the correlators of the unbalanced operators, we obtain:

hSs1(x1). . .Ssn(xn)¯Ss01(y1). . .s0n(yn)i

= 1 22nG

5 2

s1−2(∂xA+

1 , ∂xB+

1

). . .G

5 2

sn−2(∂xA+

n , ∂xB+

n )G

5 2

s01−2(∂yA+

1 , ∂yB+

1

). . .G

5 2

s0n−2(∂yA+

n , ∂yB+

n ) 1

2nhf11a1(xA1)f11a1(xB1). . . f11an(xAn)f11an(xBn)fb˙1 ˙11(yA1)f˙1 ˙1b1(yB1). . . f˙1 ˙1bn(ynA)fb˙1 ˙1n(ynB)i

A=B

(7.15)

JHEP08(2021)142

The factor of 212n arises from the normalization of the color trace in eq. (7.1), while the factor of 21n comes from the normalization of the operators.

We get the very same correlator by exchanging A and B in all the couples (xAi , xBi ) and (ykA, ykB) simultaneously:

hSs1(x1). . .Ssn(xn)¯Ss01(y1). . .s0n(yn)i

= 1 2nG

5 2

s1−2(∂xB+

1 , ∂xA+

1

). . .G

5 2

sn−2(∂xB+

n , ∂xA+

n )G

5 2

s01−2(∂yB+

1 , ∂yA+

1

). . .G

5 2

s0n−2(∂yB+

n , ∂yA+

n ) 1

22nhf11a1(xB1)f11a1(xA1). . . f11an(xBn)f11an(xAn)fb˙1 ˙11(y1B)fb˙1 ˙11(yA1). . . fb˙1 ˙1n(ynB)fb˙1 ˙1n(ynA)i

A=B

(7.16) Indeed, in eq. (7.17) we may conveniently relabel the coordinates,xAixBi ,ykAyBk, and vice versa for each iand k, since they coincide in the local limit. Moreover, according to eq. (6.4), G

5

s−22 (∂xA+, ∂xB+) in eqs. (7.15) and (7.16) is symmetric for the exchange of its arguments, because the collinear spin is even.

We evaluate the Wick contractions:

hf11a1(xA1). . . f11an(xAn)f˙1 ˙1b1(yA1). . . fb˙1 ˙1n(ynA)f11a1(xB1). . . f11an(xBn)fb˙1 ˙11(y1B). . . fb˙1 ˙1n(ynB)i

A=B

(7.17) We exploit the symmetry above: we only perform the Wick contractions involving the pairing ofxAi with yAk and of xBi withykB for anyi, k, since all the remaining contractions provide the very same result due to the symmetry, and can be taken into account by a symmetry factor that we compute momentarily.

Besides, since we only are interested in the connected correlator, once xAi has been contracted with some ykA, xBi cannot be contracted with ykB, because the corresponding contribution to the correlator is not connected.

Hence, we construct the correlator as follows: we contract all the xAi with theykA and all the xBi0 with theykB0 withi6=i0 ifk=k0and k6=k0ifi=i0, in such a way that we build a single connected loop.

This is realized by summing over two sets of independent permutations arranged in such a way that no disconnected piece may be created: firstly, we contract xAi

1 with yAk

1, secondly, we contract yBk1 with xBi2 fori1 6=i2, then, we contract xAi2 with ykA2 for k2 6=k1, afterwards, we contractyBk

2 withxBi3 fori3 6=i26=i1 and so on, until we arrive atxBi1, which we contract with the last remaining ykAn with kn 6=kn−1 6=. . . 6=k1, in order to close the loop. We end up with a chain that looks like:

X

i16=i26=i3...6=in

X

k16=k26=k3...6=kn

hf11ai1(xAi1)fb˙1 ˙1k1(ykA1)ihf˙1 ˙1bk1(ykB1)f11ai2(xBi2)i (7.18) hf11ai2(xAi2)f˙1 ˙1bk2(ykA2)ihf˙1 ˙1bk2(ykB2)f11ai3(xBi3)i. . .hf11ain(xAin)fb˙1 ˙1kn(ykAn)ihf˙1 ˙1bkn(yBkn)f11ai1(xBi1)i Yet, now we are creating a redundancy, since we also are summing on the possiblenchoices

JHEP08(2021)142

of the starting point of the loop. Therefore, we divide the sum by a factor of n:

1 n

X

i16=i26=i3...6=in

X

k16=k26=k3...6=kn

hf11ai1(xAi1)fb˙1 ˙1k1(yAk1)ihfb˙1 ˙1k1(yBk1)f11ai2(xBi2)i (7.19) hf11ai2(xAi2)f˙1 ˙1bk2(ykA2)ihf˙1 ˙1bk2(ykB2)f11ai3(xBi3)i. . .hf11ain(xAin)fb˙1 ˙1kn(ykAn)ihf˙1 ˙1bkn(yBkn)f11ai1(xBi1)i A nicer — but completely equivalent — formula is written in terms of permutations. It follows identically:

1 n

X

σ∈Pn

X

ρ∈Pn

hf11aσ1(xAσ1)f˙1 ˙1bρ1(yAρ1)ihfb˙1 ˙1ρ1(yρB1)f11aσ2(xBσ2)ihf11aσ2(xAσ2)f˙1 ˙1bρ2(yρA2)ihfb˙1 ˙1ρ2(yBρ2)f11aσ3(xBσ3)i . . .hf11aσn(xAσn)fb˙1 ˙1ρn(yρAn)ihf˙1 ˙1bρn(yρBn)f11aσ1(xBσ1)i (7.20) All the remaining contractions are obtained from this formula by exchanging the coor-dinates in each couple, (xAi , xBi ) and (yAk, yBk), for each i and k. There are 22n of such exchanges.

However, the actual degeneration factor is 22n−1. Indeed, the extra factor of 12 comes from the fact that the simultaneous exchange of the coordinates in each couple, (xAi , xBi ) and (yAk, yBk), yields a contraction that has already been counted due to the symmetry of eqs. (7.15) and (7.16) with respect of the simultaneous exchange of A with B in all the coordinate pairs.

Hence, by combining the degeneration factor of 22n−1 with the factor of 21n from the normalization of the operators, the overall factor of 2n−1 survives. It follows:

hSs1(x1). . .Ssn(xn)¯Ss01(y1). . .s0n(yn)i= 1 (4π2)2n

N2−1

22n 2Pnl=1sl+s0liPnl=1sl+s0l Γ(3)Γ(s1+ 3)

Γ(5)Γ(s1+ 1). . .Γ(3)Γ(sn+ 3) Γ(5)Γ(sn+ 1)

Γ(3)Γ(s10 + 3)

Γ(5)Γ(s10 + 1). . .Γ(3)Γ(sn0 + 3) Γ(5)Γ(sn0 + 1)

s1−2

X

k1=0

. . .

sn−2

X

kn=0

s1 k1

! s1 k1+ 2

!

. . . sn

kn

! sn

kn+ 2

!

s10−2

X

k01=0

. . .

s0n−2

X

k0n=0

s10

k10

! s10

k10 + 2

!

. . . sn0

kn0

! sn0

kn0 + 2

!

2n−1 n

X

σ∈Pn

X

ρ∈Pn

(sσ(1)kσ(1)+kρ(1)0 )!(sρ(1)0kρ(1)0 +kσ(2))!

. . .(sσ(n)kσ(n)+kρ(n)0 )!(sρ(n)0kρ(n)0 +kσ(1))!

(xσ(1)yρ(1))sσ(1)−kσ(1)+k

0ρ(1)

+

|xσ(1)yρ(1)|2sσ(1)−kσ(1)+k

0ρ(1)+1

(yρ(1)xσ(2))s

0ρ(1)−k0ρ(1)+kσ(2) +

|yρ(1)xσ(2)|2s

0ρ(1)−k0ρ(1)+kσ(2)+1

. . . (xσ(n)yρ(n))sσ(n)−kσ(n)+k

0 ρ(n)

+

|xσ(n)yρ(n)|2sσ(n)−kσ(n)+k

0ρ(n)+1

(yρ(n)xσ(1))s

0

ρ(n)−kρ(n)0 +kσ(1) +

|yρ(n)xσ(1)|2s

ρ(n)0 −k0ρ(n)+kσ(1)+1 (7.21)

JHEP08(2021)142

7.2 Extended basis

Similarly, in the extended basis, we get:

hAs1(x1). . .Asn(xn)i= 1 in the light-cone gauge, where:

G It follows from eqs. (B.5) and (5.5) that, correspondingly, the n-point correlator contains factors of the form:

si−ki where now the overall factor of (−1)n occurs because of the extra minus sign in eq. (7.24) with respect to eq. (7.7).

The very same formula holds for an even number of operators ˜As, otherwise the cor-relators vanish. We obtain as well:

hAs1(x1). . .Asn(xn) ˜Asn+1(xn+1). . .sn+2m(xn+2m)iconn

JHEP08(2021)142

Analogously, for the unbalanced operators in the extended basis, we get:

hBs1(x1). . .Bsn(xn)¯Bs10(y1). . .s0n(yn)i= 1 (4π2)2n

N2−1 22n 2P

n

l=1sl+s0liP

n l=1sl+s0l

s1

X

k1=0

. . .

sn

X

kn=0 s10−2

X

k01=0

. . .

s0n

X

k0n=0

s1

k1

!2

. . . sn

kn

!2

s10

k10

!2

. . . sn0

kn0

!2

2n−1 n

X

σ∈Pn

X

ρ∈Pn

(sσ(1)kσ(1)+kρ(1)0 )!(sρ(1)0kρ(1)0 +kσ(2))!

. . .(sσ(n)kσ(n)+kρ(n)0 )!(sρ(n)0kρ(n)0 +kσ(1))!

(xσ(1)yρ(1))sσ(1)−kσ(1)+k

0ρ(1)

+

|xσ(1)yρ(1)|2sσ(1)−kσ(1)+k

0ρ(1)+1

(yρ(1)xσ(2))s

0ρ(1)−k0ρ(1)+kσ(2) +

|yρ(1)xσ(2)|2s

0ρ(1)−k0ρ(1)+kσ(2)+1

. . . (xσ(n)yρ(n))sσ(n)−kσ(n)+k

0ρ(n)

+

|xσ(n)yρ(n)|2sσ(n)−kσ(n)+k

0ρ(n)+1

(yρ(n)xσ(1))s

0ρ(n)−kρ(n)0 +kσ(1) +

|yρ(n)xσ(1)|2s

ρ(n)0 −k0ρ(n)+kσ(1)+1 (7.27)

8 n-point correlators and twist-2 gluonic operators in Euclidean space-time

8.1 Analytic continuation of n-point correlators to Euclidean space-time