• Keine Ergebnisse gefunden

function [ a , b ] = t r a n s f o r m ( proj , raw )

% Sabrina Fiedler

% MATLAB 2017b / 2018a

5 p r o j = p r o j ( : ) ; raw = raw ( : ) ;

M = s i z e( proj , 1 ) ;

tmp = M sum( p r o j . raw ) ≠ sum( p r o j ) . sum( raw ) ;

10 a = tmp / (M sum( p r o j .^2 )sum( p r o j ) . ^2 ) ; b = 1/M (sum( raw ) ≠ a sum( p r o j ) ) ;

end

Listing B.4: Least square transformation

Main

f i l e n a m e 1 = ’ e i n s t e i n R i b o 2 _ a 1 b 0 e i n s t e i n R i b o 2 _ a 1 b 0 . mat ’; f i l e n a m e 2 = ’ e i n s t e i n R i b o 1 _ a 1 b 0 e i n s t e i n R i b o 1 _ a 1 b 0 . mat ’; f i l e n a m e = s t r c a t (’ s i n g l e ’ , f i l e n a m e 1 ) ;

5 load( filename1 , ’ f r e q s ’) ; load( filename1 , ’ t ot al N ’) ;

%% all

10 N = 2 t ot al N ;

SNR_total = cat (1 ,load( filename1 ,’SNR ’) ,load( filename2 ,’SNR ’) ) ; SSNR_total = cat (1 ,load( filename1 ,’SSNR ’) ,load( filename2 , ’SSNR ’) ) ;

15 SNR = cat (1 , SNR_total (2) . SNR, SNR_total (1) .SNR) ; SSNR = cat (1 , SSNR_total (2) . SSNR , SSNR_total (1) . SSNR) ;

FSC = double (ReadMRC2D(’ f s c . mrc ’ ,1 ,1) ) ;

% per Image

Listing B.5: main for the ribosome data

% Sabrina Fiedler

end

40

FRC = 1/ t o t al N sum(FRC ’ , 2 ) ; summedS = 1/ t o tal N sum(S ’ , 2 ) ;

45 f i l e n a m e = ’ SNRdividedByNoise_90percent_2 ’; csvwrite( s t r c a t ( filename , ’SSNR . csv ’) ,SSNR) ;

csvwrite( s t r c a t ( filename , ’SNR. csv ’) ,SNR) ; save( s t r c a t ( filename , titleName ,’ . mat ’) ) ;

50

% twoAxis(freqs(1,2:end),FRC(2:end,1),’FRC’,FSC(2:end,1),’FSC’,summedS (2:end,1),’SSNR’,strcat(filename,’Snr.fig’),titleName);

Listing B.6: main

1. Duden online https : / / www . duden . de / rechtschreibung / Struktur. Accessed:

17.03.2019. 2019.

2. Duden online https : / / www . duden . de / rechtschreibung / Biologie. Accessed:

17.03.2019. 2019.

3. Alberts, B. et al. Molecular Biology of the Cell isbn: 9781315735368. doi:10.1201/

9781315735368 (Garland Science, Aug. 2017).

4. Hartl, F. U. Protein Misfolding Diseases. Annual Review of Biochemistry 86, 21–26.

issn: 0066-4154 (June 2017).

5. Institute, N. & Medical, S. O. G. Structural Biology What is structural biology? What are molecules? What are proteins? What are proteins made of? How does a protein get its shape? What kinds of proteins are there? How do scientists use protein structures to develop new drugs? 2017.

6. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584–590

. issn: 15487091 (Apr. 2013).

7. Fischer, N. et al. Structure of SelB-Sec-tRNASec bound to the 70S ribosome in the initial binding state (IB) Nov. 2016. doi:10.2210/pdb5lzb/pdb.

8. Zernike, F. Phase contrast, a new method for the microscopic observation of transpar-ent objects. Physica 9, 686–698. issn: 00318914 (July 1942).

9. Method of the Year 2015. Nature Methods 13, 1–1. issn: 1548-7091 (Jan. 2016).

10. Chen Bai, X. et al. How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences 40, 49–57.issn: 13624326 (2015).

11. Bendory, T.et al.Single-particle cryo-electron microscopy: Mathematical theory, com-putational challenges, and opportunities. arXiv: 1908.00574 (Aug. 2019).

12. History of NMR by JEOL Ltd. https://www.jeol.co.jp/en/products/nmr/

history.html. Accessed: 08.08.2019. 2019.

13. NMR basic knowledge by JEOL Ltd. https://www.jeol.co.jp/en/products/nmr/

basics.html. Accessed: 08.08.2019. 2019.

14. Ruska, H.et al.Die Bedeutung der Uebermikroskopie fuer die Virusforschung.Archiv fuer die gesamte Virusforschung 1, 155–169. issn: 0304-8608 (Feb. 1939).

15. LuciÊ, V. et al. Structural studies by electron tomography: from cells to molecules.

Annual review of biochemistry 74, 833–65.issn: 0066-4154 (2005).

16. Schenk, A. D.et al.inMethods in Enzymology 101–129 (Elsevier, 2010). doi:10.1016/

s0076-6879(10)82004-x.

17. Cheng, Y. et al. A Primer to Single-Particle Cryo-Electron Microscopy. Cell 161, 438–449 (2016).

18. Renaud, J. P.et al. Cryo-EM in drug discovery: Achievements, limitations and prospects July 2018. doi:10.1038/nrd.2018.77.

19. Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis.Journal of Biological Chemistry 294, 5181–5197.issn: 1083351X (2019).

20. Cheng, Y. Single-Particle Cryo-EM at Crystallographic Resolution. Cell 161, 450–

457. issn: 00928674 (Apr. 2015).

21. Kuhlbrandt, W. The Resolution Revolution.Science 343,1443–1444.issn: 0036-8075 (Mar. 2014).

22. Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determi-nation.Nature Methods 9, 853–854. issn: 1548-7091 (Sept. 2012).

23. Cressey, D. & Callaway, E. Cryo-electron microscopy wins chemistry Nobel. Nature 550,167–167. issn: 0028-0836 (Oct. 2017).

24. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure deter-mination in RELION-3. eLife 7. issn: 2050-084X. doi:10.7554/eLife.42166 (Nov.

2018).

25. Luettich, M. Analytische Methoden zur hochauflösenden Strukturbestimmung in der Kryo-Elektronen-Mikroskopie PhD thesis (Georg August University of Goettingen, 2007).

26. Heisen, B. C.New Algorithms for Macromolecular Structure DeterminationPhD thesis (Georg August University of Goettingen, 2009).

27. Busche, B.New Algorithms for Automated Processing of Electronmicro- scopic Images PhD thesis (Georg August University of Goettingen, 2013).

28. Kirves, J.-M.New Algorithms for Single Particle Cryo Electron Micro- scopic Image Processing PhD thesis (Georg August University of Goettingen, 2014).

29. Singer, A. Mathematics for cryo-electron microscopy. arXiv:1803.06714 (Mar. 2018).

30. Mallick, S. P. et al. ACE: Automated CTF Estimation. Ultramicroscopy 104, 8–29.

issn: 03043991 (Aug. 2005).

31. Williams, D. B. & Carter, C. B. in Transmission Electron Microscopy 3–22 (Sprin-ger US, Boston, MA, 2009). doi:10.1007/978-0-387-76501-3_1.

32. Zhang, K. Gctf: Real-time CTF determination and correction. Journal of Structural Biology 193, 1–12. issn: 10478477 (Jan. 2016).

33. Boyat, A. & Joshi, B. A Review Paper: Noise Models in Digital Image Processing.

Signal & Image Processing : An International Journal 6.doi:10.5121/sipij.2015.

6206. arXiv: 1505.03489 (2015).

34. Baxter, W. T.et al.Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules. Journal of Structural Biology 166, 126–132. issn:

10478477 (May 2009).

35. Sigworth, F. J. et al. An introduction to maximum-likelihood methods in cryo-EM.

Methods in enzymology 482, 263–94.issn: 1557-7988 (2010).

36. Ruskin, R. S.et al.Quantitative characterization of electron detectors for transmission electron microscopy.Journal of Structural Biology184,385–393.issn: 10478477 (Dec.

2013).

37. Van Heel, M. & Harauz, G. Resolution criteria for three-dimensional reconstruction.

Optik (Jena) 73,119–122 (1986).

38. Penczek, P. A. in Cryo-EM, Part B: 3-D Reconstruction 73–100 (Academic Press, 2010). doi:10.1016/S0076-6879(10)82003-8.

39. Gray, R. M. & Goodman, J. W. Fourier Transforms 1689–1699. isbn: 978-1-4613-6001-8. doi:10.1007/978-1-4615-2359-8. arXiv: arXiv:1011.1669v3 (Springer US, Boston, MA, 1995).

40. OXFORD https : / / www . lexico . com / en / definition / overfitting. Accessed:

26.09.2019. 2019.

41. Sigworth, F. J. Principles of cryo-EM single-particle image processing.Microscopy 65, 57–67. issn: 2050-5698 (Feb. 2016).

42. Orlova, E. V. & Saibil, H. R. Structural Analysis of Macromolecular Assemblies by Electron Microscopy.Chemical Reviews111,7710–7748.issn: 0009-2665 (Dec. 2011).

43. Van Heel, M. Similarity measures between images. Ultramicroscopy 21, 95–100.issn:

03043991 (Jan. 1987).

44. Böttcher, B. et al. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91. issn: 0028-0836 (Mar. 1997).

45. Rosenthal, P. B. & Henderson, R. Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy.Journal of Molecular Biology 333,721–745. issn: 00222836 (Oct. 2003).

46. Van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. Journal of Structural Biology 151, 250–262. issn: 10478477 (Sept. 2005).

47. Van Heel, M. & Schatz, M. Reassessing the RevolutionÕs Resolutions.bioRxiv. doi:10.

1101/224402. eprint: https://www.biorxiv.org/content/early/2017/11/24/

224402.full.pdf (2017).

48. Henderson, R. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise.Proceedings of the National Academy of Sciences 110,18037–18041. issn:

0027-8424 (Nov. 2013).

49. Stewart, A. & Grigorieff, N. Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102, 67–84. issn: 03043991 (Dec. 2004).

50. Subramaniam, S. Structure of trimeric HIV-1 envelope glycoproteins. Proceedings of the National Academy of Sciences 110,E4172–E4174. issn: 0027-8424 (2013).

51. Van Heel, M. Finding trimeric HIV-1 envelope glycoproteins in random noise. Pro-ceedings of the National Academy of Sciences 110, E4175–E4177. issn: 0027-8424 (2013).

52. Henderson, R.et al.Outcome of the First Electron Microscopy Validation Task Force Meeting.Structure 20, 205–214. issn: 09692126 (Feb. 2012).

53. Lawson, C. L. & Chiu, W. Comparing cryo-EM structures. Journal of Structural Bi-ology 204,523–526. issn: 10478477 (Dec. 2018).

54. Heymann, J. B. et al. The first single particle analysis Map Challenge: A summary of the assessments.Journal of Structural Biology 204,291–300. issn: 10478477 (Nov.

2018).

55. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallographica Section D: Structural Biology 74, 814–840.

issn: 20597983 (Sept. 2018).

56. Draw Freely | Inkscape

57. Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science 27, 14–25. issn: 09618368 (Jan. 2018).

58. Schulte, L. New Computational Tools for Sample Purification and Early-Stage Data Processing in High-Resolution Cryo-Electron Microscopy PhD thesis (Georg August University of Goettingen, 2019).

59. Lambrecht, F. Computational methods for the structure determination of highly dy-namic molecular machines by cryo-EM PhD thesis (Georg August University of Goet-tingen, 2019).

60. Rao, K. et al. Fast Fourier Transform - Algorithms and Applications isbn: 978-1-4020-6628-3. doi:10.1007/978-1-4020-6629-0 (Springer Netherlands, Dordrecht, 2010).

61. Garces, D. H. et al. Projection-slice theorem: a compact notation. Journal of the Optical Society of America A 28, 766. issn: 1084-7529 (May 2011).

62. Ruska, H. Ueber ein neues bei der bakteriophagen Lyse auftretendes Formelement.

Die Naturwissenschaften 29, 367–368. issn: 0028-1042 (June 1941).

63. Thompson, R. F. et al. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100, 3–15. issn: 10462023 (May 2016).

64. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys.

21, 129–228 (May 1988).

65. Reimer, L. & Kohl, H. Transmission Electron Microscopy isbn: 978-0-387-40093-8.

doi:10.1007/978-0-387-40093-8(Springer New York, New York, NY, 2008).

66. Penczek, P. A. inCryo-EM, Part B: 3-D Reconstruction35–72 (Academic Press, 2010).

doi:10.1016/S0076-6879(10)82002-6.

67. Wade, R. A brief look at imaging and contrast transfer.Ultramicroscopy 46,145–156.

issn: 03043991 (Oct. 1992).

68. Sorzano, C. et al.Normalizing projection images: a study of image normalizing proce-dures for single particle three-dimensional electron microscopy. Ultramicroscopy 101, 129–138. issn: 03043991 (Nov. 2004).

69. Frank, J. Classification of macromolecular assemblies studied as ’single particles’.

Quarterly reviews of biophysics 23, 281–329. issn: 0033-5835 (Aug. 1990).

70. Scheres, S. H. A Bayesian View on Cryo-EM Structure Determination. Journal of Molecular Biology 415, 406–418. issn: 00222836 (Jan. 2012).

71. Frank, J.et al.Computer averaging of electron micrographs of 40S ribosomal subunits.

Science (New York, N.Y.) 214, 1353–5.issn: 0036-8075 (Dec. 1981).

72. Unser, M. et al. A new resolution criterion based on spectral signal-to-noise ratios.

Ultramicroscopy 23, 39–51.issn: 03043991 (Jan. 1987).

73. Sorzano, C. et al. A review of resolution measures and related aspects in 3D Electron Microscopy. Progress in Biophysics and Molecular Biology 124,1–30. issn: 00796107 (Mar. 2017).

74. Bershad, N. & Rockmore, A. On estimating signal-to-noise ratio using the sample correlation coefficient (Corresp.) IEEE Transactions on Information Theory 20,112–

113. issn: 0018-9448 (Jan. 1974).

75. Shatsky, M.et al. A method for the alignment of heterogeneous macromolecules from electron microscopy.Journal of Structural Biology 166, 67–78. issn: 10478477 (Apr.

2009).

76. Unser, M. et al. Spectral signal-to-noise ratio and resolution assessment of 3D recon-structions. Journal of Structural Biology 149,243–255. issn: 10478477 (Mar. 2005).

77. Sigworth, F. J. Imagic, MRC, DM and STAR file i/o https://www.mathworks.

com/matlabcentral/fileexchange/27021-imagic-mrc-dm-and-star-file-i-o).

2019.

78. Scheres, S. H. in Methods in Enzymology C, 295–320 (Academic Press Inc., 2010).

doi:10.1016/S0076-6879(10)82012-9.

79. Mardia, K. et al. On bias in maximum likelihood estimators. Journal of Statistical Planning and Inference 76, 31–39. issn: 03783758 (Feb. 1999).

80. Scheres, S. in, 125–157 (2016). doi:10.1016/bs.mie.2016.04.012.

81. Bernard Heymann, J. Validation of 3D EM Reconstructions: The Phantom in the Noise. AIMS Biophysics 2, 21–35.issn: 2377-9098 (2015).

82. Cardone, G.et al.One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions.Journal of Structural Biology 184,226–236. issn: 10478477 (Nov. 2013).

83. Bendory, T. et al. Toward single particle reconstruction without particle picking:

Breaking the detection limit. doi:10.1101/431080 (2018).

84. Rodgers, J. L. et al. Linearly Independent, Orthogonal, and Uncorrelated Variables.

The American Statistician 38, 133. issn: 00031305 (May 1984).

85. Ouyang, J. et al. Cryo-electron microscope image denoising based on the geodesic distance. BMC Structural Biology 18, 18. issn: 1472-6807 (Dec. 2018).

CC cross-correlation. 32, 54, 95

cryo-EM electron cryo-microscopy. iii, iv, xi, xii, 2, 4–10, 12–14, 17, 19–27, 29, 30, 33, 38, 39, 41, 44, 48, 49, 51–57, 60, 63–66, 70–74, 78, 80–88, 91–96, 98–103, 105, 106, 111 cs-thm central-slice theorem. xi, 27, 38, 49, 50, 56, 67, 70

CTF Contrast Transfer Function. iv, xi, xii, 10–12, 26, 40, 46, 47, 51, 55–59, 78, 92–94, 105

DFT Discrete Fourier Transform. 34 DPR Differential Phase Residual. 52 DQE detective quantum efficiency. 17 EM electron microscopy. 3–5

EMDB Electron Microscopy Data Bank. 6, 7, 106 FFT Fast Fourier Transform. xi, 22, 27, 34–37

FRC of projections Fourier Ring Correlation of projections. iv, xii, xv, 71–73, 76–83, 88–91, 94, 96, 102, 105, 116

FSC Fourier Shell Correlation. iii, iv, xi, xii, 21–26, 30, 52–60, 63, 65–68, 71–73, 76, 77, 79, 80, 91, 93–99, 101, 102, 105

FSC of reconstruction Fourier Shell Correlation of reconstruction. xii, 73, 76–83, 88 FT Fourier Transform. 33, 34

IFFT Inverse Fast Fourier Transform. 34, 50 IFT Inverse Fourier Transform. 34

NCC normalized cross-correlation. 22, 32, 50, 101

NMR spectroscopy Nuclear Magnetic Resonance Spectroscopy. 3–5, 106 PCA Principal Component Analysis. 48

PSF Point Spread Function. 10, 44

QSNR Quality Signal-to-Noise-Ratio. xii, xv, 69–72, 85, 88–90, 94, 96, 115, 116

QSSNR Quality-Spectral Signal-to-Noise-Ratio. iv, xv, 70–73, 76–83, 85, 89–91, 96, 102, 112, 116

RCSB PDB Protein Data Bank. xi, 3–5, 58, 61, 62

RELION REgularized LIkelihood OptiminzatioN. xi, 8, 29, 51, 52, 56, 57, 59, 65, 66, 79, 82, 83, 85, 87, 91, 92, 97, 98, 100, 105

SEM Scanning Electron Microscope. 4

SNR Signal-to-Noise-Ratio. iii, iv, xiii, 7, 10, 14, 15, 17, 20, 21, 24–26, 45–49, 53–55, 61, 73, 80, 84, 88, 91, 92, 95, 96, 98, 100–102, 105

SPA single particle analysis. iii, iv, 4, 6, 8, 13, 17, 20, 29, 45, 48, 52, 56, 88, 95, 98, 111 SSNR Spectral Signal-to-Noise-Ratio. iv, 30, 52–54, 68, 71, 101, 102, 105

STEM Scanning Transmission Electron Microscope. 4

TEM Transmission Electron Microscope. iii, iv, xi, 4, 6–12, 15–17, 19–21, 38–46, 55, 56, 61, 62, 68, 69, 91, 92, 131

WPO weak-phase-object. iv, 9, 26, 94

XRC X-Ray Diffraction Crystallography. 3–5, 106

N The number of images in the data set. 46 ú convolution of two functions f úg. 37

IÂrk the k-th detected single particle projection image. 68, 70, 84, 86, 87, 102, 103

IÂsk thek-th re-projection image with respect to the reconstruction. 68, 84, 86, 87, 102, 103 C complex space. 30

N complex space. 30 R real space. 30

µm Micormeter is a metrical unit. 11, 93 eV The energy of an electron. 41

keV The accelerating voltage of the TEM. 39, 41 mm Millimeter is a metrical unit. 41

nm Nanometer is a metrical unit. 3, 41 pm Picometer is a metrical unit.. 3, 41

Å Angstroem is a metrical unit with Å equal to 10≠10m. 2, 7, 11, 18, 21, 23–25, 38, 56, 57, 59–61, 63, 65, 66, 74, 76–83, 88, 89

2D Two-dimensional object with Knn. xi, 8, 10, 12, 22, 30–32, 34, 35, 37, 38, 41, 46–51, 67, 68, 74, 97, 113

3D three-dimensional map. iii, iv, 6, 8, 10, 12, 13, 15, 17–19, 21–24, 26, 30, 32, 38, 45–52, 56–59, 62, 64–67, 78, 82, 85, 93, 95, 96, 98, 103, 107

MDa Mega Dalton. 6